Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pflugers Arch ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829391

RESUMEN

The intestinal epithelium is covered by mucus that protects the tissue from the luminal content. Studies have shown that anion secretion via the cystic fibrosis conductance regulator (Cftr) regulates mucus formation in the small intestine. However, mechanisms regulating mucus formation in the colon are less understood. The aim of this study was to explore the role of anion transport in the regulation of mucus formation during steady state and in response to carbamylcholine (CCh) and prostaglandin E2 (PGE2). The broad-spectrum anion transport inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), CftrdF508 (CF) mice, and the slc26a3 inhibitor SLC26A3-IN-2 were used to inhibit anion transport. In the distal colon, steady-state mucus expansion was reduced by SLC26A3-IN-2 and normal in CF mice. PGE2 stimulated mucus expansion without de novo mucus release in wild type (WT) and CF colon via slc26a3 sensitive mechanisms, while CCh induced de novo mucus secretion in WT but not in CF colon. However, when added simultaneously, CCh and PGE2 stimulated de novo mucus secretion in the CF colon via DIDS-sensitive pathways. A similar response was observed in CF ileum that responded to CCh and PGE2 with DIDS-sensitive de novo mucus secretion. In conclusion, this study suggests that slc26a3 regulates colonic mucus expansion, while Cftr regulates CCh-induced de novo mucus secretion from ileal and distal colon crypts. Furthermore, these findings demonstrate that in the absence of a functional Cftr channel, parallel stimulation with CCh and PGE2 activates additional anion transport processes that help release mucus from intestinal goblet cells.

2.
PNAS Nexus ; 2(11): pgad388, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38024407

RESUMEN

The respiratory tract of larger animals is cleared by sweeping bundled strands along the airway surface. These bundled strands can be millimetric in length and consist of MUC5B mucin. They are produced by submucosal glands, and upon emerging from these glands, the long axis of the bundled strands is oriented along the cilia-mediated flow toward the oral cavity. However, after release, the bundled strands are found to have turned orthogonal to the flow, which maximizes their clearance potential. How this unexpected reorientation is accomplished is presently not well understood. Recent experiments suggest that the reorientation process involves bundled strands sticking to MUC5AC mucus threads, which are tethered to the goblet cells. Such goblet cells are present in small numbers throughout the airway epithelium. Here, we develop a minimal model for reorientation of bundled mucus strands through adhesive interactions with surface goblet cells. Our simulations reveal that goblet cell interactions can reorient the bundled strands within 10 mm of release-making reorientation on the length scale of the tracheal tube feasible-and can stabilize the orthogonal orientation. Our model also reproduces other experimental observations such as strong velocity fluctuations and significant slow-down of the bundled strand with respect to the cilia-mediated flow. We further provide insight into the strand turning mechanism by examining the effect of strand shape on the impulse exerted by a single goblet cell. We conclude that goblet cell-mediated reorientation is a viable route for bundled strand reorientation, which should be further validated in future experiment.

3.
Respir Res ; 24(1): 83, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927357

RESUMEN

BACKGROUND: The respiratory tract is protected from inhaled particles and microbes by mucociliary clearance, mediated by the mucus and the cilia creating a flow to move the mucus cephalad. Submucosal glands secrete linear MUC5B mucin polymers and because they pass through the gland duct before reaching the airway surface, bundled strands of 1000-5000 parallel molecules exit the glands. In contrast, the surface goblet cells secrete both MUC5AC and MUC5B. METHODS: We used mass-spectrometry based proteomic analysis of unstimulated and carbachol stimulated newborn wild-type (WT) and cystic fibrosis transmembrane conductance regulator (CFTR) null (CF) piglet airways to study proteins in the airway surface liquid and mucus, to investigate if levels of MUC5AC and MUC5B were affected by carbachol stimulation and whether the proteins clustered according to function. RESULTS: Proteins in the first four extracted fractions clustered together and the fifth fraction contained the mucus cluster, mucins and other proteins known to associate with mucins, whereas the traditional airway surface liquid proteins clustered to fraction 1-4 and were absent from the mucus fraction. Carbachol stimulation resulted in increased MUC5AC and MUC5B. CONCLUSIONS: These results indicate a distinct separation between proteins in the washable surface liquid and the mucus fraction. In fractions 1-4 from newborn CF piglets an additional cluster containing acute phase proteins was observed, suggesting an early inflammatory response in CF piglets. Alternatively, increased levels of these proteins could indicate altered lung development in the CF piglets. This observation suggests that CF airway disease is present at birth and thus, treatment should commence directly after diagnosis.


Asunto(s)
Fibrosis Quística , Animales , Porcinos , Fibrosis Quística/metabolismo , Proteoma/metabolismo , Carbacol , Proteómica , Moco/metabolismo , Mucinas/metabolismo , Células Caliciformes/metabolismo
4.
Sci Signal ; 15(752): eabl5848, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36126118

RESUMEN

Goblet cells in the small intestinal crypts contain large numbers of mucin granules that are rapidly discharged to clean bacteria from the crypt. Because acetylcholine released by neuronal and nonneuronal cells controls many aspects of intestinal epithelial function, we used tissue explants and organoids to investigate the response of the small intestinal crypt to cholinergic stimulation. The activation of muscarinic acetylcholine receptors initiated a coordinated and rapid emptying of crypt goblet cells that flushed the crypt contents into the intestinal lumen. Cholinergic stimulation induced an expansion of the granule contents followed by intracellular rupture of the mucin granules. The mucus expanded intracellularly before the rupture of the goblet cell apical membrane and continued to expand after its release into the crypt lumen. The goblet cells recovered from membrane rupture and replenished their stores of mucin granules. Mucus secretion from the goblet cells depended on Ca2+ signaling and the expansion of the mucus in the crypt depended on gap junctions and on ion and water transport by enterocytes adjacent to the goblet cells. This distinctive mode of mucus secretion, which we refer to as "expanding secretion," efficiently cleans the small intestine crypt through coordinated mucus, ion, and fluid secretion by goblet cells and enterocytes.


Asunto(s)
Enterocitos , Células Caliciformes , Acetilcolina/metabolismo , Acetilcolina/farmacología , Colinérgicos/metabolismo , Enterocitos/metabolismo , Mucosa Intestinal/metabolismo , Transporte Iónico , Mucinas/metabolismo , Moco/metabolismo , Agua/metabolismo
5.
Am J Respir Crit Care Med ; 206(9): 1081-1095, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776514

RESUMEN

Rationale: MUC5AC (mucin 5AC, oligomeric gel-forming) and MUC5B (mucin 5B, oligomeric gel-forming) are the predominant secreted polymeric mucins in mammalian airways. They contribute differently to the pathogenesis of various muco-obstructive and interstitial lung diseases, and their genes are separately regulated, but whether they are packaged together or in separate secretory granules is not known. Objectives: To determine the packaging of MUC5AC and MUC5B within individual secretory granules in mouse and human airways under varying conditions of inflammation and along the proximal-distal axis. Methods: Lung tissue was obtained from mice stimulated to upregulate mucin production by the cytokines IL-1ß and IL-13 or by porcine pancreatic elastase. Human lung tissue was obtained from donated normal lungs, biopsy samples of transplanted lungs, and explanted lungs from subjects with chronic obstructive pulmonary disease. MUC5AC and MUC5B were labeled with antibodies from different animal species or, in mice only, by transgenic chimeric mucin-fluorescent proteins and imaged using widefield deconvolution or Airyscan fluorescence microscopy. Measurements and Main Results: In both mouse and human airways, most secretory granules contained both mucins interdigitating within the granules. Smaller numbers of granules contained MUC5B alone, and even fewer contained MUC5AC alone. Conclusions: MUC5AC and MUC5B are variably stored both in the same and in separate secretory granules of both mice and humans. The high fraction of granules containing both mucins under a variety of conditions makes it unlikely that their secretion can be differentially controlled as a therapeutic strategy. This work also advances knowledge of the packaging of mucins within secretory granules to understand mechanisms of epithelial stress in the pathogenesis of chronic lung diseases.


Asunto(s)
Mucina 5B , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Animales , Porcinos , Mucina 5AC , Pulmón/metabolismo , Vesículas Secretoras/metabolismo , Mamíferos/metabolismo
6.
Respir Res ; 22(1): 303, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34823518

RESUMEN

BACKGROUND: The mucociliary clearance system driven by beating cilia protects the airways from inhaled microbes and particles. Large particles are cleared by mucus bundles made in submucosal glands by parallel linear polymers of the MUC5B mucins. However, the structural organization and function of the mucus generated in surface goblet cells are poorly understood. METHODS: The origin and characteristics of different mucus structures were studied on live tissue explants from newborn wild-type (WT), cystic fibrosis transmembrane conductance regulator (CFTR) deficient (CF) piglets and weaned pig airways using video microscopy, Airyscan imaging and electron microscopy. Bronchoscopy was performed in juvenile pigs in vivo. RESULTS: We have identified a distinct mucus formation secreted from the surface goblet cells with a diameter less than two micrometer. This type of mucus was named mucus threads. With time mucus threads gathered into larger mucus assemblies, efficiently collecting particles. The previously observed Alcian blue stained mucus bundles were around 10 times thicker than the threads. Together the mucus bundles, mucus assemblies and mucus threads cleared the pig trachea from particles. CONCLUSIONS: These results demonstrate that normal airway mucus is more complex and has a more variable structural organization and function than was previously understood. These observations emphasize the importance of studying young objects to understand the function of a non-compromised lung.


Asunto(s)
Células Caliciformes/fisiología , Depuración Mucociliar/fisiología , Moco/citología , Tráquea/fisiología , Animales , Broncoscopía , Células Caliciformes/citología , Microscopía por Video , Modelos Animales , Porcinos
7.
Eur J Pharmacol ; 904: 174123, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33974881

RESUMEN

Cystic fibrosis (CF) is a recessive inherited disease caused by mutations affecting anion transport by the epithelial ion channel cystic fibrosis transmembrane conductance regulator (CFTR). The disease is characterized by mucus accumulation in the airways and intestine, but the major cause of mortality in CF is airway mucus accumulation, leading to bacterial colonization, inflammation and respiratory failure. Several drug targets are under evaluation to alleviate airway mucus obstruction in CF and one of these targets is the epithelial sodium channel ENaC. To explore effects of ENaC inhibitors on mucus properties, we used two model systems to investigate mucus characteristics, mucus attachment in mouse ileum and mucus bundle transport in piglet airways. We quantified mucus attachment in explants from CFTR null (CF) mice and tracheobronchial explants from newborn CFTR null (CF) piglets to evaluate effects of ENaC or sodium/hydrogen exchanger (NHE) inhibitors on mucus attachment. ENaC inhibitors detached mucus in the CF mouse ileum, although the ileum lacks ENaC expression. This effect was mimicked by two NHE inhibitors. Airway mucus bundles were immobile in untreated newborn CF piglets but were detached by the therapeutic drug candidate AZD5634 (patent WO, 2015140527). These results suggest that the ENaC inhibitor AZD5634 causes detachment of CF mucus in the ileum and airway via NHE inhibition and that drug design should focus on NHE instead of ENaC inhibition.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Bloqueadores del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/metabolismo , Pulmón/metabolismo , Moco/metabolismo , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Bicarbonatos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Canales Epiteliales de Sodio/efectos de los fármacos , Femenino , Concentración de Iones de Hidrógeno/efectos de los fármacos , Íleon/efectos de los fármacos , Íleon/metabolismo , Pulmón/efectos de los fármacos , Masculino , Ratones , Moco/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/genética , Porcinos
8.
Gut ; 70(6): 1117-1129, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33177165

RESUMEN

OBJECTIVE: The incidence of IBS increases following enteric infections, suggesting a causative role for microbial imbalance. However, analyses of faecal microbiota have not demonstrated consistent alterations. Here, we used metaproteomics to investigate potential associations between mucus-resident microbiota and IBS symptoms. DESIGN: Mucus samples were prospectively collected from sigmoid colon biopsies from patients with IBS and healthy volunteers, and their microbial protein composition analysed by mass spectrometry. Observations were verified by immunofluorescence, electron microscopy and real-time PCR, further confirmed in a second cohort, and correlated with comprehensive profiling of clinical characteristics and mucosal immune responses. RESULTS: Metaproteomic analysis of colon mucus samples identified peptides from potentially pathogenic Brachyspira species in a subset of patients with IBS. Using multiple diagnostic methods, mucosal Brachyspira colonisation was detected in a total of 19/62 (31%) patients with IBS from two prospective cohorts, versus 0/31 healthy volunteers (p<0.001). The prevalence of Brachyspira colonisation in IBS with diarrhoea (IBS-D) was 40% in both cohorts (p=0.02 and p=0.006 vs controls). Brachyspira attachment to the colonocyte apical membrane was observed in 20% of patients with IBS and associated with accelerated oro-anal transit, mild mucosal inflammation, mast cell activation and alterations of molecular pathways linked to bacterial uptake and ion-fluid homeostasis. Metronidazole treatment paradoxically promoted Brachyspira relocation into goblet cell secretory granules-possibly representing a novel bacterial strategy to evade antibiotics. CONCLUSION: Mucosal Brachyspira colonisation was significantly more common in IBS and associated with distinctive clinical, histological and molecular characteristics. Our observations suggest a role for Brachyspira in the pathogenesis of IBS, particularly IBS-D.


Asunto(s)
Proteínas Bacterianas/análisis , Brachyspira/metabolismo , Infecciones por Bacterias Gramnegativas/epidemiología , Síndrome del Colon Irritable/microbiología , Síndrome del Colon Irritable/patología , Moco/microbiología , Adulto , Antibacterianos/farmacología , Biopsia , Brachyspira/efectos de los fármacos , Brachyspira/aislamiento & purificación , Estudios de Casos y Controles , Colon Sigmoide/patología , Diarrea/etiología , Heces/microbiología , Femenino , Tránsito Gastrointestinal , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Infecciones por Bacterias Gramnegativas/fisiopatología , Humanos , Inmunidad Mucosa , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/fisiopatología , Masculino , Mastocitos , Metronidazol/farmacología , Persona de Mediana Edad , Moco/química , Prevalencia , Estudios Prospectivos , Proteómica , Índice de Severidad de la Enfermedad , Adulto Joven
9.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1270-L1279, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348677

RESUMEN

The organization of the normal airway mucus system differs in small experimental animals from that in humans and large mammals. To address normal murine airway mucociliary clearance, Alcian blue-stained mucus transport was measured ex vivo on tracheal tissues of naïve C57BL/6, Muc5b-/-, Muc5ac-/-, and EGFP-tagged Muc5b reporter mice. Close to the larynx with a few submucosal glands, the mucus appeared as thick bundles. More distally in the trachea and in large bronchi, Alcian blue-stained mucus was organized in cloud-like formations based on the Muc5b mucin. On tilted tissue, the mucus clouds moved upward toward the larynx with an average velocity of 12 µm/s compared with 20 µm/s for beads not associated with clouds. In Muc5ac-/- mice, Muc5b formed mucus strands attached to the tissue surface, while in Muc5b-/- mice, Muc5ac had a more variable appearance. The normal mouse lung mucus thus appears as discontinuous clouds, clearly different from the stagnant mucus layer in diseased lungs.


Asunto(s)
Mucina 5B/metabolismo , Moco/metabolismo , Sistema Respiratorio/metabolismo , Animales , Transporte Biológico , Fluorescencia , Células Caliciformes/metabolismo , Ratones Endogámicos C57BL , Mucina 5AC/metabolismo , Membrana Mucosa/metabolismo , Tráquea/metabolismo
10.
Cell Rep ; 30(4): 1077-1087.e3, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31995731

RESUMEN

The gastrointestinal tract is covered by a single layer of epithelial cells that, together with the mucus layers, protect the underlying tissue from microbial invasion. The epithelium has one of the highest turnover rates in the body. Using stable isotope labeling, high-resolution mass spectrometry, and computational analysis, we report a comprehensive dataset of the turnover of more than 3,000 and the expression of more than 5,000 intestinal epithelial cell proteins, analyzed under conventional and germ-free conditions across five different segments in mouse intestine. The median protein half-life is shorter in the small intestine than in the colon. Differences in protein turnover rates along the intestinal tract can be explained by distinct physiological and immune-related functions between the small and large intestine. An absence of microbiota results in an approximately 1 day longer protein half-life in germ-free animals.


Asunto(s)
Células Epiteliales/metabolismo , Tracto Gastrointestinal/fisiología , Microbiota/fisiología , Moco/metabolismo , Transporte de Proteínas/fisiología , Proteómica/métodos , Animales , Humanos , Ratones , Moco/citología
11.
Ann Am Thorac Soc ; 15(Suppl 3): S159-S163, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30431338

RESUMEN

The respiratory system is protected from inhaled particles and microbes by the mucociliary system. This system differs between animal species, where pigs and humans have numerous submucosal glands. The polymer-forming mucin, MUC5B, is packed in a highly organized way in granules of the mucus-secreting cells in the glands. Upon secretion, the packed MUC5B is flushed out by a chloride- and bicarbonate-rich fluid from the cystic fibrosis transmembrane conductance regulator-expressing serosal cells located at the most distal part of the gland. The bicarbonate raises the pH and removes calcium from the N terminus of MUC5B, allowing the mucin to be pulled out into a linear polymer. Thousands of such polymers gather in bundles in the submucosal gland duct, and these bundles appear at the opening of the glands. They are moved by the beating cilia, and sweep over the airway surface and are patchily coated with the MUC5AC mucin from the surface goblet cells. The movement of these bundles is controlled by the MUC5AC mucin attachment/detachment to the goblet cells. Thus, higher animals with submucosal glands and large diameters of the proximal airways are efficiently cleaned by the thick mucus bundles sweeping the airway surface and moving particles and bacteria toward the larynx.


Asunto(s)
Enfermedades Pulmonares/etiología , Mucinas/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/terapia , Depuración Mucociliar/fisiología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Mucosa Respiratoria/fisiopatología , Vesículas Secretoras/fisiología , Porcinos
12.
JCI Insight ; 3(17)2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30185674

RESUMEN

The respiratory tract is normally kept essentially free of bacteria by cilia-mediated mucus transport, but in chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), bacteria and mucus accumulates instead. To address the mechanisms behind the mucus accumulation, the proteome of bronchoalveolar lavages from COPD patients and mucus collected in an elastase-induced mouse model of COPD was analyzed, revealing similarities with each other and with the protein content in colonic mucus. Moreover, stratified laminated sheets of mucus were observed in airways from patients with CF and COPD and in elastase-exposed mice. On the other hand, the mucus accumulation in the elastase model was reduced in Muc5b-KO mice. While mucus plugs were removed from airways by washing with hypertonic saline in the elastase model, mucus remained adherent to epithelial cells. Bacteria were trapped on this mucus, whereas, in non-elastase-treated mice, bacteria were found on the epithelial cells. We propose that the adherence of mucus to epithelial cells observed in CF, COPD, and the elastase-induced mouse model of COPD separates bacteria from the surface cells and, thus, protects the respiratory epithelium.


Asunto(s)
Bacterias , Células Epiteliales/metabolismo , Moco/microbiología , Moco/fisiología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Animales , Líquido del Lavado Bronquioalveolar , Fibrosis Quística/complicaciones , Modelos Animales de Enfermedad , Células Epiteliales/microbiología , Células Epiteliales/patología , Femenino , Humanos , Pulmón , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucina 5B/genética , Elastasa Pancreática , Pseudomonas aeruginosa , Mucosa Respiratoria
13.
Eur Respir J ; 52(2)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29853489

RESUMEN

The beneficial effect of anticholinergic therapy for chronic lung diseases such as chronic obstructive pulmonary disease (COPD) is well documented, although cholinergic stimulation paradoxically inhibits liquid absorption, increases ciliary beat frequency and increases airway surface liquid transport.Using pig tracheobronchial explants, we quantified basal mucus transport before as well as after incubation with the clinically used antimuscarinic compound ipratropium bromide (Atrovent) and stimulation with acetylcholine.As expected, surface liquid transport was increased by acetylcholine and carbachol. In contrast, the mucus bundles secreted from the submucosal glands normally transported on the cilia were stopped from moving by acetylcholine, an effect inhibited by ipratropium bromide. Interestingly, in pigs lacking a functional cystic fibrosis (CF) transmembrane conductance regulator (CFTR) channel, the mucus bundles were almost immobile. As in wild-type pigs, CF surface liquid transport increased after carbachol stimulation. The stagnant CF mucus bundles were trapped on the tracheal surface attached to the surface goblet cells. Pseudomonas aeruginosa bacteria were moved by the mucus bundles in wild-type but not CF pigs.Acetylcholine thus uncouples airway surface liquid transport from transport of the surface mucus bundles as the bundles are dynamically inhibited by acetylcholine and the CFTR channel, explaining initiation of CF and COPD, and opening novel therapeutic windows.


Asunto(s)
Colinérgicos/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Depuración Mucociliar , Moco/metabolismo , Animales , Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Humanos , Pseudomonas aeruginosa/aislamiento & purificación , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Porcinos
14.
J Biol Chem ; 293(15): 5746-5754, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440393

RESUMEN

Most MUC5B mucin polymers in the upper airways of humans and pigs are produced by submucosal glands. MUC5B forms N-terminal covalent dimers that are further packed into larger assemblies because of low pH and high Ca2+ in the secretory granule of the mucin-producing cell. We purified the recombinant MUC5B N-terminal covalent dimer and used single-particle electron microscopy to study its structure under intracellular conditions. We found that, at intragranular pH, the dimeric MUC5B organized into head-to-head noncovalent tetramers where the von Willebrand D1-D2 domains hooked into each other. These N-terminal tetramers further formed long linear complexes from which, we suggest, the mucin domains and their C termini project radially outwards. Using conventional and video microscopy, we observed that, upon secretion into the submucosal gland ducts, a flow of bicarbonate-rich fluid passes the mucin-secreting cells. We suggest that this unfolds and pulls out the MUC5B assemblies into long linear threads. These further assemble into thicker mucin bundles in the glandular ducts before emerging at the gland duct opening. We conclude that the combination of intracellular packing of the MUC5B mucin and the submucosal gland morphology creates an efficient machine for producing linear mucin bundles.


Asunto(s)
Calcio/química , Mucina 5B/química , Multimerización de Proteína , Animales , Calcio/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Mucina 5B/genética , Mucina 5B/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Porcinos
15.
Biochem J ; 475(3): 691-704, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29335300

RESUMEN

In the present study, we have applied ratiometric measurements of intracellular Ca2+ concentrations ([Ca2+]i) to show that extracellularly applied ATP (adenosine triphosphate) (100 µM) stimulates store-operated Ca2+ entry (SOCE) in 3T3-L1 adipocytes. ATP produced a rapid increase in [Ca2+]i consisting of an initial transient elevation followed by a sustained elevated phase that could be observed only in the presence of extracellular Ca2+ Gene expression data and [Ca2+]i recordings with uridine-5'-triphosphate or with the phospholipase C (PLC) inhibitor U73122 demonstrated the involvement of purinergic P2Y2 receptors and the PLC/inositol trisphosphate pathway. The [Ca2+]i elevation produced by reintroduction of a Ca2+-containing intracellular solution to adipocytes exposed to ATP in the absence of Ca2+ was diminished by known SOCE antagonists. The chief molecular components of SOCE, the stromal interaction molecule 1 (STIM1) and the calcium release-activated calcium channel protein 1 (ORAI1), were detected at the mRNA and protein level. Moreover, SOCE was largely diminished in cells where STIM1 and/or ORAI1 had been silenced by small interfering (si)RNA. We conclude that extracellular ATP activates SOCE in white adipocytes, an effect predominantly mediated by STIM1 and ORAI1.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adipocitos Blancos/metabolismo , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Células 3T3-L1 , Animales , Calcio/metabolismo , Señalización del Calcio/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Complejos Multiproteicos/genética , Proteína ORAI1/metabolismo , ARN Interferente Pequeño/genética , Molécula de Interacción Estromal 1/metabolismo , Canales Catiónicos TRPC/genética
16.
J Cyst Fibros ; 17(2S): S35-S39, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28951068

RESUMEN

Normal airways below the carina maintain an essentially sterile environment via a multi-pronged innate defence system that includes mucus clearance via mucociliary clearance and cough, multiple antimicrobials and cellular components including macrophages and neutrophils. In cystic fibrosis (CF), loss of CFTR function compromises these defences, and with present standard of care virtually all people with CF eventually develop mucus accumulation, plugging and chronic infections. This review focuses on how mucus is affected by CFTR loss.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística , Depuración Mucociliar , Fibrosis Quística/metabolismo , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos
17.
Cell Rep ; 21(8): 2090-2103, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166602

RESUMEN

The host metalloprotease meprin ß is required for mucin 2 (MUC2) cleavage, which drives intestinal mucus detachment and prevents bacterial overgrowth. To gain access to the cleavage site in MUC2, meprin ß must be proteolytically shed from epithelial cells. Hence, regulation of meprin ß shedding and activation is important for physiological and pathophysiological conditions. Here, we demonstrate that meprin ß activation and shedding are mutually exclusive events. Employing ex vivo small intestinal organoid and cell culture experiments, we found that ADAM-mediated shedding is restricted to the inactive pro-form of meprin ß and is completely inhibited upon its conversion to the active form at the cell surface. This strict regulation of meprin ß activity can be overridden by pathogens, as demonstrated for the bacterial protease Arg-gingipain (RgpB). This secreted cysteine protease potently converts membrane-bound meprin ß into its active form, impairing meprin ß shedding and its function as a mucus-detaching protease.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Metaloendopeptidasas/metabolismo , Metaloproteasas/metabolismo , Secuencia de Aminoácidos/genética , Animales , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Femenino , Cisteína-Endopeptidasas Gingipaínas , Células HEK293 , Humanos , Masculino , Metaloendopeptidasas/genética , Ratones Transgénicos , Mucina 2/genética , Mucina 2/metabolismo
18.
Biochem Biophys Res Commun ; 492(3): 331-337, 2017 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-28859985

RESUMEN

To understand the mucociliary clearance system, mucins were visualized by light, confocal and electron microscopy, and mucus was stained by Alcian blue and tracked by video microscopy on tracheal explants of newborn piglets. We observed long linear mucus bundles that appeared at the submucosal gland openings and were transported cephalically. The mucus bundles were shown by mass spectrometry and immunostaining to have a core made of MUC5B mucin and were coated with MUC5AC mucin produced by surface goblet cells. The transport speed of the bundles was slower than the airway surface liquid flow. We suggest that the goblet cell MUC5AC mucin anchors the mucus bundles and thus controls their transport. Normal clearance of the respiratory tree of pigs and humans, both rich in submucosal glands, is performed by thick and long mucus bundles.


Asunto(s)
Glándulas Exocrinas/metabolismo , Mucina 5AC/metabolismo , Mucina 5B/metabolismo , Depuración Mucociliar , Mucosa Respiratoria/metabolismo , Tráquea/metabolismo , Animales , Porcinos
19.
Clin Exp Pharmacol Physiol ; 44(6): 639-647, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28261854

RESUMEN

The goal of this study was to determine whether the guluronate (G) rich alginate OligoG CF-5/20 (OligoG) could detach cystic fibrosis (CF) mucus by calcium chelation, which is also required for normal mucin unfolding. Since bicarbonate secretion is impaired in CF, leading to insufficient mucin unfolding and thereby attached mucus, and since bicarbonate has the ability to bind calcium, we hypothesized that the calcium chelating property of OligoG would lead to detachment of CF mucus. Indeed, OligoG could compete with the N-terminus of the MUC2 mucin for calcium binding as shown by microscale thermophoresis. Further, effects on mucus thickness and attachment induced by OligoG and other alginate fractions of different length and composition were evaluated in explants of CF mouse ileum mounted in horizontal Ussing-type chambers. OligoG at 1.5% caused effective detachment of CF mucus and the most potent alginate fraction tested, the poly-G fraction of about 12 residues, had similar potency compared to OligoG whereas mannuronate-rich (M) polymers had minimal effect. In conclusion, OligoG binds calcium with appropriate affinity without any overt harmful effect on the tissue and can be exploited for treating mucus stagnation.


Asunto(s)
Alginatos/química , Alginatos/farmacología , Calcio/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Moco/efectos de los fármacos , Moco/metabolismo , Alginatos/metabolismo , Alginatos/uso terapéutico , Animales , Quelantes/química , Quelantes/metabolismo , Quelantes/farmacología , Quelantes/uso terapéutico , Ácido Glucurónico/química , Ácido Glucurónico/metabolismo , Ácido Glucurónico/farmacología , Ácido Glucurónico/uso terapéutico , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Ácidos Hexurónicos/farmacología , Ácidos Hexurónicos/uso terapéutico , Íleon/efectos de los fármacos , Íleon/metabolismo , Ratones , Polimerizacion
20.
Proc Natl Acad Sci U S A ; 113(48): 13833-13838, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849619

RESUMEN

The distal colon functions as a bioreactor and harbors an enormous amount of bacteria in a mutualistic relationship with the host. The microbiota have to be kept at a safe distance to prevent inflammation, something that is achieved by a dense inner mucus layer that lines the epithelial cells. The large polymeric nets made up by the heavily O-glycosylated MUC2 mucin forms this physical barrier. Proteomic analyses of mucus have identified the lectin-like protein ZG16 (zymogen granulae protein 16) as an abundant mucus component. To elucidate the function of ZG16, we generated recombinant ZG16 and studied Zg16-/- mice. ZG16 bound to and aggregated Gram-positive bacteria via binding to the bacterial cell wall peptidoglycan. Zg16-/- mice have a distal colon mucus layer with normal thickness, but with bacteria closer to the epithelium. Using distal colon explants mounted in a horizontal perfusion chamber we demonstrated that treatment of bacteria with recombinant ZG16 hindered bacterial penetration into the mucus. The inner colon mucus of Zg16-/- animals had a higher load of Gram-positive bacteria and showed bacteria with higher motility in the mucus close to the host epithelium compared with cohoused littermate Zg16+/+ The more penetrable Zg16-/- mucus allowed Gram-positive bacteria to translocate to systemic tissues. Viable bacteria were found in spleen and were associated with increased abdominal fat pad mass in Zg16-/- animals. The function of ZG16 reveals a mechanism for keeping bacteria further away from the host colon epithelium.


Asunto(s)
Bacterias Grampositivas/genética , Lectinas/genética , Proteínas de la Membrana/genética , Proteómica , Animales , Colon/metabolismo , Colon/microbiología , Sistema Digestivo/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Glicosilación , Bacterias Grampositivas/metabolismo , Interacciones Huésped-Patógeno/genética , Lectinas/metabolismo , Ratones , Ratones Noqueados , Moco/metabolismo , Moco/microbiología , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...