Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 152(5): 1321-1329.e5, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37156327

RESUMEN

BACKGROUND: Impoverished and historically marginalized communities often reside in areas with increased air pollution. OBJECTIVE: We evaluated the association between environmental justice (EJ) track and asthma severity and control as modified by traffic-related air pollution (TRAP). METHODS: We performed a retrospective study of 1526 adult asthma patients in Allegheny County, Pa, enrolled in an asthma registry during 2007-20. Asthma severity and control were determined using global guidelines. EJ tract designation was based on residency in census tracts with ≥30% non-White and/or ≥20% impoverished populations. TRAP exposures (NO2 and black carbon) for each census tract were normalized into pollution quartiles. Generalized linear model analyses determined the effect of EJ tract and TRAP on asthma. RESULTS: TRAP exposure in the highest quartile range was more frequent among patients living in an EJ tract (66.4% vs 20.8%, P < .05). Living in an EJ tract increased the odds of severe asthma in later onset asthma. The odds of uncontrolled asthma increased with disease duration in all patients living in EJ tracts (P < .05). Living in the highest quartile of NO2 also increased the odds of uncontrolled asthma in patients with severe disease (P < .05), while there was no effect of TRAP on uncontrolled asthma in patients with less severe disease (P > .05). CONCLUSIONS: Living in an EJ tract increased the odds of severe and uncontrolled asthma and was influenced by age at onset, disease duration, and potentially by TRAP exposure. This study underscores the need to better understand the complex environmental interactions that affect lung health in groups that have been economically and/or socially marginalized.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Adulto , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Justicia Ambiental , Estudios Retrospectivos , Edad de Inicio , Dióxido de Nitrógeno/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Asma/epidemiología , Asma/inducido químicamente
2.
Environ Pollut ; 318: 120942, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574806

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease (ILD) whose outcomes are worsened with air pollution exposures. DNA methylation (DNAm) patterns are altered in lungs and blood from patients with IPF, but the relationship between air pollution exposures and DNAm patterns in IPF remains unexplored. This study aimed to evaluate the association of PM2.5 and constituent components with global DNAm in patients with IPF. Patients enrolled in either the University of Pittsburgh Simmons Center for ILD Registry (Simmons) or the U.S.-wide Pulmonary Fibrosis Foundation (PFF) Patient Registry with peripheral blood DNA samples were included. The averages of monthly exposures to PM2.5 and constituents over 1-year and 3-months pre-blood collection were matched to patient residential coordinates using satellite-derived hybrid models. Global DNAm percentage (%5 mC) was determined using the ELISA-based MethylFlash assay. Associations of pollutants with %5 mC were assessed using beta-regression, Cox models for mortality, and linear regression for baseline lung function. Mediation proportion was determined for models where pollutant-mortality and pollutant-%5 mC associations were significant. Inclusion criteria were met by 313 Simmons and 746 PFF patients with IPF. Higher PM2.5 3-month exposures prior to blood collection were associated with higher %5 mC in Simmons (ß = 0.02, 95%CI 0.0003-0.05, p = 0.047), with trends in the same direction in the 1-year period in both cohorts. Higher exposures to sulfate, nitrate, ammonium, and black carbon constituents were associated with higher %5 mC in multiple models. Percent 5 mC was not associated with IPF mortality or lung function, but was found to mediate between 2 and 5% of the associations of PM2.5, sulfate, and ammonium with mortality. In conclusion, we found that higher global DNAm is a novel biomarker for increased PM2.5 and anthropogenic constituent exposure in patients with IPF. Mechanistic research is needed to determine if DNAm has pathogenic relevance in mediating associations between pollutants and mortality in IPF.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Fibrosis Pulmonar Idiopática , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Metilación de ADN , Contaminación del Aire/análisis , Fibrosis Pulmonar Idiopática/inducido químicamente
3.
JAMA Intern Med ; 182(12): 1248-1259, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251286

RESUMEN

Importance: Particulate matter 2.5 µm or less in diameter (PM2.5) is associated with adverse outcomes for patients with idiopathic pulmonary fibrosis, but its association with other fibrotic interstitial lung diseases (fILDs) and the association of PM2.5 composition with adverse outcomes remain unclear. Objective: To investigate the association of PM2.5 exposure with mortality and lung function among patients with fILD. Design, Setting, and Participants: In this multicenter, international, prospective cohort study, patients were enrolled in the Simmons Center for Interstitial Lung Disease Registry at the University of Pittsburgh in Pittsburgh, Pennsylvania; 42 sites of the Pulmonary Fibrosis Foundation Registry; and 8 sites of the Canadian Registry for Pulmonary Fibrosis. A total of 6683 patients with fILD were included (Simmons, 1424; Pulmonary Fibrosis Foundation, 1870; and Canadian Registry for Pulmonary Fibrosis, 3389). Data were analyzed from June 1, 2021, to August 2, 2022. Exposures: Exposure to PM2.5 and its constituents was estimated with hybrid models, combining satellite-derived aerosol optical depth with chemical transport models and ground-based PM2.5 measurements. Main Outcomes and Measures: Multivariable linear regression was used to test associations of exposures 5 years before enrollment with baseline forced vital capacity and diffusion capacity for carbon monoxide. Multivariable Cox models were used to test associations of exposure in the 5 years before censoring with mortality, and linear mixed models were used to test associations of exposure with a decrease in lung function. Multiconstituent analyses were performed with quantile-based g-computation. Cohort effect estimates were meta-analyzed. Models were adjusted for age, sex, smoking history, race, a socioeconomic variable, and site (only for Pulmonary Fibrosis Foundation and Canadian Registry for Pulmonary Fibrosis cohorts). Results: Median follow-up across the 3 cohorts was 2.9 years (IQR, 1.5-4.5 years), with death for 28% of patients and lung transplant for 10% of patients. Of the 6683 patients in the cohort, 3653 were men (55%), 205 were Black (3.1%), and 5609 were White (84.0%). Median (IQR) age at enrollment across all cohorts was 66 (58-73) years. A PM2.5 exposure of 8 µg/m3 or more was associated with a hazard ratio for mortality of 4.40 (95% CI, 3.51-5.51) in the Simmons cohort, 1.71 (95% CI, 1.32-2.21) in the Pulmonary Fibrosis Foundation cohort, and 1.45 (95% CI, 1.18-1.79) in the Canadian Registry for Pulmonary Fibrosis cohort. Increasing exposure to sulfate, nitrate, and ammonium PM2.5 constituents was associated with increased mortality across all cohorts, and multiconstituent models demonstrated that these constituents tended to be associated with the most adverse outcomes with regard to mortality and baseline lung function. Meta-analyses revealed consistent associations of exposure to sulfate and ammonium with mortality and with the rate of decrease in forced vital capacity and diffusion capacity of carbon monoxide and an association of increasing levels of PM2.5 multiconstituent mixture with all outcomes. Conclusions and Relevance: This cohort study found that exposure to PM2.5 was associated with baseline severity, disease progression, and mortality among patients with fILD and that sulfate, ammonium, and nitrate constituents were associated with the most harm, highlighting the need for reductions in human-derived sources of pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Compuestos de Amonio , Fibrosis Pulmonar , Anciano , Femenino , Humanos , Masculino , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Compuestos de Amonio/análisis , Canadá/epidemiología , Monóxido de Carbono/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Pulmón , Nitratos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Estudios Prospectivos , Fibrosis Pulmonar/inducido químicamente , Sulfatos/análisis , Persona de Mediana Edad
5.
J Allergy Clin Immunol ; 148(1): 225-233, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33894208

RESUMEN

BACKGROUND: Previous studies have related sulfur dioxide (SO2) exposure to asthma exacerbations. We utilized the University of Pittsburgh Asthma Institute registry to study associations of asthma exacerbations between 2 geographically distinct populations of adults with asthma. OBJECTIVE: Our objective was to examine whether asthma symptoms worsened following a significant fire event that destroyed pollution control equipment at the largest coke works in the United States. METHODS: Two groups of patients with asthma, namely, those residing within 10 miles of the coke works fire (the proximal group [n = 39]) and those residing beyond that range (the control group [n = 44]), were geocoded by residential address. Concentrations of ambient air SO2 were generated by using local University of Pittsburgh Asthma Institute registry air monitoring data. Factory emissions were also evaluated. Data from a patient historical acute exposure survey and in-person follow-up data were evaluated. Inferential statistics were used to compare the groups. RESULTS: In the immediate postfire period (6-8 weeks), the level of emissions of SO2 from the factory emissions increased to 25 times more than the typical level. Following the pollution control breach, the proximal cohort self-reported an increase in medication use (risk ratio = 1.76; 95% CI = 1.1-2.8; P < .01) and more exacerbations. In a small subset of the follow-up cohort of those who completed the acute exposure survey only, asthma control metrics improved. CONCLUSIONS: Real-world exposure to a marked increase in ambient levels of SO2 from a pollution control breach was associated with worsened asthma control in patients proximal to the event, with the worsened control improving following repair of the controls. Improved spatial resolution of air pollutant measurements would enable better examination of exposures and subsequent health impacts.


Asunto(s)
Contaminantes Atmosféricos/inmunología , Contaminación del Aire/efectos adversos , Asma/inmunología , Exposición a Riesgos Ambientales/efectos adversos , Estudios de Cohortes , Coque , Contaminación Ambiental/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Material Particulado/inmunología , Dióxido de Azufre/inmunología
6.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L41-L62, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33050709

RESUMEN

In this study, a genetically diverse panel of 43 mouse strains was exposed to ammonia, and genome-wide association mapping was performed employing a single-nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was used to help resolve the genetic determinants of ammonia-induced acute lung injury. The encoded proteins were prioritized based on molecular function, nonsynonymous SNP within a functional domain or SNP within the promoter region that altered expression. This integrative functional approach revealed 14 candidate genes that included Aatf, Avil, Cep162, Hrh4, Lama3, Plcb4, and Ube2cbp, which had significant SNP associations, and Aff1, Bcar3, Cntn4, Kcnq5, Prdm10, Ptcd3, and Snx19, which had suggestive SNP associations. Of these genes, Bcar3, Cep162, Hrh4, Kcnq5, and Lama3 are particularly noteworthy and had pathophysiological roles that could be associated with acute lung injury in several ways.


Asunto(s)
Lesión Pulmonar Aguda/patología , Amoníaco/toxicidad , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Transcriptoma , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Animales , Femenino , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos CBA
7.
Environ Health ; 19(1): 34, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32178683

RESUMEN

BACKGROUND: Communities need to efficiently estimate the burden from specific pollutants and identify those most at risk to make timely informed policy decisions. We developed a risk-based model to estimate the burden of black carbon (BC) and nitrogen dioxide (NO2) on coronary heart disease (CHD) across environmental justice (EJ) and non-EJ populations in Allegheny County, PA. METHODS: Exposure estimates in census tracts were modeled via land use regression and analyzed in relation to US Census data. Tracts were ranked into quartiles of exposure (Q1-Q4). A risk-based model for estimating the CHD burden attributed to BC and NO2 was developed using county health statistics, census tract level exposure estimates, and quantitative effect estimates available in the literature. RESULTS: For both pollutants, the relative occurrence of EJ tracts (> 20% poverty and/or > 30% non-white minority) in Q2 - Q4 compared to Q1 progressively increased and reached a maximum in Q4. EJ tracts were 4 to 25 times more likely to be in the highest quartile of exposure compared to the lowest quartile for BC and NO2, respectively. Pollutant-specific risk values (mean [95% CI]) for CHD mortality were higher in EJ tracts (5.49 × 10- 5 [5.05 × 10- 5 - 5.92 × 10- 5]; 5.72 × 10- 5 [5.44 × 10- 5 - 6.01 × 10- 5] for BC and NO2, respectively) compared to non-EJ tracts (3.94 × 10- 5 [3.66 × 10- 5 - 4.23 × 10- 5]; 3.49 × 10- 5 [3.27 × 10- 5 - 3.70 × 10- 5] for BC and NO2, respectively). While EJ tracts represented 28% of the county population, they accounted for about 40% of the CHD mortality attributed to each pollutant. EJ tracts are disproportionately skewed toward areas of high exposure and EJ residents bear a greater risk for air pollution-related disease compared to other county residents. CONCLUSIONS: We have combined a risk-based model with spatially resolved long-term exposure estimates to predict CHD burden from air pollution at the census tract level. It provides quantitative estimates of effects that can be used to assess possible health disparities, track temporal changes, and inform timely local community policy decisions. Such an approach can be further expanded to include other pollutants and adverse health endpoints.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Enfermedad Coronaria/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Dióxido de Nitrógeno/efectos adversos , Hollín/efectos adversos , Emisiones de Vehículos , Contaminación del Aire/efectos adversos , Enfermedad Coronaria/inducido químicamente , Costo de Enfermedad , Modelos Teóricos , Pennsylvania , Áreas de Pobreza , Medición de Riesgo
8.
Biochem Biophys Res Commun ; 463(4): 806-10, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26051273

RESUMEN

Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.


Asunto(s)
Ácidos Grasos/metabolismo , Mitocondrias/efectos de los fármacos , Níquel/farmacología , Western Blotting , Células Cultivadas , Humanos , 3-Hidroxiacil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Especificidad por Sustrato
9.
Am J Respir Cell Mol Biol ; 51(5): 637-51, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24816281

RESUMEN

Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14-P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1((-/-)) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1((+/+)) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1((-/-)) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1((-/-)) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Osteopontina/genética , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/fisiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Células Epiteliales Alveolares/fisiología , Animales , Animales Recién Nacidos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Femenino , Rendimiento Pulmonar/genética , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Alveolos Pulmonares/citología , Receptor Notch1/genética
10.
Methods Mol Biol ; 1105: 603-11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24623255

RESUMEN

Membrane phospholipids are gaining increasing attention as important mediators in a variety of signal transduction processes. Oxidation and changes in membrane topography of lipids are likely important elements in the regulation of phospholipid-dependent signaling. Phosphatidylserine (PS), in particular, is implicated in the regulation of macrophage-dependent clearance of apoptotic cell "corpses" in a pathway likely mediated by selective oxidation and translocation of PS in the plasma membrane. Here we describe our highly sensitive and specific assay to measure differential lipid peroxidation in individual phospholipid classes in live cells using metabolic integration of the fluorescent oxidation-sensitive fatty acid analog, cis- parinaric acid and resolution of specific phospholipids by high-pressure liquid chromatography. These experimental approaches can provide insight into the roles and mechanisms of PS oxidation in the identification and clearance of apoptotic cells.


Asunto(s)
Apoptosis , Fosfatidilserinas/metabolismo , Membrana Celular/metabolismo , Cromatografía en Capa Delgada , Humanos , Células Jurkat , Peroxidación de Lípido , Oxidación-Reducción , Estrés Oxidativo , Fosfatos/metabolismo
11.
Methods Mol Biol ; 1105: 613-21, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24623256

RESUMEN

We present here the application of a novel assay that measures the absolute amount of PS externalized on the surface of cells. While based on the same annexin binding principle as the fluorescent flow cytometry assay, we use paramagnetic iron as the ultimate reporter molecule, establishing a linear relationship between signal amplitude and amount of PS on the cell surface, allowing a quantitative assay of PS externalization over a wide dynamic range. The application of this technique, alone and in concert with the PS oxidation method presented in the previous chapter, will greatly aid in studying the mechanistic connection between lipid peroxidation and translocation events during apoptosis.


Asunto(s)
Anexina A5/química , Apoptosis , Hierro/química , Fosfatidilserinas/metabolismo , Calibración , Línea Celular , Membrana Celular/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Fluoresceína-5-Isotiocianato/química , Colorantes Fluorescentes/química , Humanos , Liposomas/química , Estrés Oxidativo , Fosfatidilserinas/química , Coloración y Etiquetado
12.
Am J Respir Cell Mol Biol ; 49(3): 368-83, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23590305

RESUMEN

In this study, a genetically diverse panel of 43 mouse strains was exposed to phosgene and genome-wide association mapping performed using a high-density single nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was also used to improve the genetic resolution in the identification of genetic determinants of phosgene-induced acute lung injury (ALI). We prioritized the identified genes based on whether the encoded protein was previously associated with lung injury or contained a nonsynonymous SNP within a functional domain. Candidates were selected that contained a promoter SNP that could alter a putative transcription factor binding site and had variable expression by transcriptomic analyses. The latter two criteria also required that ≥10% of mice carried the minor allele and that this allele could account for ≥10% of the phenotypic difference noted between the strains at the phenotypic extremes. This integrative, functional approach revealed 14 candidate genes that included Atp1a1, Alox5, Galnt11, Hrh1, Mbd4, Phactr2, Plxnd1, Ptprt, Reln, and Zfand4, which had significant SNP associations, and Itga9, Man1a2, Mapk14, and Vwf, which had suggestive SNP associations. Of the genes with significant SNP associations, Atp1a1, Alox5, Plxnd1, Ptprt, and Zfand4 could be associated with ALI in several ways. Using a competitive electrophoretic mobility shift analysis, Atp1a1 promoter (rs215053185) oligonucleotide containing the minor G allele formed a major distinct faster-migrating complex. In addition, a gene with a suggestive SNP association, Itga9, is linked to transforming growth factor ß1 signaling, which previously has been associated with the susceptibility to ALI in mice.


Asunto(s)
Lesión Pulmonar Aguda/genética , Sustancias para la Guerra Química/toxicidad , Expresión Génica/efectos de los fármacos , Genoma , Pulmón/metabolismo , Fosgeno/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Alelos , Animales , Mapeo Cromosómico , Ensayo de Cambio de Movilidad Electroforética , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Integrinas/genética , Integrinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Ratones Endogámicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteína Reelina , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
13.
Am J Respir Cell Mol Biol ; 49(1): 105-13, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23526216

RESUMEN

Numerous epidemiological studies have linked exposure to particulate matter (PM) air pollution with acute respiratory infection and chronic respiratory and cardiovascular diseases. We have previously shown that soluble nickel (Ni), a common component of PM, alters the release of CXC chemokines from cultured human lung fibroblasts (HLF) in response to microbial stimuli via a pathway dependent on disrupted prostaglandin (PG)E2 signaling. The current study sought to identify the molecular events underlying Ni-induced alterations in PGE2 signaling and its effects on IL-8 production. PGE2 synergistically enhances Ni-induced IL-8 release from HLF in a concentration-dependent manner. The effects of PGE2 were mimicked by butaprost and PGE1-alcohol and inhibited with antagonists AH6809 and L-161,982, indicating PGE2 signals via PGE2 receptors 2 and 4. PGE2 and forskolin stimulated cAMP, but it was only in the presence of Ni-induced hypoxia-inducible factor 1, α subunit (HIF1A) that these agents stimulated IL-8 release. The Ni-induced HIF1A DNA binding was enhanced by PGE2 and mediated, in part, by activation of p38 MAPK. Negation of cAMP-response element binding protein 1 or HIF1A using short interfering RNA blocked the synergistic interactions between Ni and PGE2. The results of the current study provide novel information on the ability of atmospheric hypoxia-mimetic metals to disrupt the release of immune-modulating chemokines by HLF in response to PGE2. Moreover, in the presence of HIF1A, cAMP-mediated signaling pathways may be altered to exacerbate inflammatory-like processes in lung tissue, imparting a susceptibility of PM-exposed populations to adverse respiratory health effects.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dinoprostona/farmacología , Fibroblastos/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-8/metabolismo , Níquel/farmacología , Alprostadil/análogos & derivados , Alprostadil/farmacología , Biomimética , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Sinergismo Farmacológico , Fibroblastos/metabolismo , Humanos , Inflamación/patología , Pulmón/citología , Pulmón/metabolismo , Níquel/metabolismo , Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP2 de Receptores de Prostaglandina E/agonistas , Subtipo EP4 de Receptores de Prostaglandina E/agonistas , Transducción de Señal , Xantonas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Am J Respir Cell Mol Biol ; 47(2): 234-44, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22447970

RESUMEN

The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Cloro/farmacología , Animales , Mapeo Cromosómico/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Predisposición Genética a la Enfermedad , Haplotipos , Factor 4 Similar a Kruppel , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Metaboloma , Ratones , Ratones Endogámicos C57BL , Fenotipo , Polimorfismo de Nucleótido Simple , Transcriptoma/genética
15.
Mol Nutr Food Res ; 55(9): 1423-34, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21823223

RESUMEN

SCOPE: This investigation sought to better understand the metabolic role of the lung and to generate insights into the pathogenesis of acrolein-induced acute lung injury. A respiratory irritant, acrolein is generated by overheating cooking oils or by domestic cooking using biomass fuels, and is in environmental tobacco smoke, a health hazard in the restaurant workplace. METHODS AND RESULTS: Using SM/J (sensitive) and 129X1/SvJ (resistant) inbred mouse strains, the lung metabolome was integrated with the transcriptome profile before and after acrolein exposure. A total of 280 small molecules were identified and mean values (log 2 >0.58 or <-0.58, p<0.05) were considered different for between-strain comparisons or within-strain responses to acrolein treatment. At baseline, 24 small molecules increased and 33 small molecules decreased in the SM/J mouse lung as compared to 129X1/SvJ mouse lung. Notable among the increased compounds was malonylcarnitine. Following acrolein exposure, several molecules indicative of glycolysis and branched chain amino acid metabolism increased similarly in both strains, whereas SM/J mice were less effective in generating metabolites related to fatty acid ß-oxidation. CONCLUSION: These findings suggest management of energetic stress varies between these strains, and that the ability to evoke auxiliary energy generating pathways rapidly and effectively may be critical in enhancing survival during acute lung injury in mice.


Asunto(s)
Acroleína/toxicidad , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Animales , Enzimas/genética , Enzimas/metabolismo , Femenino , Perfilación de la Expresión Génica , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Metaboloma , Ratones , Ratones Endogámicos , Transcriptoma
16.
Toxicol Appl Pharmacol ; 247(2): 146-57, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20600219

RESUMEN

Microbial stimuli and atmospheric particulate matter (PM) interact to amplify the release of inflammatory and immune-modulating cytokines. The basis of this interaction, however, is not known. Cultured human lung fibroblasts (HLF) were used to determine whether various protein kinase pathways were involved in the release of IL-6 following combined exposure to the PM-derived metal, Ni, and M. fermentans-derived macrophage-activating lipopeptide 2 (MALP-2), a toll-like receptor 2 agonist. Synergistic release of IL-6 by MALP-2 and NiSO4 was obvious after 8h of co-stimulation and correlated with a late phase accumulation of IL-6 mRNA. Ni and MALP-2, alone or together, all led to rapid and transient phosphorylations of ERK(1/2) and JNK/SAPK of similar magnitude. p38 phosphorylation, however, was observed only after prolonged treatment of cells with both stimuli together. A constitutive level of PI3K-dependent Akt phosphorylation remained unchanged by Ni and/or MALP-2 exposure. IL-6 induced by Ni/MALP-2 co-exposure was partially dependent on activity of HIF-1alpha and COX-2 as shown by targeted knockdown using siRNA. IL-6 release in response to Ni/MALP-2 was partially sensitive to pharmacological inhibition of ERK(1/2), p38, and PI3K signaling. The protein kinase inhibitors had minimal or no effects on Ni/MALP-2-induced accumulation of HIF-1alpha protein, however, COX-2 expression and, more markedly PGE(2) production, were suppressed by LY294002, SB203580, and U0126. Thus, Ni/MALP-2 interactions involve multiple protein kinase pathways (ERK(1/2), p38, and PI3K) that modulate events downstream from the early accumulation of HIF-1alpha to promote IL-6 gene expression directly or secondarily, through COX-2-derived autocrine products like PGE(2).


Asunto(s)
Interleucina-6/metabolismo , Lipopéptidos/toxicidad , Níquel/toxicidad , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/agonistas , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Sinergismo Farmacológico , Fibroblastos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pulmón , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
17.
Toxicol Sci ; 107(1): 227-37, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18832182

RESUMEN

Hypoxia-inducible factor (HIF-1alpha) and cyclooxygenase-2 (COX-2) have been implicated in the regulation of inflammatory-like processes that lead to angiogenesis and fibrotic disorders. Here we demonstrate that in human lung fibroblasts (HLFs) treated with mixed exposures to chemical and microbial stimuli, HIF-1alpha stabilization plays a pivotal role in the induction of COX-2 mRNA and protein, driving the release of vascular endothelial growth factor (VEGF) and proangiogenic and profibrotic chemokines. Upon costimulation with Ni and the mycoplasma-derived lipopeptide macrophage-activating lipopeptide-2 (MALP-2), there was a synergistic induction of CXCL1 and CXCL5 mRNA and protein release from HLF, as well as an enhanced response in VEGF compared to either stimulus alone. Consistent with our previous findings that Ni and MALP-2 stimulates the induction of CXCL8 via a COX-2-mediated pathway, CXCL1, CXCL5, and VEGF release were also regulated by COX-2. Ni induced the stabilization of HIF-1alpha protein in HLF, which was further enhanced in the presence of MALP-2. Depletion of HIF-1alpha using siRNA blocked COX-2 induction by Ni and MALP-2 along with the release of VEGF, CXCL1, CXCL5, and CXCL8. Our results indicate that Ni and MALP-2 interact to promote an angiogenic profibrotic phenotype in HLF. Moreover, these findings reveal a potential role for HIF-1alpha in mediating chemical-induced alterations in cellular response to microbial stimuli, modulating pulmonary inflammation and its consequences such as fibrosis and angiogenesis.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipopéptidos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Níquel/farmacología , Análisis de Varianza , Células Cultivadas , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Ciclooxigenasa 2/genética , Bases de Datos Genéticas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Silenciador del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mediadores de Inflamación/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Am J Respir Cell Mol Biol ; 38(5): 591-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18096868

RESUMEN

Particulate matter air pollution (PM) has been linked with chronic respiratory diseases. Real-life exposures are likely to involve a mixture of chemical and microbial stimuli, yet little attention has been paid to the potential interactions between PM components (e.g., Ni) and microbial agents on the development of inflammatory-like conditions in the lung. Using the Toll-like receptor (TLR)-2 agonist MALP-2 as a lipopeptide relevant to microbial colonization, we hypothesized that nickel sensitizes human lung fibroblasts (HLF) for microbial-driven chemokine release through modulation of TLR signaling pathways. NiSO(4) (200 muM) synergistically enhanced CXCL8, yet antagonized CXCL10 mRNA expression and protein release from HLF in response to MALP-2. RT(2)-PCR pathway-focused array results indicated that NiSO(4) exposure did not alter the expression of TLRs or their downstream signaling mediators, yet significantly increased the expression of cyclooxygenase 2 (COX-2). Moreover, when NiSO(4) was given in combination with MALP-2, there was an amplified induction of COX-2 mRNA and protein along with its metabolic product, PGE2, in HLF. The COX-2 inhibitor, NS-398, attenuated NiSO(4) and MALP-2-induced PGE2 and CXCL8 release and partially reversed the NiSO(4)-dependent inhibition of MALP-2-induced CXCL10 release from HLF. These data indicate that NiSO(4) alters the pattern of TLR-2-dependent chemokine release from HLF via a COX-2-mediated pathway. The quantitative and qualitative effects of NiSO(4) on microbial-driven chemokine release from HLF shed new light on how PM-derived metals can exacerbate respiratory diseases.


Asunto(s)
Quimiocinas/biosíntesis , Ciclooxigenasa 2/fisiología , Fibroblastos/enzimología , Pulmón/enzimología , Níquel/efectos adversos , Receptor Toll-Like 2/fisiología , Células Cultivadas , Quimiocina CXCL10/metabolismo , Quimiocinas/genética , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Perfilación de la Expresión Génica , Humanos , Interleucina-8/metabolismo , Lipopéptidos , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/patología , Oligopéptidos/fisiología , Receptor Toll-Like 2/agonistas
19.
Am J Respir Cell Mol Biol ; 38(5): 579-90, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18096873

RESUMEN

Carbon nanotubes (CNT), with their applications in industry and medicine, may lead to new risks to human health. CNT induce a robust pulmonary inflammation and oxidative stress in rodents. Realistic exposures to CNT may occur in conjunction with other pathogenic impacts (microbial infections) and trigger enhanced responses. We evaluated interactions between pharyngeal aspiration of single-walled CNT (SWCNT) and bacterial pulmonary infection of C57BL/6 mice with Listeria monocytogenes (LM). Mice were given SWCNT (0, 10, and 40 mug/mouse) and 3 days later were exposed to LM (10(3) bacteria/mouse). Sequential exposure to SWCNT/LM amplified lung inflammation and collagen formation. Despite this robust inflammatory response, SWCNT pre-exposure significantly decreased the pulmonary clearance of LM-exposed mice measured 3 to 7 days after microbial infection versus PBS/LM-treated mice. Decreased bacterial clearance in SWCNT-pre-exposed mice was associated with decreased phagocytosis of bacteria by macrophages and a decrease in nitric oxide production by these phagocytes. Pre-incubation of naïve alveolar macrophages with SWCNT in vitro also resulted in decreased nitric oxide generation and suppressed phagocytizing activity toward LM. Failure of SWCNT-exposed mice to clear LM led to a continued elevation in nearly all major chemokines and acute phase cytokines into the later course of infection. In SWCNT/LM-exposed mice, bronchoalveolar lavage neutrophils, alveolar macrophages, and lymphocytes, as well as lactate dehydrogenase level, were increased compared with mice exposed to SWCNT or LM alone. In conclusion, enhanced acute inflammation and pulmonary injury with delayed bacterial clearance after SWCNT exposure may lead to increased susceptibility to lung infection in exposed populations.


Asunto(s)
Listeria monocytogenes/patogenicidad , Listeriosis/patología , Pulmón/patología , Nanotubos de Carbono/microbiología , Neumonía/inducido químicamente , Neumonía/microbiología , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/microbiología , Citocinas/biosíntesis , Femenino , Listeriosis/inmunología , Listeriosis/fisiopatología , Pulmón/inmunología , Pulmón/microbiología , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos C57BL , Nanotubos de Carbono/toxicidad , Fagocitosis , Neumonía/inmunología , Neumonía/patología , Pérdida de Peso
20.
Am J Physiol Lung Cell Mol Physiol ; 291(4): L781-93, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16751226

RESUMEN

Mycoplasma can establish latent infections and are associated with arthritis, leukemia, and chronic lung disease. We developed an experimental model in which lung cells are deliberately infected with Mycoplasma fermentans. Human lung fibroblasts (HLF) were exposed to live M. fermentans and immune-modulating cytokine release was assessed with and without known inducers of cytokine production. M. fermentans increased IL-6, IL-8/CXCL8, MCP-1/CCL2, and Gro-alpha/CXCL1 production. M. fermentans interacted with TNF-beta to release more IL-6, CXCL8, and CXCL1 than predicted by the responses to either stimulus alone. The effects of live infection were recapitulated by exposure to M. fermentans-derived macrophage-activating lipopeptide-2 (MALP-2), a Toll-like receptor-2- and receptor-6-specific ligand. The synergistic effect of combined stimuli was more pronounced with prolonged incubations. Preexposure to TNF-beta sensitized the cells to subsequent MALP-2 challenge, but preexposure to MALP-2 did not alter the IL-6 response to TNF-beta. Exposure to M. fermentans or MALP-2 did not enhance nuclear localization, DNA binding, or transcriptional activity of NF-kappaB and did not modulate early NF-kappaB activation in response to TNF-beta. Application of specific inhibitors of various MAPKs suggested that p38 and JNK/stress-activated protein kinase were involved in early IL-6 release after exposure to TNF-beta and M. fermentans, respectively. The combined response to M. fermentans and TNF-beta, however, was uniquely sensitive to delayed application of SP-600125, suggesting that JNK/stress-activated protein kinase contributes to the amplification of IL-6 release. Thus M. fermentans interacts with stimuli such as TNF-beta to amplify lung cell production of immune-modulating cytokines. The mechanisms accounting for this interaction can now be dissected with the use of this in vitro model.


Asunto(s)
Citocinas/metabolismo , Fibroblastos/metabolismo , Factores Inmunológicos/metabolismo , Enfermedades Pulmonares/metabolismo , Pulmón/metabolismo , Linfotoxina-alfa/farmacología , Infecciones por Mycoplasma/metabolismo , Mycoplasma fermentans , Células Cultivadas , Fibroblastos/efectos de los fármacos , Humanos , Lipopéptidos , Pulmón/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/fisiología , FN-kappa B/metabolismo , Oligopéptidos/farmacología , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 6/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...