Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Exp Biol Med (Maywood) ; 249: 10021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463391

RESUMEN

The presence of inhibitory immune cells and difficulty in generating activated effector T cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T cells with effector phenotypes. The in vitro re-challenge of T cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T cells with specificity for hTERT. However, a population of exhausted PD-1+ cytotoxic T cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T cell population.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias de la Próstata , Telomerasa , Masculino , Humanos , Linfocitos T CD8-positivos , Telomerasa/genética , Telomerasa/metabolismo , Vacunación , Péptidos , Vacunas contra el Cáncer/efectos adversos , Receptores de Antígenos de Linfocitos T
2.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37321663

RESUMEN

BACKGROUND: Locally advanced/recurrent head and neck squamous cell carcinoma (HNSCC) is associated with significant morbidity and mortality. To target upregulated ErbB dimer expression in this cancer, we developed an autologous CD28-based chimeric antigen receptor T-cell (CAR-T) approach named T4 immunotherapy. Patient-derived T-cells are engineered by retroviral transduction to coexpress a panErbB-specific CAR called T1E28ζ and an IL-4-responsive chimeric cytokine receptor, 4αß, which allows IL-4-mediated enrichment of transduced cells during manufacture. These cells elicit preclinical antitumor activity against HNSCC and other carcinomas. In this trial, we used intratumoral delivery to mitigate significant clinical risk of on-target off-tumor toxicity owing to low-level ErbB expression in healthy tissues. METHODS: We undertook a phase 1 dose-escalation 3+3 trial of intratumoral T4 immunotherapy in HNSCC (NCT01818323). CAR T-cell batches were manufactured from 40 to 130 mL of whole blood using a 2-week semiclosed process. A single CAR T-cell treatment, formulated as a fresh product in 1-4 mL of medium, was injected into one or more target lesions. Dose of CAR T-cells was escalated in 5 cohorts from 1×107-1×109 T4+ T-cells, administered without prior lymphodepletion. RESULTS: Despite baseline lymphopenia in most enrolled subjects, the target cell dose was successfully manufactured in all cases, yielding up to 7.5 billion T-cells (67.5±11.8% transduced), without any batch failures. Treatment-related adverse events were all grade 2 or less, with no dose-limiting toxicities (Common Terminology Criteria for Adverse Events V.4.0). Frequent treatment-related adverse events were tumor swelling, pain, pyrexias, chills, and fatigue. There was no evidence of leakage of T4+ T-cells into the circulation following intratumoral delivery, and injection of radiolabeled cells demonstrated intratumoral persistence. Despite rapid progression at trial entry, stabilization of disease (Response Evaluation Criteria in Solid Tumors V.1.1) was observed in 9 of 15 subjects (60%) at 6 weeks post-CAR T-cell administration. Subsequent treatment with pembrolizumab and T-VEC oncolytic virus achieved a rapid complete clinical response in one subject, which was durable for over 3 years. Median overall survival was greater than for historical controls. Disease stabilization was associated with the administration of an immunophenotypically fitter, less exhausted, T4 CAR T-cell product. CONCLUSIONS: These data demonstrate the safe intratumoral administration of T4 immunotherapy in advanced HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Receptores Quiméricos de Antígenos , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Interleucina-4 , Recurrencia Local de Neoplasia , Inmunoterapia , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
3.
Cancers (Basel) ; 15(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37046649

RESUMEN

The interactions between Acute Myeloid Leukaemia (AML) leukemic stem cells and the bone marrow (BM) microenvironment play a critical role during AML progression and resistance to drug treatments. Therefore, the identification of novel therapies requires drug-screening methods using in vitro co-culture models that closely recreate the cytoprotective BM setting. We have developed a new fluorescence-based in vitro co-culture system scalable to high throughput for measuring the concomitant effect of drugs on AML cells and the cytoprotective BM microenvironment. eGFP-expressing AML cells are co-cultured in direct contact with mCherry-expressing BM stromal cells for the accurate assessment of proliferation, viability, and signaling in both cell types. This model identified several efficacious compounds that overcome BM stroma-mediated drug resistance against daunorubicin, including the chromosome region maintenance 1 (CRM1/XPO1) inhibitor KPT-330. In silico analysis of genes co-expressed with CRM1, combined with in vitro experiments using our new methodology, also indicates that the combination of KPT-330 with the AURKA pharmacological inhibitor alisertib circumvents the cytoprotection of AML cells mediated by the BM stroma. This new experimental model and analysis provide a more precise screening method for developing improved therapeutics targeting AML cells within the cytoprotective BM microenvironment.

4.
Mol Ther Methods Clin Dev ; 28: 116-128, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36620071

RESUMEN

γ-Retroviral vectors (γ-RV) are powerful tools for gene therapy applications. Current clinical vectors are produced from stable producer cell lines which require minimal further downstream processing, while purification schemes for γ-RV produced by transient transfection have not been thoroughly investigated. We aimed to develop a method to purify transiently produced γ-RV for early clinical studies. Here, we report a simple one-step purification method by high-speed centrifugation for γ-RV produced by transient transfection for clinical application. High-speed centrifugation enabled the concentration of viral titers in the range of 107-108 TU/mL with >80% overall recovery. Analysis of research-grade concentrated vector revealed sufficient reduction in product- and process-related impurities. Furthermore, product characterization of clinical-grade γ-RV by BioReliance demonstrated two-logs lower impurities per transducing unit compared with regulatory authority-approved stable producer cell line vector for clinical application. In terms of CAR T cell manufacturing, clinical-grade γ-RV produced by transient transfection and purified by high-speed centrifugation was similar to γ-RV produced from a clinical-grade stable producer cell line. This method will be of value for studies using γ-RV to bridge vector supply between early- and late-stage clinical trials.

5.
Cancers (Basel) ; 15(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672411

RESUMEN

Osteoclasts contribute to bone marrow (BM)-mediated drug resistance in multiple myeloma (MM) by providing cytoprotective cues. Additionally, 80% of patients develop osteolytic lesions, which is a major cause of morbidity in MM. Although targeting osteoclast function is critical to improve MM therapies, pre-clinical studies rarely consider overcoming osteoclast-mediated cytoprotection within the selection criteria of drug candidates. We have performed a drug screening and identified PI3K as a key regulator of a signalling node associated with resistance to dexamethasone lenalidomide, pomalidomide, and bortezomib mediated by osteoclasts and BM fibroblastic stromal cells, which was blocked by the pan-PI3K Class IA inhibitor GDC-0941. Additionally, GDC-0941 repressed the maturation of osteoclasts derived from MM patients and disrupted the organisation of the F-actin cytoskeleton in sealing zones required for bone degradation, correlating with decreased bone resorption by osteoclasts. In vivo, GDC-0941 improved the efficacy of dexamethasone against MM in the syngeneic GFP-5T33/C57-Rawji mouse model. Taken together, our results indicate that GDC-0941 in combination with currently used therapeutic agents could effectively kill MM cells in the presence of the cytoprotective BM microenvironment while inhibiting bone resorption by osteoclasts. These data support investigating GDC-0941 in combination with currently used therapeutic drugs for MM patients with active bone disease.

6.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077216

RESUMEN

The number of people that are 65 years old or older has been increasing due to the improvement in medicine and public health. However, this trend is not accompanied by an increase in quality of life, and this population is vulnerable to most illnesses, especially to infectious diseases. Vaccination is the best strategy to prevent this fact, but older people present a less efficient response, as their immune system is weaker due mainly to a phenomenon known as immunosenescence. The adaptive immune system is constituted by two types of lymphocytes, T and B cells, and the function and fitness of these cell populations are affected during ageing. Here, we review the impact of ageing on T and B cells and discuss the approaches that have been described or proposed to modulate and reverse the decline of the ageing adaptive immune system.


Asunto(s)
Inmunosenescencia , Inmunidad Adaptativa , Anciano , Envejecimiento , Humanos , Calidad de Vida , Vacunación
7.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077278

RESUMEN

Vaccination, being able to prevent millions of cases of infectious diseases around the world every year, is the most effective medical intervention ever introduced. However, immunosenescence makes vaccines less effective in providing protection to older people. Although most studies explain that this is mainly due to the immunosenescence of T and B cells, the immunosenescence of innate immunity can also be a significant contributing factor. Alterations in function, number, subset, and distribution of blood neutrophils, monocytes, and natural killer and dendritic cells are detected in aging, thus potentially reducing the efficacy of vaccines in older individuals. In this paper, we focus on the immunosenescence of the innate blood immune cells. We discuss possible strategies to counteract the immunosenescence of innate immunity in order to improve the response to vaccination. In particular, we focus on advances in understanding the role and the development of new adjuvants, such as TLR agonists, considered a promising strategy to increase vaccination efficiency in older individuals.


Asunto(s)
Inmunosenescencia , Vacunas , Adyuvantes Inmunológicos , Anciano , Envejecimiento , Humanos , Inmunidad Innata , Vacunación
8.
Nat Med ; 27(10): 1797-1805, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34642489

RESUMEN

Chimeric antigen receptor (CAR) T cells targeting CD19 or CD22 have shown remarkable activity in B cell acute lymphoblastic leukemia (B-ALL). The major cause of treatment failure is antigen downregulation or loss. Dual antigen targeting could potentially prevent this, but the clinical safety and efficacy of CAR T cells targeting both CD19 and CD22 remain unclear. We conducted a phase 1 trial in pediatric and young adult patients with relapsed or refractory B-ALL (n = 15) to test AUTO3, autologous transduced T cells expressing both anti-CD19 and anti-CD22 CARs (AMELIA trial, EUDRA CT 2016-004680-39). The primary endpoints were the incidence of grade 3-5 toxicity in the dose-limiting toxicity period and the frequency of dose-limiting toxicities. Secondary endpoints included the rate of morphological remission (complete response or complete response with incomplete bone marrow recovery) with minimal residual disease-negative response, as well as the frequency and severity of adverse events, expansion and persistence of AUTO3, duration of B cell aplasia, and overall and event-free survival. The study endpoints were met. AUTO3 showed a favorable safety profile, with no dose-limiting toxicities or cases of AUTO3-related severe cytokine release syndrome or neurotoxicity reported. At 1 month after treatment the remission rate (that is, complete response or complete response with incomplete bone marrow recovery) was 86% (13 of 15 patients). The 1 year overall and event-free survival rates were 60% and 32%, respectively. Relapses were probably due to limited long-term AUTO3 persistence. Strategies to improve CAR T cell persistence are needed to fully realize the potential of dual targeting CAR T cell therapy in B-ALL.


Asunto(s)
Antígenos CD19/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores Quiméricos de Antígenos/administración & dosificación , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genética , Adolescente , Adulto , Antígenos CD19/inmunología , Niño , Preescolar , Femenino , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia/tendencias , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/tendencias , Lactante , Masculino , Pediatría , Supervivencia sin Progresión , Receptores Quiméricos de Antígenos/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Adulto Joven
9.
Cells ; 10(7)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34359966

RESUMEN

Adoptive cancer immunotherapy using chimeric antigen receptor (CAR) engineered T-cells holds great promise, although several obstacles hinder the efficient generation of cell products under good manufacturing practice (GMP). Patients are often immune compromised, rendering it challenging to produce sufficient numbers of gene-modified cells. Manufacturing protocols are labour intensive and frequently involve one or more open processing steps, leading to increased risk of contamination. We set out to develop a simplified process to generate autologous gamma retrovirus-transduced T-cells for clinical evaluation in patients with head and neck cancer. T-cells were engineered to co-express a panErbB-specific CAR (T1E28z) and a chimeric cytokine receptor (4αß) that permits their selective expansion in response to interleukin (IL)-4. Using peripheral blood as starting material, sterile culture procedures were conducted in gas-permeable bags under static conditions. Pre-aliquoted medium and cytokines, bespoke connector devices and sterile welding/sealing were used to maximise the use of closed manufacturing steps. Reproducible IL-4-dependent expansion and enrichment of CAR-engineered T-cells under GMP was achieved, both from patients and healthy donors. We also describe the development and approach taken to validate a panel of monitoring and critical release assays, which provide objective data on cell product quality.


Asunto(s)
Citocinas/metabolismo , Interleucina-4/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Citotoxicidad Inmunológica/inmunología , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/genética , Linfocitos T/inmunología , Transducción Genética
11.
J Clin Oncol ; 39(30): 3352-3363, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34464155

RESUMEN

PURPOSE: Prognosis for adult B-cell acute lymphoblastic leukemia (B-ALL) is poor, and there are currently no licensed CD19 chimeric antigen receptor (CAR) therapeutics. We developed a novel second-generation CD19-CAR (CAT19-41BB-Z) with a fast off rate, designed for more physiologic T-cell activation to reduce toxicity and improve engraftment. We describe the multicenter phase I ALLCAR19 (NCT02935257) study of autologous CAT19-41BB-Z CAR T cells (AUTO1) in relapsed or refractory (r/r) adult B-ALL. METHODS: Patients age ≥ 16 years with r/r B-ALL were eligible. Primary outcomes were toxicity and manufacturing feasibility. Secondary outcomes were depth of response at 1 and 3 months, persistence of CAR-T, incidence and duration of hypogammaglobulinemia and B-cell aplasia, and event-free survival and overall survival at 1 and 2 years. RESULTS: Twenty-five patients were leukapheresed, 24 products were manufactured, and 20 patients were infused with AUTO1. The median age was 41.5 years; 25% had prior blinatumomab, 50% prior inotuzumab ozogamicin, and 65% prior allogeneic stem-cell transplantation. At the time of preconditioning, 45% had ≥ 50% bone marrow blasts. No patients experienced ≥ grade 3 cytokine release syndrome; 3 of 20 (15%) experienced grade 3 neurotoxicity that resolved to ≤ grade 1 within 72 hours with steroids. Seventeen of 20 (85%) achieved minimal residual disease-negative complete response at month 1, and 3 of 17 underwent allogeneic stem-cell transplantation while in remission. The event-free survival at 6 and 12 months was 68.3% (42.4%-84.4%) and 48.3% (23.1%-69.7%), respectively. High-level expansion (Cmax 127,152 copies/µg genomic DNA) and durable CAR-T persistence were observed with B-cell aplasia ongoing in 15 of 20 patients at last follow-up. CONCLUSION: AUTO1 demonstrates a tolerable safety profile, high remission rates, and excellent persistence in r/r adult B-ALL. Preliminary data support further development of AUTO1 as a stand-alone treatment for r/r adult B-ALL.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/efectos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/trasplante , Adolescente , Adulto , Agammaglobulinemia/etiología , Linfocitos B/patología , Médula Ósea/patología , Síndrome de Liberación de Citoquinas/etiología , Femenino , Enfermedad Injerto contra Huésped/etiología , Humanos , Infecciones/etiología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/etiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Supervivencia sin Progresión , Recurrencia , Retratamiento , Tasa de Supervivencia , Trasplante Autólogo/efectos adversos , Resultado del Tratamiento , Adulto Joven
12.
Eur J Immunol ; 51(10): 2522-2530, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34320225

RESUMEN

Clinical trials of Treg therapy in transplantation are currently entering phases IIa and IIb, with the majority of these employing polyclonal Treg populations that harbor a broad specificity. Enhancing Treg specificity is possible with the use of chimeric antigen receptors (CARs), which can be customized to respond to a specific human leukocyte antigen (HLA). In this study, we build on our previous work in the development of HLA-A2 CAR-Tregs by further equipping cells with the constitutive expression of interleukin 10 (IL-10) and an imaging reporter as additional payloads. Cells were engineered to express combinations of these domains and assessed for phenotype and function. Cells expressing the full construct maintained a stable phenotype after transduction, were specifically activated by HLA-A2, and suppressed alloresponses potently. The addition of IL-10 provided an additional advantage to suppressive capacity. This study therefore provides an important proof-of-principle for this cell engineering approach for next-generation Treg therapy in transplantation.


Asunto(s)
Expresión Génica , Inmunomodulación , Interleucina-10/genética , Fenotipo , Receptores Quiméricos de Antígenos/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Orden Génico , Ingeniería Genética , Vectores Genéticos/genética , Humanos , Interleucina-10/metabolismo , Receptores Quiméricos de Antígenos/inmunología
14.
Mol Ther Methods Clin Dev ; 21: 621-641, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34095345

RESUMEN

Acute myeloid leukemia (AML) patients with minimal residual disease and receiving allogeneic hematopoietic stem cell transplantation (HCT) have poor survival. Adoptive administration of dendritic cells (DCs) presenting the Wilms tumor protein 1 (WT1) leukemia-associated antigen can potentially stimulate de novo T and B cell development to harness the graft-versus-leukemia (GvL) effect after HCT. We established a simple and fast genetic modification of monocytes for simultaneous lentiviral expression of a truncated WT1 antigen (tWT1), granulocyte macrophage-colony-stimulating factor (GM-CSF), and interferon (IFN)-α, promoting their self-differentiation into potent "induced DCs" (iDCtWT1). A tricistronic integrase-defective lentiviral vector produced under good manufacturing practice (GMP)-like conditions was validated. Transduction of CD14+ monocytes isolated from peripheral blood, cord blood, and leukapheresis material effectively induced their self-differentiation. CD34+ cell-transplanted Nod.Rag.Gamma (NRG)- and Nod.Scid.Gamma (NSG) mice expressing human leukocyte antigen (HLA)-A∗0201 (NSG-A2)-immunodeficient mice were immunized with autologous iDCtWT1. Both humanized mouse models showed improved development and maturation of human T and B cells in the absence of adverse effects. Toward clinical use, manufacturing of iDCtWT1 was up scaled and streamlined using the automated CliniMACS Prodigy system. Proof-of-concept clinical-scale runs were feasible, and the 38-h process enabled standardized production and high recovery of a cryopreserved cell product with the expected identity characteristics. These results advocate for clinical trials testing iDCtWT1 to boost GvL and eradicate leukemia.

15.
Sci Rep ; 11(1): 10538, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006907

RESUMEN

Regulated cell proliferation is an effector mechanism of regeneration, whilst dysregulated cell proliferation is a feature of cancer. We have previously identified microRNA (miRNA) that regulate successful and failed human liver regeneration. We hypothesized that these regulators may directly modify tumor behavior. Here we show that inhibition of miRNAs -503 and -23a, alone or in combination, enhances tumor proliferation in hepatocyte and non-hepatocyte derived cancers in vitro, driving more aggressive tumor behavior in vivo. Inhibition of miRNA-152 caused induction of DNMT1, site-specific methylation with associated changes in gene expression and in vitro and in vivo growth inhibition. Enforced changes in expression of two miRNA recapitulating changes observed in failed regeneration led to complete growth inhibition of multi-lineage cancers in vivo. Our results indicate that regulation of regeneration and tumor aggressiveness are concordant and that miRNA-based inhibitors of regeneration may constitute a novel treatment strategy for human cancers.


Asunto(s)
Regeneración Hepática/genética , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Hígado/citología , Hígado/metabolismo
16.
Clin Exp Immunol ; 205(2): 198-212, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33866541

RESUMEN

Ageing dramatically affects number and function of both innate and adaptive arms of immune system, particularly T cell subsets, contributing to reduced vaccination efficacy, decreased resistance to infections and increased prevalence of cancer in older people. In the present paper, we analysed the age-related changes in the absolute number of lymphocytes in 214 Sicilian subjects, and in the percentages of T and natural killer (NK) cells in a subcohort of donors. We compared these results with the immunophenotype of the oldest living Italian supercentenarian (aged 111 years). The results were also sorted by gender. The correlation between number/percentage of cells and age in all individuals. and separately in males and females, was examined using a simple linear regression analysis. We did not record the increase in the rate of inversion of the CD4/CD8 ratio, frequently reported as being associated with ageing in literature. Our observation was the direct consequence of a flat average trend of CD4+ and CD8+ T cell percentages in ageing donors, even when gender differences were included. Our results also suggest that CD4+ and CD8+ subsets are not affected equally by age comparing females with males, and we speculated that gender may affect the response to cytomegalovirus (CMV) infection. The supercentenarian showed a unique immunophenotypic signature regarding the relative percentages of her T cell subsets, with CD4+ and CD8+ T cell percentages and CD4+ naive T cell values in line with those recorded for the octogenarian subjects. This suggests that the supercentenarian has a naive 'younger' T cell profile comparable to that of a >80-year-old female.


Asunto(s)
Envejecimiento/inmunología , Células Asesinas Naturales/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Relación CD4-CD8/métodos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Femenino , Identidad de Género , Humanos , Inmunofenotipificación/métodos , Masculino , Persona de Mediana Edad , Sicilia
19.
Liver Transpl ; 26(6): 811-822, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32297687

RESUMEN

We previously demonstrated a distinct hepatic microRNA (miRNA) signature (down-regulation of miRNA-23a, -150, - 200b, -503, and -663 and up-regulation of miRNA-20a) is associated with successful regeneration in auxiliary liver transplantation (ALT). This study aimed to evaluate whether the serum expression of this regeneration-linked miRNA signature is associated with clinical outcomes in acute and chronic liver disease. These were represented by patients with acetaminophen-induced acute liver failure (ALF; n = 18) and patients with hepatitis C virus (HCV) undergoing treatment with direct-acting antivirals (n = 56), respectively. Patients were grouped depending on their clinical outcome. Global serum miRNA expression was analyzed using polymerase chain reaction (PCR) arrays and selected miRNA expression using targeted PCR. We demonstrate that specific regeneration-linked miRNAs discriminate outcomes in both clinical scenarios. We further show that miRNA-20a, -23a, -150, -200b, -503, and -663 undergo concordant changes in expression in 3 distinct clinical settings: liver regeneration accompanying successful ALT, clinical recovery after ALF, and clinical recompensation after cure of HCV. This miRNA signature represents a potentially novel biomarker to predict outcome and optimize patient selection for liver transplantation in both acute and chronic liver disease.


Asunto(s)
Hepatitis C Crónica , Trasplante de Hígado , MicroARNs , Antivirales , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/genética , Humanos , Trasplante de Hígado/efectos adversos , MicroARNs/genética
20.
Front Immunol ; 11: 221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210954

RESUMEN

Exosomes are nano vesicles from the larger family named Extracellular Vesicle (EV)s which are released by various cells including tumor cells, mast cells, dendritic cells, B lymphocytes, neurons, adipocytes, endothelial cells, and epithelial cells. They are considerable messengers that can exchange proteins and genetic materials between the cells. Within the past decade, Tumor derived exosomes (TEX) have been emerged as important mediators in cancer initiation, progression and metastasis as well as host immune suppression and drug resistance. Although tumor derived exosomes consist of tumor antigens and several Heat Shock Proteins such as HSP70 and HSP90 to stimulate immune response against tumor cells, they contain inhibitory molecules like Fas ligand (Fas-L), Transforming Growth Factor Beta (TGF-ß) and Prostaglandin E2 (PGE2) leading to decrease the cytotoxicity and establish immunosuppressive tumor microenvironment (TME). To bypass this problem and enhance immune response, some macromolecules such as miRNAs, HSPs and activatory ligands have been recognized as potent immune inducers that could be used as anti-tumor agents to construct a nano sized tumor vaccine. Here, we discussed emerging engineered exosomes as a novel therapeutic strategy and considered the associated challenges.


Asunto(s)
Vesículas Extracelulares/metabolismo , Inmunoterapia/métodos , Neoplasias/metabolismo , Animales , Bioingeniería , Carcinogénesis , Humanos , Tolerancia Inmunológica , Metástasis de la Neoplasia , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...