Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nat Commun ; 15(1): 2975, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582938

RESUMEN

Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1. Analysis shows that including these three corrections alone accounts for the measured fusion performance variability in the two highest performing experimental campaigns on the NIF to within error. Here we quantify the performance sensitivity to mode-2 symmetry in the burning plasma regime and apply the results, in the form of an empirical correction to a 1D performance model. Furthermore, we find the sensitivity to mode-2 determined through a series of integrated 2D radiation hydrodynamic simulations to be consistent with the experimentally determined sensitivity only when including alpha-heating.

2.
J Neurochem ; 167(1): 52-75, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37525469

RESUMEN

Astrocytes have essential roles in central nervous system (CNS) health and disease. During development, immature astrocytes show complex interactions with neurons, endothelial cells, and other glial cell types. Our work and that of others have shown that these interactions are important for astrocytic maturation. However, whether and how these cells work together to control this process remains poorly understood. Here, we test the hypothesis that cooperative interactions of astrocytes with neurons and endothelial cells promote astrocytic maturation. Astrocytes were cultured alone, with neurons, endothelial cells, or a combination of both. This was followed by astrocyte sorting, RNA sequencing, and bioinformatic analysis to detect transcriptional changes. Across culture configurations, 7302 genes were differentially expressed by 4 or more fold and organized into 8 groups that demonstrate cooperative and antagonist effects of neurons and endothelia on astrocytes. We also discovered that neurons and endothelial cells caused splicing of 200 and 781 mRNAs, respectively. Changes in gene expression were validated using quantitative PCR, western blot (WB), and immunofluorescence analysis. We found that the transcriptomic data from the three-culture configurations correlated with protein expression of three representative targets (FAM107A, GAT3, and GLT1) in vivo. Alternative splicing results also correlated with cortical tissue isoform representation of a target (Fibronectin 1) at different developmental stages. By comparing our results to published transcriptomes of immature and mature astrocytes, we found that neurons or endothelia shift the astrocytic transcriptome toward a mature state and that the presence of both cell types has a greater effect on maturation than either cell alone. These results increase our understanding of cellular interactions/pathways that contribute to astrocytic maturation. They also provide insight into how alterations to neurons and/or endothelial cells may alter astrocytes with implications for astrocytic changes in CNS disorders and diseases.


Asunto(s)
Astrocitos , Transcriptoma , Astrocitos/metabolismo , Células Endoteliales/metabolismo , Neuronas/metabolismo , Neurogénesis/fisiología
3.
J Neurosci ; 43(9): 1509-1529, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669885

RESUMEN

Astrocytes have complex structural, molecular, and physiological properties and form specialized microenvironments that support circuit-specific functions in the CNS. To better understand how astrocytes acquire their unique features, we transplanted immature mouse cortical astrocytes into the developing cortex of male and female mice and assessed their integration, maturation, and survival. Within days, transplanted astrocytes developed morphologies and acquired territories and tiling behavior typical of cortical astrocytes. At 35-47 d post-transplantation, astrocytes appeared morphologically mature and expressed levels of EAAT2/GLT1 similar to nontransplanted astrocytes. Transplanted astrocytes also supported excitatory/inhibitory (E/I) presynaptic terminals within their territories, and displayed normal Ca2+ events. Transplanted astrocytes showed initially reduced expression of aquaporin 4 (AQP4) at endfeet and elevated expression of EAAT1/GLAST, with both proteins showing normalized expression by 110 d and one year post-transplantation, respectively. To understand how specific brain regions support astrocytic integration and maturation, we transplanted cortical astrocytes into the developing cerebellum. Cortical astrocytes interlaced with Bergmann glia (BG) in the cerebellar molecular layer to establish discrete territories. However, transplanted astrocytes retained many cortical astrocytic features including higher levels of EAAT2/GLT1, lower levels of EAAT1/GLAST, and the absence of expression of the AMPAR subunit GluA1. Collectively, our findings demonstrate that immature cortical astrocytes integrate, mature, and survive (more than one year) following transplantation and retain cortical astrocytic properties. Astrocytic transplantation can be useful for investigating cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms contributing to astrocytic development/diversity, and for determining the optimal timing for transplanting astrocytes for cellular delivery or replacement in regenerative medicine.SIGNIFICANCE STATEMENT The mechanisms that enable astrocytes to acquire diverse molecular and structural properties remain to be better understood. In this study, we systematically analyzed the properties of cortical astrocytes following their transplantation to the early postnatal brain. We found that immature cortical astrocytes transplanted into cerebral cortex during early postnatal mouse development integrate and establish normal astrocytic properties, and show long-term survival in vivo (more than one year). In contrast, transplanted cortical astrocytes display reduced or altered ability to integrate into the more mature cerebral cortex or developing cerebellum, respectively. This study demonstrates the developmental potential of transplanted cortical astrocytes and provides an approach to tease apart cell-autonomous (intrinsic) and non-cell-autonomous (environmental) mechanisms that determine the structural, molecular, and physiological phenotype of astrocytes.


Asunto(s)
Astrocitos , Neuroglía , Ratones , Masculino , Femenino , Animales , Astrocitos/metabolismo , Corteza Cerebral
5.
Nature ; 601(7894): 542-548, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35082418

RESUMEN

Obtaining a burning plasma is a critical step towards self-sustaining fusion energy1. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule2,3 through two different implosion concepts4-7. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics3,8. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.

6.
Front Cell Neurosci ; 14: 36, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161521

RESUMEN

γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mature brain but has the paradoxical property of depolarizing neurons during early development. Depolarization provided by GABAA transmission during this early phase regulates neural stem cell proliferation, neural migration, neurite outgrowth, synapse formation, and circuit refinement, making GABA a key factor in neural circuit development. Importantly, depending on the context, depolarizing GABAA transmission can either drive neural activity or inhibit it through shunting inhibition. The varying roles of depolarizing GABAA transmission during development, and its ability to both drive and inhibit neural activity, makes it a difficult developmental cue to study. This is particularly true in the later stages of development when the majority of synapses form and GABAA transmission switches from depolarizing to hyperpolarizing. Here, we addressed the importance of depolarizing but inhibitory (or shunting) GABAA transmission in glutamatergic synapse formation in hippocampal CA1 pyramidal neurons. We first showed that the developmental depolarizing-to-hyperpolarizing switch in GABAA transmission is recapitulated in organotypic hippocampal slice cultures. Based on the expression profile of K+-Cl- co-transporter 2 (KCC2) and changes in the GABA reversal potential, we pinpointed the timing of the switch from depolarizing to hyperpolarizing GABAA transmission in CA1 neurons. We found that blocking depolarizing but shunting GABAA transmission increased excitatory synapse number and strength, indicating that depolarizing GABAA transmission can restrain glutamatergic synapse formation. The increase in glutamatergic synapses was activity-dependent but independent of BDNF signaling. Importantly, the elevated number of synapses was stable for more than a week after GABAA inhibitors were washed out. Together these findings point to the ability of immature GABAergic transmission to restrain glutamatergic synapse formation and suggest an unexpected role for depolarizing GABAA transmission in shaping excitatory connectivity during neural circuit development.

7.
Hum Mol Genet ; 29(5): 785-802, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31943018

RESUMEN

Down syndrome (DS), caused by the triplication of human chromosome 21, leads to significant alterations in brain development and is a major genetic cause of intellectual disability. While much is known about changes to neurons in DS, the effects of trisomy 21 on non-neuronal cells such as astrocytes are poorly understood. Astrocytes are critical for brain development and function, and their alteration may contribute to DS pathophysiology. To better understand the impact of trisomy 21 on astrocytes, we performed RNA-sequencing on astrocytes from newly produced DS human induced pluripotent stem cells (hiPSCs). While chromosome 21 genes were upregulated in DS astrocytes, we found consistent up- and down-regulation of genes across the genome with a strong dysregulation of neurodevelopmental, cell adhesion and extracellular matrix molecules. ATAC (assay for transposase-accessible chromatin)-seq also revealed a global alteration in chromatin state in DS astrocytes, showing modified chromatin accessibility at promoters of cell adhesion and extracellular matrix genes. Along with these transcriptomic and epigenomic changes, DS astrocytes displayed perturbations in cell size and cell spreading as well as modifications to cell-cell and cell-substrate recognition/adhesion, and increases in cellular motility and dynamics. Thus, triplication of chromosome 21 is associated with genome-wide transcriptional, epigenomic and functional alterations in astrocytes that may contribute to altered brain development and function in DS.


Asunto(s)
Astrocitos/patología , Adhesión Celular , Síndrome de Down/patología , Regulación de la Expresión Génica , Genoma Humano , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/patología , Astrocitos/metabolismo , Diferenciación Celular , Movimiento Celular , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Transcriptoma
8.
Nat Genet ; 51(12): 1702-1713, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31768071

RESUMEN

Childhood brain tumors have suspected prenatal origins. To identify vulnerable developmental states, we generated a single-cell transcriptome atlas of >65,000 cells from embryonal pons and forebrain, two major tumor locations. We derived signatures for 191 distinct cell populations and defined the regional cellular diversity and differentiation dynamics. Projection of bulk tumor transcriptomes onto this dataset shows that WNT medulloblastomas match the rhombic lip-derived mossy fiber neuronal lineage and embryonal tumors with multilayered rosettes fully recapitulate a neuronal lineage, while group 2a/b atypical teratoid/rhabdoid tumors may originate outside the neuroectoderm. Importantly, single-cell tumor profiles reveal highly defined cell hierarchies that mirror transcriptional programs of the corresponding normal lineages. Our findings identify impaired differentiation of specific neural progenitors as a common mechanism underlying these pediatric cancers and provide a rational framework for future modeling and therapeutic interventions.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Encéfalo/embriología , Regulación del Desarrollo de la Expresión Génica , Animales , Encéfalo/patología , Línea Celular Tumoral , Humanos , Lactante , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Fibras Nerviosas/patología , Fibras Nerviosas/fisiología , Prosencéfalo/citología , Prosencéfalo/embriología , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Análisis de la Célula Individual
9.
J Neurosci ; 38(44): 9338-9345, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30381425

RESUMEN

Sonic Hedgehog (SHH) signaling has been most widely known for its role in specifying region and cell-type identity during embryonic morphogenesis. This mini-review accompanies a 2018 SFN mini-symposium that addresses an emerging body of research focused on understanding the diverse roles for Shh signaling in a wide range of contexts in neurodevelopment and, more recently, in the mature CNS. Such research shows that Shh affects the function of brain circuits, including the production and maintenance of diverse cell types and the establishment of wiring specificity. Here, we review these novel and unexpected functions and the unanswered questions regarding the role of SHH and its signaling pathway members in these cases.


Asunto(s)
Proteínas Hedgehog/fisiología , Morfogénesis/fisiología , Células-Madre Neurales/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Animales , Humanos , Células-Madre Neurales/química , Sinapsis/química
10.
Phys Rev Lett ; 121(9): 095002, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30230893

RESUMEN

We report on the first multilocation electron temperature (T_{e}) and flow measurements in an ignition hohlraum at the National Ignition Facility using the novel technique of mid-Z spectroscopic tracer "dots." The measurements define a low resolution "map" of hohlraum plasma conditions and provide a basis for the first multilocation tests of particle and energy transport physics in a laser-driven x-ray cavity. The data set is consistent with classical heat flow near the capsule but reduced heat flow near the laser entrance hole. We evaluate the role of kinetic effects, self-generated magnetic fields, and instabilities in causing spatially dependent heat transport in the hohlraum.

11.
Toxicol Lett ; 291: 194-199, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29501854

RESUMEN

Triclosan (TCS) is an antibacterial widely used in personal care products that exhibits endocrine disrupting activity in several species, with reports of altered thyroid, estrogen and androgen signaling pathways. To evaluate the androgenic mode of action, TCS was evaluated for androgen receptor mediated effects in the Hershberger assay and for altered androgen synthesis in the H295R steroidogenesis assay. In the Hershberger assay, castrated males were dosed by oral gavage for 10 days with corn oil (vehicle) or TCS (50 or 200 mg/kg/day) in the presence or absence of testosterone proprionate (TP, 0.2 mg/kg/day) prior to assessing accessory sex tissues (ASTs) weights. TCS alone or in combination with TP did not alter androgen dependent AST weights. Assessment of serum thyroxine (T4) demonstrated a significant dose-dependent decrease by TCS (50 or 200 mg/kg/day) co-administered with TP and TCS (200 mg/kg) without TP, but no differences in liver or thyroid weights. In the H295R assay, TCS from 0.01 to 10 µM had no effect on testosterone production but TCS at 3 µM and above did induce a significant increase in estrogen production. At 10 µM, TCS produced significant cytotoxicity which confounded the interpretation of the estrogenic effect at that concentration. Thus, TCS had no effect on androgen synthesis or activity in the models used, but did enhance estrogen production and suppress serum T4.


Asunto(s)
Antiinfecciosos Locales/farmacología , Disruptores Endocrinos/farmacología , Esteroides/biosíntesis , Triclosán/farmacología , Andrógenos/biosíntesis , Animales , Aromatasa/metabolismo , Castración , Línea Celular , Genitales Masculinos/efectos de los fármacos , Genitales Masculinos/metabolismo , Humanos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Wistar , Receptores Androgénicos/efectos de los fármacos , Propionato de Testosterona/farmacología
12.
Front Cell Neurosci ; 11: 300, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29021743

RESUMEN

Astrocytes play essential roles in nearly all aspects of brain function from modulating synapses and neurovasculature to preserving appropriate extracellular solute concentrations. To meet the complex needs of the central nervous system (CNS), astrocytes possess highly specialized properties that are optimized for their surrounding neural circuitry. Precisely how these diverse astrocytes types are generated in vivo, however, remains poorly understood. Key to this process is a critical balance of intrinsic developmental patterning and context-dependent environmental signaling events that configures astrocyte phenotype. Indeed, emerging lines of evidence indicate that persistent cues from neighboring cells in the mature CNS cooperate with early patterning events to promote astrocyte diversity. Consistent with this, manipulating Sonic hedgehog (Shh), Notch and fibroblast growth factor (FGF) signaling in the adult brain, have profound effects on the structural, morphological and physiological state of mature astrocytes. These pathways may become disrupted in various neurological diseases and contribute to CNS pathology. This mini-review article focuses on how context-dependent environmental cues cooperate with intrinsic developmental patterning events to control astrocyte diversity in vivo in order to promote healthy brain function.

13.
Phys Plasmas ; 24(5): 056312, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28611532

RESUMEN

For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.

14.
Phys Rev E ; 95(3-1): 033208, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28415195

RESUMEN

We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (∼0.2cm^{3}) indicates that it is possible to achieve several tens of Tesla.

15.
Science ; 351(6275): 849-54, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26912893

RESUMEN

Astrocytes are specialized and heterogeneous cells that contribute to central nervous system function and homeostasis. However, the mechanisms that create and maintain differences among astrocytes and allow them to fulfill particular physiological roles remain poorly defined. We reveal that neurons actively determine the features of astrocytes in the healthy adult brain and define a role for neuron-derived sonic hedgehog (Shh) in regulating the molecular and functional profile of astrocytes. Thus, the molecular and physiological program of astrocytes is not hardwired during development but, rather, depends on cues from neurons that drive and sustain their specialized properties.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebelosa/citología , Proteínas Hedgehog/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Femenino , Eliminación de Gen , Proteínas Hedgehog/genética , Masculino , Ratones , Ratones Mutantes , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Receptor Smoothened
16.
J Neuroendocrinol ; 28(4)2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26813227

RESUMEN

In the ventral glial limitans (VGL) of the supraoptic nucleus (SON) of the rat, a unique astrocyte type is found with an ability to undergo striking morphological plasticity in response to a wide range of physiological stimulations such as chronic hypernatraemia. This includes a thinning of the VGL, which contains the somata and proximal processes of these astrocytes, as well as an almost complete withdrawal of their vertically-oriented distal processes. Currently, there is little information available on the types of astrocytes that reside in the SON-VGL and which of these exhibit state-dependent structural plasticity. To address this, we enabled the visualisation of single SON-VGL glia using two novel cell labelling techniques with fluorescence microscopy. First, we used an inducible genetic reporter mouse line that allowed the specific labelling of a low density of astrocytes expressing glutamate and aspartate transporter (GLAST)/excitatory amino acid transporter 1. This approach revealed a high degree of variability in the morphology of mouse SON-VGL astrocytes, in contrast to what has been reported for cortical astrocytes. Next, we used the DiOlistlic labelling approach to label single glial cells with DiI in the SON-VGL of rats. Astrocytes observed using this approach shared the morphological features of GLAST-expressing astrocytes in the mouse SON-VGL. Specific structural aspects of these cells were modified by chronic hypernatraemia achieved by 7-day salt loading. Notably, the average area of cells exhibiting protoplasmic features was significantly reduced in the horizontal plane, and the size of varicosities present on fibrous projections was significantly enlarged. These observations indicate that novel cell labelling methods can significantly advance our understanding of SON-VGL cells and reveal specific forms of morphological plasticity that can be driven by chronic hypernatraemia.


Asunto(s)
Astrocitos/citología , Astrocitos/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Cloruro de Sodio/farmacología , Núcleo Supraóptico/citología , Animales , Plasticidad de la Célula/efectos de los fármacos , Transportador 1 de Aminoácidos Excitadores/genética , Hipernatremia/patología , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Ratas , Coloración y Etiquetado
17.
Cell Rep ; 9(4): 1402-1416, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25456134

RESUMEN

Translational control of mRNAs allows for rapid and selective changes in synaptic protein expression that are required for long-lasting plasticity and memory formation in the brain. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein that controls mRNA translation in nonneuronal cells and colocalizes with translational machinery in neurons. However, its neuronal mRNA targets and role in the brain are unknown. Here, we demonstrate that removal of FXR1P from the forebrain of postnatal mice selectively enhances long-term storage of spatial memories, hippocampal late-phase long-term potentiation (L-LTP), and de novo GluA2 synthesis. Furthermore, FXR1P binds specifically to the 5' UTR of GluA2 mRNA to repress translation and limit the amount of GluA2 that is incorporated at potentiated synapses. This study uncovers a mechanism for regulating long-lasting synaptic plasticity and spatial memory formation and reveals an unexpected divergent role of FXR1P among Fragile X proteins in brain plasticity.


Asunto(s)
Potenciación a Largo Plazo , Memoria a Largo Plazo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Receptores AMPA/biosíntesis , Sinapsis/metabolismo , Regiones no Traducidas 5'/genética , Animales , Conducta Animal , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Neural Dev ; 9: 17, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25056828

RESUMEN

BACKGROUND: Longitudinal axons grow parallel to the embryonic midline to connect distant regions of the central nervous system. Previous studies suggested that repulsive midline signals guide pioneer longitudinal axons by blocking their entry into the floor plate; however, the role of midline attractants, and whether attractant signals may cooperate with repulsive signals, remains unclear. In this study we investigated the navigation of a set of pioneer longitudinal axons, the medial longitudinal fasciculus, in mouse embryos mutant for the Netrin/Deleted in Colorectal Cancer (DCC) attractants, and for Slit repellents, as well as the responses of explanted longitudinal axons in vitro. RESULTS: In mutants for Netrin1 chemoattractant or DCC receptor signaling, longitudinal axons shifted away from the ventral midline, suggesting that Netrin1/DCC signals act attractively to pull axons ventrally. Analysis of mutants in the three Slit genes, including Slit1/2/3 triple mutants, suggest that concurrent repulsive Slit/Robo signals push pioneer axons away from the ventral midline. Combinations of mutations between the Netrin and Slit guidance systems provided genetic evidence that the attractive and repulsive signals balance against each other. This balance is demonstrated in vitro using explant culture, finding that the cues can act directly on longitudinal axons. The explants also reveal an unexpected synergy of Netrin1 and Slit2 that promotes outgrowth. CONCLUSIONS: These results support a mechanism in which longitudinal trajectories are positioned by a push-pull balance between opposing Netrin and Slit signals. Our evidence suggests that longitudinal axons respond directly and simultaneously to both attractants and repellents, and that the combined signals constrain axons to grow longitudinally.


Asunto(s)
Axones/fisiología , Quimiotaxis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mesencéfalo/embriología , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mesencéfalo/metabolismo , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/genética , Netrina-1 , Neuronas/citología , Neuronas/fisiología , Proteínas Supresoras de Tumor/genética
19.
Anim Reprod Sci ; 138(1-2): 64-73, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23473694

RESUMEN

The insulin-like growth factor type 2 receptor (IGF2R) regulates fetal growth by removing IGF2 from circulation. In mice, expression of the Igf2r gene is only imprinted after implantation and is associated with expression of the antisense non-coding (nc)RNA, Airn. The objectives of this study were, first, to determine if bovine AIRN was expressed during developmentally important stages of gestation, and second, to determine if expression of bAIRN was affected by method of embryo production. Control reactions confirmed that sequence verified bAIRN PCR amplicons resulted from RNA within the sample and not from genomic DNA contamination. IGF2R mRNA was expressed in all fetal liver samples at Days 35-55 and 70 of gestation as well as in 8 of 9 Day 15 conceptuses, 10 of 10 Day 18 conceptuses, and in all day 7 blastocyst pools. bAIRN was expressed in all samples of fetal liver at Days 35-55 and 70 of gestation. The proportion of conceptuses that expressed bAIRN increased from 1 of 9 at Day 15 of gestation to 8 of 10 at Day 18 of gestation. No bAIRN was expressed in any blastocyst pools. The relative level of bAIRN was greater (P<0.05) in fetal liver from embryos produced in vivo compared to that from embryos produced in vitro. In summary bAIRN was not expressed in blastocyst-stage embryos, was expressed in an increasing proportion of embryos around the time of maternal recognition of pregnancy and was expressed following implantation. Furthermore, relative levels of bAIRN in bovine fetal liver can be altered by method of embryo production.


Asunto(s)
Bovinos/embriología , Embrión de Mamíferos/metabolismo , Fertilización In Vitro/veterinaria , Regulación del Desarrollo de la Expresión Génica/fisiología , ARN no Traducido/genética , Receptor IGF Tipo 2/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Hígado/metabolismo , Masculino , Embarazo , ARN Mensajero/química , ARN Mensajero/genética , Receptor IGF Tipo 2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria
20.
Neuron ; 76(4): 735-49, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23177959

RESUMEN

Axons must switch responsiveness to guidance cues during development for correct pathfinding. Sonic Hedgehog (Shh) attracts spinal cord commissural axons ventrally toward the floorplate. We show that after crossing the floorplate, commissural axons switch their response to Shh from attraction to repulsion, so that they are repelled anteriorly by a posterior-high/anterior-low Shh gradient along the longitudinal axis. This switch is recapitulated in vitro with dissociated commissural neurons as they age, indicating that the switch is intrinsic and time dependent. 14-3-3 protein inhibition converted Shh-mediated repulsion of aged dissociated neurons to attraction and prevented the correct anterior turn of postcrossing commissural axons in vivo, an effect mediated through PKA. Conversely, overexpression of 14-3-3 proteins was sufficient to drive the switch from Shh-mediated attraction to repulsion both in vitro and in vivo. Therefore, we identify a 14-3-3 protein-dependent mechanism for a cell-intrinsic temporal switch in the polarity of axon turning responses.


Asunto(s)
Proteínas 14-3-3/metabolismo , Axones/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Neuronas/citología , Traumatismos de la Médula Espinal/patología , Proteínas 14-3-3/genética , Aminoácidos , Análisis de Varianza , Animales , Axones/efectos de los fármacos , Proteínas Bacterianas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carbazoles/farmacología , Células Cultivadas , Quimiotaxis , Pollos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Electroporación , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/farmacología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Neuronas/clasificación , Neuronas/metabolismo , Piperazinas/farmacología , Embarazo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirazoles/farmacología , Pirroles/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Simplexvirus/genética , Factores de Tiempo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteína Gli2 con Dedos de Zinc , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...