Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38866013

RESUMEN

The forces that orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed at which it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ∼5 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.

2.
bioRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745442

RESUMEN

The forces which orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ~1 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.

3.
ArXiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37064529

RESUMEN

Life in complex systems, such as cities and organisms, comes to a standstill when global coordination of mass, energy, and information flows is disrupted. Global coordination is no less important in single cells, especially in large oocytes and newly formed embryos, which commonly use fast fluid flows for dynamic reorganization of their cytoplasm. Here, we combine theory, computing, and imaging to investigate such flows in the Drosophila oocyte, where streaming has been proposed to spontaneously arise from hydrodynamic interactions among cortically anchored microtubules loaded with cargo-carrying molecular motors. We use a fast, accurate, and scalable numerical approach to investigate fluid-structure interactions of 1000s of flexible fibers and demonstrate the robust emergence and evolution of cell-spanning vortices, or twisters. Dominated by a rigid body rotation and secondary toroidal components, these flows are likely involved in rapid mixing and transport of ooplasmic components.

4.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066165

RESUMEN

Life in complex systems, such as cities and organisms, comes to a standstill when global coordination of mass, energy, and information flows is disrupted. Global coordination is no less important in single cells, especially in large oocytes and newly formed embryos, which commonly use fast fluid flows for dynamic reorganization of their cytoplasm. Here, we combine theory, computing, and imaging to investigate such flows in the Drosophila oocyte, where streaming has been proposed to spontaneously arise from hydrodynamic interactions among cortically anchored microtubules loaded with cargo-carrying molecular motors. We use a fast, accurate, and scalable numerical approach to investigate fluid-structure interactions of 1000s of flexible fibers and demonstrate the robust emergence and evolution of cell-spanning vortices, or twisters. Dominated by a rigid body rotation and secondary toroidal components, these flows are likely involved in rapid mixing and transport of ooplasmic components.

5.
Nat Commun ; 12(1): 6974, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848713

RESUMEN

The phenomenon of tissue fluidity-cells' ability to rearrange relative to each other in confluent tissues-has been linked to several morphogenetic processes and diseases, yet few molecular regulators of tissue fluidity are known. Ommatidial rotation (OR), directed by planar cell polarity signaling, occurs during Drosophila eye morphogenesis and shares many features with polarized cellular migration in vertebrates. We utilize in vivo live imaging analysis tools to quantify dynamic cellular morphologies during OR, revealing that OR is driven autonomously by ommatidial cell clusters rotating in successive pulses within a permissive substrate. Through analysis of a rotation-specific nemo mutant, we demonstrate that precise regulation of junctional E-cadherin levels is critical for modulating the mechanical properties of the tissue to allow rotation to progress. Our study defines Nemo as a molecular tool to induce a transition from solid-like tissues to more viscoelastic tissues broadening our molecular understanding of tissue fluidity.


Asunto(s)
Uniones Adherentes , Polaridad Celular , Líquido Extracelular , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Animales , Cadherinas , Polaridad Celular/genética , Polaridad Celular/fisiología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ectodermo , Ojo/citología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfogénesis , Alas de Animales/citología
6.
Elife ; 92020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32966209

RESUMEN

The spindle shows remarkable diversity, and changes in an integrated fashion, as cells vary over evolution. Here, we provide a mechanistic explanation for variations in the first mitotic spindle in nematodes. We used a combination of quantitative genetics and biophysics to rule out broad classes of models of the regulation of spindle length and dynamics, and to establish the importance of a balance of cortical pulling forces acting in different directions. These experiments led us to construct a model of cortical pulling forces in which the stoichiometric interactions of microtubules and force generators (each force generator can bind only one microtubule), is key to explaining the dynamics of spindle positioning and elongation, and spindle final length and scaling with cell size. This model accounts for variations in all the spindle traits we studied here, both within species and across nematode species spanning over 100 million years of evolution.


Asunto(s)
Caenorhabditis elegans , Tamaño de la Célula , Microtúbulos , Huso Acromático , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Evolución Molecular , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Fenotipo , Huso Acromático/química , Huso Acromático/genética , Huso Acromático/metabolismo
7.
Mol Biol Cell ; 30(19): 2503-2514, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31339442

RESUMEN

Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.


Asunto(s)
Segregación Cromosómica/fisiología , Huso Acromático/metabolismo , Polos del Huso/metabolismo , Anafase/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Línea Celular Tumoral , Segregación Cromosómica/genética , Cromosomas/genética , Cromosomas/fisiología , Humanos , Cinetocoros/metabolismo , Meiosis/genética , Microtúbulos/metabolismo , Huso Acromático/genética , Polos del Huso/genética
8.
Mol Biol Cell ; 29(7): 852-868, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29386297

RESUMEN

Recent work done exclusively in tissue culture cells revealed that the nuclear envelope (NE) ruptures and repairs in interphase. The duration of NE ruptures depends on lamins; however, the underlying mechanisms and relevance to in vivo events are not known. Here, we use the Caenorhabditis elegans zygote to analyze lamin's role in NE rupture and repair in vivo. Transient NE ruptures and subsequent NE collapse are induced by weaknesses in the nuclear lamina caused by expression of an engineered hypomorphic C. elegans lamin allele. Dynein-generated forces that position nuclei enhance the severity of transient NE ruptures and cause NE collapse. Reduction of dynein forces allows the weakened lamin network to restrict nucleo-cytoplasmic mixing and support stable NE recovery. Surprisingly, the high incidence of transient NE ruptures does not contribute to embryonic lethality, which is instead correlated with stochastic chromosome scattering resulting from premature NE collapse, suggesting that C. elegans tolerates transient losses of NE compartmentalization during early embryogenesis. In sum, we demonstrate that lamin counteracts dynein forces to promote stable NE repair and prevent catastrophic NE collapse, and thus provide the first mechanistic analysis of NE rupture and repair in an organismal context.

9.
J Assist Reprod Genet ; 34(10): 1261-1269, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28685392

RESUMEN

PURPOSE: The aim of this study was to determine if zona pellucida thickness variation (ZPTV) is associated with implantation and if this relationship changes with use of assisted hatching (AH). METHODS: Day 3 embryos from single or double embryo transfers (DETs) performed between 2014 and 2016 were included. ZPTV was assessed by examining photographs taken before transfer using an automated image processing platform to segment the zona pellucida (ZP) with an active contour technique. One hundred points were obtained of ZP thickness (ZPT) of each embryo to calculate ZPTV ([maximum ZPT-mean ZPT]/mean ZPT). Logistic regression was used to calculate the odds ratio (OR) and 95% confidence intervals (CI) of implantation by tertile of ZPTV. Maternal age and AH were adjusted for a priori. Other cycle and embryo characteristics were adjusted for if they altered the continuous effect estimate by >10%. RESULTS: There was no statistically significant association between ZPTV and implantation across tertiles although embryos with greater ZPTV showed a trend of decreased implantation (Tertile 2 (T2) versus Tertile 1 (T1), OR = 0.80, CI = 0.50-1.28; Tertile 3 (T3) versus Tertile 1 (T3), OR = 0.75, CI = 0.47-1.20). While similar nonsignificant trends for the association between ZPTV and implantation were observed across tertiles after stratification of embryos hatched or not, embryos with the greatest ZPTV had slightly higher odds for implantation when AH was utilized (T3 vs. T1: with AH, OR = 0.89, CI = 0.49-1.62; without AH, OR = 0.61, 0.29-1.27). CONCLUSION: ZPTV was not associated with implantation after day 3 transfer. This finding did not vary by use of AH.


Asunto(s)
Implantación del Embrión/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Zona Pelúcida/fisiología , Adulto , Transferencia de Embrión/métodos , Femenino , Humanos , Edad Materna , Embarazo , Índice de Embarazo , Estudios Retrospectivos , Inyecciones de Esperma Intracitoplasmáticas
10.
Genetics ; 203(4): 1859-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27334268

RESUMEN

Different types of phenotypic traits consistently exhibit different levels of genetic variation in natural populations. There are two potential explanations: Either mutation produces genetic variation at different rates or natural selection removes or promotes genetic variation at different rates. Whether mutation or selection is of greater general importance is a longstanding unresolved question in evolutionary genetics. We report mutational variances (VM) for 19 traits related to the first mitotic cell division in Caenorhabditis elegans and compare them to the standing genetic variances (VG) for the same suite of traits in a worldwide collection C. elegans Two robust conclusions emerge. First, the mutational process is highly repeatable: The correlation between VM in two independent sets of mutation accumulation lines is ∼0.9. Second, VM for a trait is a good predictor of VG for that trait: The correlation between VM and VG is ∼0.9. This result is predicted for a population at mutation-selection balance; it is not predicted if balancing selection plays a primary role in maintaining genetic variation.


Asunto(s)
Caenorhabditis elegans/genética , Variación Genética , Mutación/genética , Selección Genética/genética , Huso Acromático/genética , Animales , Modelos Genéticos , Fenotipo
11.
Curr Biol ; 25(6): 732-740, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25683802

RESUMEN

BACKGROUND: Cellular structures such as the nucleus, Golgi, centrioles, and spindle show remarkable diversity between species, but the mechanisms that produce these variations in cell biology are not known. RESULTS: Here we investigate the mechanisms that contribute to variations in morphology and dynamics of the mitotic spindle, which orchestrates chromosome segregation in all Eukaryotes and positions the division plane in many organisms. We use high-throughput imaging of the first division in nematodes to demonstrate that the measured effects of spontaneous mutations, combined with stabilizing selection on cell size, are sufficient to quantitatively explain both the levels of within-species variation in the spindle and its diversity over ∼100 million years of evolution. Furthermore, our finding of extensive within-species variation for the spindle demonstrates that there is not just one "wild-type" form, rather that cellular structures can exhibit a surprisingly broad diversity of naturally occurring behaviors. CONCLUSIONS: Our results argue that natural selection acts predominantly on cell size and indirectly influences the spindle through the scaling of the spindle with cell size. Previous studies have shown that the spindle also scales with cell size during early development. Thus, the scaling of the spindle with cell size controls its variation over both ontogeny and phylogeny.


Asunto(s)
Evolución Biológica , Huso Acromático/fisiología , Animales , Caenorhabditis/embriología , Caenorhabditis/genética , Caenorhabditis/fisiología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , División Celular/genética , División Celular/fisiología , Tamaño de la Célula , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Modelos Biológicos , Mutación , Selección Genética , Especificidad de la Especie , Huso Acromático/genética , Huso Acromático/ultraestructura
12.
Biophys J ; 106(8): 1578-87, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24739157

RESUMEN

The spatial organization of microtubule polarity, and the interplay between microtubule polarity and protein localization, is thought to be crucial for spindle assembly, anaphase, and cytokinesis, but these phenomena remain poorly understood, in part due to the difficulty of measuring microtubule polarity in spindles. We develop and implement a method to nonperturbatively and quantitatively measure microtubule polarity throughout spindles using a combination of second-harmonic generation and two-photon fluorescence. We validate this method using computer simulations and by comparison to structural data on spindles obtained from electron tomography and laser ablation. This method should provide a powerful tool for studying spindle organization and function, and may be applicable for investigating microtubule polarity in other systems.


Asunto(s)
Polaridad Celular , Simulación por Computador , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Extractos Celulares , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Xenopus laevis
13.
Methods Mol Biol ; 1136: 41-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24633792

RESUMEN

Differential interference contrast (DIC) microscopy is a non-fluorescent microscopy technique that is commonly used to visualize the first mitotic spindle in C. elegans embryos. DIC movies are easy to acquire and provide data with high spatial and temporal resolution, allowing detailed investigations of the dynamics of the spindle-which elongates, oscillates, and is positioned asymmetrically. Despite the immense amount of information such movies provide, they are normally only used to draw qualitative conclusion based on manual inspection. We have developed an algorithm to automatically segment the mitotic spindle in DIC movies of C. elegans embryos, determine the position of centrosomes, quantify the morphology and motions of the spindle, and track these features over time. This method should be widely useful for studying the first mitotic spindle in C. elegans.


Asunto(s)
Caenorhabditis elegans/citología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Microscopía de Interferencia , Huso Acromático/metabolismo , Animales , Centrosoma/metabolismo , Imagen de Lapso de Tiempo
15.
Cell ; 142(5): 773-86, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20813263

RESUMEN

Planar cell polarity (PCP) proteins form polarized cortical domains that govern polarity of external structures such as hairs and cilia in both vertebrate and invertebrate epithelia. The mechanisms that globally orient planar polarity are not understood, and are investigated here in the Drosophila wing using a combination of experiment and theory. Planar polarity arises during growth and PCP domains are initially oriented toward the well-characterized organizer regions that control growth and patterning. At pupal stages, the wing hinge contracts, subjecting wing-blade epithelial cells to anisotropic tension in the proximal-distal axis. This results in precise patterns of oriented cell elongation, cell rearrangement and cell division that elongate the blade proximo-distally and realign planar polarity with the proximal-distal axis. Mutation of the atypical Cadherin Dachsous perturbs the global polarity pattern by altering epithelial dynamics. This mechanism utilizes the cellular movements that sculpt tissues to align planar polarity with tissue shape.


Asunto(s)
Polaridad Celular , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Animales , Cadherinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Epitelio/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Pupa/citología , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
16.
Curr Biol ; 20(8): R359-60, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-21749955

RESUMEN

Recent studies have investigated the mechanisms responsible for setting spindle length - and how spindle length changes over the course of development.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas Portadoras/metabolismo , Centrosoma/ultraestructura , Huso Acromático/ultraestructura , Animales
17.
Curr Biol ; 19(22): 1950-5, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19879142

RESUMEN

Subdividing proliferating tissues into compartments is an evolutionarily conserved strategy of animal development [1-6]. Signals across boundaries between compartments can result in local expression of secreted proteins organizing growth and patterning of tissues [1-6]. Sharp and straight interfaces between compartments are crucial for stabilizing the position of such organizers and therefore for precise implementation of body plans. Maintaining boundaries in proliferating tissues requires mechanisms to counteract cell rearrangements caused by cell division; however, the nature of such mechanisms remains unclear. Here we quantitatively analyzed cell morphology and the response to the laser ablation of cell bonds in the vicinity of the anteroposterior compartment boundary in developing Drosophila wings. We found that mechanical tension is approximately 2.5-fold increased on cell bonds along this compartment boundary as compared to the remaining tissue. Cell bond tension is decreased in the presence of Y-27632 [7], an inhibitor of Rho-kinase whose main effector is Myosin II [8]. Simulations using a vertex model [9] demonstrate that a 2.5-fold increase in local cell bond tension suffices to guide the rearrangement of cells after cell division to maintain compartment boundaries. Our results provide a physical mechanism in which the local increase in Myosin II-dependent cell bond tension directs cell sorting at compartment boundaries.


Asunto(s)
Tipificación del Cuerpo , Drosophila/citología , Animales , Drosophila/embriología , Alas de Animales/citología , Alas de Animales/embriología
18.
Curr Biol ; 17(24): 2095-104, 2007 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-18082406

RESUMEN

BACKGROUND: Epithelial junctional networks assume packing geometries characterized by different cell shapes, neighbor number distributions and areas. The development of specific packing geometries is tightly controlled; in the Drosophila wing epithelium, cells convert from an irregular to a hexagonal array shortly before hair formation. Packing geometry is determined by developmental mechanisms that likely control the biophysical properties of cells and their interactions. RESULTS: To understand how physical cellular properties and proliferation determine cell-packing geometries, we use a vertex model for the epithelial junctional network in which cell packing geometries correspond to stable and stationary network configurations. The model takes into account cell elasticity and junctional forces arising from cortical contractility and adhesion. By numerically simulating proliferation, we generate different network morphologies that depend on physical parameters. These networks differ in polygon class distribution, cell area variation, and the rate of T1 and T2 transitions during growth. Comparing theoretical results to observed cell morphologies reveals regions of parameter space where calculated network morphologies match observed ones. We independently estimate parameter values by quantifying network deformations caused by laser ablating individual cell boundaries. CONCLUSIONS: The vertex model accounts qualitatively and quantitatively for the observed packing geometry in the wing disc and its response to perturbation by laser ablation. Epithelial packing geometry is a consequence of both physical cellular properties and the disordering influence of proliferation. The occurrence of T2 transitions during network growth suggests that elimination of cells from the proliferating disc epithelium may be the result of junctional force balances.


Asunto(s)
Comunicación Celular/fisiología , División Celular/fisiología , Proliferación Celular , Células Epiteliales/fisiología , Animales , Fenómenos Biomecánicos , Adhesión Celular , Drosophila , Rayos Láser , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...