Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628979

RESUMEN

Marine ecosystems are among the richest in terms of biodiversity, and at present, still remain largely unknown today. In the molecular biology era, several analyses have been conducted to unravel the biological processes in this ecosystem. These systems have provided biotechnological solutions to current problems, including the treatment of diseases, as well as for the development of new biotechnological tools with applications in biomedicine and/or agri-food. In addition, in the context of climate change and global warming, these studies become even more necessary for the development of molecular tools that allow a reliable follow-up of this situation to anticipate alterations and responses of bioindicator species and to create a database to prevent and predict the environmental and climatic changes before the damage is irreversible. Proteomics approaches have revealed their potential use to obtain the set of biological effectors that lead to the real biological station on a specific stage, the proteins. In addition, proteomics-based algorithms have allowed the discovery of proteins with new potential biotechnological applications from proteome data through "applied proteomics". In this project, the first proteome analysis of the sea anemone, Anemonia sulcata, and its symbiont has been developed. These organisms present a wide distribution sea ecosystem. In Spain, it is accepted as a fishing and aquaculture species. Moreover, Anemonia sulcate has a symbiotic relation with autotroph Dinoflagellates, Symbiodinium spp., that allows the study of its relation at the molecular level. For the first characterization of A. sulcata proteome, three independent biological replicates were used, and proteins were extracted and analyzed by LC-MS/MS, allowing the quantification of 325 proteins, 81 from Symbiodinium spp. proteins and 244 from A. sulcata proteins. These proteins were subjected to gene ontology categorization by Cellular Component, Molecular Function and Biological Process. These analyzes have allowed the identification of biomarkers of gene expression as potential powerful emerging diagnostic tools to identify and characterize the molecular drivers of climate change stresses and improve monitoring techniques. In addition, through the application of novel algorithms for the detection of bioactive compounds based on the analysis of molecules of marine origin, the proteome has allowed the identification of proteins with potential applications in the fields of biomedicine and agri-food.


Asunto(s)
Dinoflagelados , Anémonas de Mar , Animales , Proteómica , Ecosistema , Cambio Climático , Proteoma , Cromatografía Liquida , Espectrometría de Masas en Tándem , Biomarcadores
2.
Microorganisms ; 9(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34576732

RESUMEN

The ascomycete Botrytis cinerea is one of the most relevant plant pathogenic fungi, affecting fruits, flowers, and greenhouse-grown crops. The infection strategy used by the fungus comprises a magnificent set of tools to penetrate and overcome plant defenses. In this context, the plant-pathogen communication through membrane receptors and signal transduction cascades is essential to trigger specific routes and the final success of the infection. In previous reports, proteomics approaches to B. cinerea signal transduction cascades changes in response to different carbon source and plant-based elicitors have been performed. Analyzing the secretome, membranome, phosphoproteome, and the phosphomembranome. Moreover, phenotypic changes in fungal biology was analyzed, specifically toxin production. To obtain the whole picture of the process and reveal the network from a system biology approach, this proteomic information has been merged with the phenotypic characterization, to be analyzed using several bioinformatics algorithms (GO, STRING, MCODE) in order to unravel key points in the signal transduction regulation crucial to overcome plant defenses, as well as new virulence/pathogenicity factors that could be used as therapeutic targets in the control of the gray mold rot disease. A total of 1721 and 663 exclusive or overexpressed proteins were identified under glucose (GLU) and deproteinized tomato cell walls (TCW), summarizing all of the protein identifications under phenotypic characterized stages. Under GO analysis, there are more biological process and molecular functions described in GLU, highlighting the increase in signaling related categories. These results agree with the high number of total identified proteins in GLU, probably indicating a more varied and active metabolism of the fungus. When analyzing only GO annotations related with signal transduction, it was revealed that there were proteins related to TOR signaling, the phosphorelay signal transduction system, and inositol lipid-mediated signaling, only under GLU conditions. On the contrary, calcium-mediated signaling GO annotation is only present between the proteins identified under TCW conditions. To establish a potential relationship between expressed proteins, cluster analyses showed 41 and 14 clusters under GLU and TCW conditions, confirming an increase in biological activity in GLU, where we identified a larger number of clusters related to transcription, translation, and cell division, between others. From these analyses, clusters related to signal transduction and clusters related to mycotoxin production were found, which correlated with the phenotypic characterization. The identification of the proteins encompassed in each condition and signal transduction cascade would provide the research community with new information about the B. cinerea infection process and potential candidates of pathogenicity/virulence factors, overcoming plant defenses, and new therapeutic targets.

3.
Mar Drugs ; 20(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35049892

RESUMEN

Most of the marine ecosystems on our planet are still unknown. Among these ecosystems, microalgae act as a baseline due to their role as primary producers. The estimated millions of species of these microorganisms represent an almost infinite source of potentially active biocomponents offering unlimited biotechnology applications. This review considers current research in microalgae using the "omics" approach, which today is probably the most important biotechnology tool. These techniques enable us to obtain a large volume of data from a single experiment. The specific focus of this review is proteomics as a technique capable of generating a large volume of interesting information in a single proteomics assay, and particularly the concept of applied proteomics. As an example, this concept has been applied to the study of Nannochloropsis gaditana, in which proteomics data generated are transformed into information of high commercial value by identifying proteins with direct applications in the biomedical and agri-food fields, such as the protein designated UCA01 which presents antitumor activity, obtained from N. gaditana.


Asunto(s)
Microalgas , Animales , Organismos Acuáticos , Ecosistema , Proteómica
4.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374179

RESUMEN

Proteomics is a crucial tool for unravelling the molecular dynamics of essential biological processes, becoming a pivotal technique for basic and applied research. Diverse bioinformatic tools are required to manage and explore the huge amount of information obtained from a single proteomics experiment. Thus, functional annotation and protein-protein interactions are evaluated in depth leading to the biological conclusions that best fit the proteomic response in the system under study. To gain insight into potential applications of the identified proteins, a novel approach named "Applied Proteomics" has been developed by comparing the obtained protein information with the existing patents database. The development of massive sequencing technology and mass spectrometry (MS/MS) improvements has allowed the application of proteomics nonmodel microorganisms, which have been deeply described as a novel source of metabolites. Between them, Nannochloropsis gaditana has been pointed out as an alternative source of biomolecules. Recently, our research group has reported the first complete proteome analysis of this microalga, which was analysed using the applied proteomics concept with the identification of 488 proteins with potential industrial applications. To validate our approach, we selected the UCA01 protein from the prohibitin family. The recombinant version of this protein showed antiproliferative activity against two tumor cell lines, Caco2 (colon adenocarcinoma) and HepG-2 (hepatocellular carcinoma), proving that proteome data have been transformed into relevant biotechnological information. From Nannochloropsis gaditana has been developed a new tool against cancer-the protein named UCA01. This protein has selective effects inhibiting the growth of tumor cells, but does not show any effect on control cells. This approach describes the first practical approach to transform proteome information in a potential industrial application, named "applied proteomics". It is based on a novel bioalgorithm, which is able to identify proteins with potential industrial applications. From hundreds of proteins described in the proteome of N. gaditana, the bioalgorithm identified over 400 proteins with potential uses; one of them was selected as UCA01, "in vitro" and its potential was demonstrated against cancer. This approach has great potential, but the applications are potentially numerous and undefined.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Carcinoma Hepatocelular , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon , Neoplasias Hepáticas , Microalgas/química , Estramenopilos/química , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Células CACO-2 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo
5.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150894

RESUMEN

Pyrocystis lunula is considered a model organism due to its bioluminescence capacity linked to circadian rhythms. The mechanisms underlying the bioluminescent phenomenon have been well characterized in dinoflagellates; however, there are still some aspects that remain an enigma. Such is the case of the presence and diversity of the luciferin-binding protein (LBP), as well as the synthesis process of luciferin. Here we carry out a review of the literature in relation to the molecular players responsible for bioluminescence in dinoflagellates, with particular interest in P. lunula. We also carried out a phylogenetic analysis of the conservation of protein sequence, structure and evolutionary pattern of these key players. The basic structure of the luciferase (LCF) is quite conserved among the sequences reported to date for dinoflagellate species, but not in the case of the LBP, which has proven to be more variable in terms of sequence and structure. In the case of luciferin, its synthesis has been shown to be complex process with more than one metabolic pathway involved. The glutathione S-transferase (GST) and the P630 or blue compound, seem to be involved in this process. In the same way, various hypotheses regarding the role of bioluminescence in dinoflagellates are exposed.


Asunto(s)
Dinoflagelados/enzimología , Luciferasas/análisis , Luminiscencia , Animales , Humanos , Mediciones Luminiscentes
6.
J Proteomics ; 209: 103502, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31465862

RESUMEN

Pyrocystis lunula (Schutt) is a photoautotrophic dinoflagellate without armored form, frequently found in marine environments. Today, there are several biotechnological applications derived from the bioluminescent system of this species. From a post-genomic perspective, in order to have a starting point for studying the proteome of P. lunula, an "omics" approach (transcriptomics-proteomics) was assessed using fresh microalgae samples. A total of 80,874,825 raw reads were generated (11,292,087,505 bp; 55.82% GC) by mRNA sequencing. Very high-quality sequences were assembled into 414,295 contigs (219,203,407 bp; 55.38% GC) using Trinity software, generating a comprehensive reference transcriptome for this species. Then, a P. lunula proteome was inferred and further employed for its analysis on this species. A total of 17,461 peptides were identified, yielding 3182 protein identification hits, including 175 novel proteins. The identified proteins were further categorized according to functional description and gene ontology classification. SIGNIFICANCE: The major contribution of the present work is making available a reference transcriptome and proteome of P. lunula, that is now accessible for the research community, and a functional description of the 3182 proteins inferred from the transcriptome, including 175 novel proteins, which have already been deposited in the ProteomeXchange and NCBI SRA databases, respectively. In addition to this, a series of important factors related to the bioluminescent system and the regulation of gene expression, were identified and described.


Asunto(s)
Dinoflagelados/química , Proteómica/métodos , Regulación de la Expresión Génica , Proteínas Luminiscentes , Proteoma/análisis , Programas Informáticos , Transcriptoma
7.
Sci Rep ; 9(1): 9860, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285484

RESUMEN

Protein phosphorylation and membrane proteins play an important role in the infection of plants by phytopathogenic fungi, given their involvement in signal transduction cascades. Botrytis cinerea is a well-studied necrotrophic fungus taken as a model organism in fungal plant pathology, given its broad host range and adverse economic impact. To elucidate relevant events during infection, several proteomics analyses have been performed in B. cinerea, but they cover only 10% of the total proteins predicted in the genome database of this fungus. To increase coverage, we analysed by LC-MS/MS the first-reported overlapped proteome in phytopathogenic fungi, the "phosphomembranome" of B. cinerea, combining the two most important signal transduction subproteomes. Of the 1112 membrane-associated phosphoproteins identified, 64 and 243 were classified as exclusively identified or overexpressed under glucose and deproteinized tomato cell wall conditions, respectively. Seven proteins were found under both conditions, but these presented a specific phosphorylation pattern, so they were considered as exclusively identified or overexpressed proteins. From bioinformatics analysis, those differences in the membrane-associated phosphoproteins composition were associated with various processes, including pyruvate metabolism, unfolded protein response, oxidative stress response, autophagy and cell death. Our results suggest these proteins play a significant role in the B. cinerea pathogenic cycle.


Asunto(s)
Botrytis/metabolismo , Botrytis/fisiología , Fosforilación/fisiología , Proteoma/metabolismo , Transducción de Señal/fisiología , Pared Celular/microbiología , Cromatografía Liquida/métodos , Proteínas Fúngicas/metabolismo , Solanum lycopersicum/microbiología , Fosfoproteínas/metabolismo , Enfermedades de las Plantas/microbiología , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
8.
J Proteomics ; 193: 239-242, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30385413

RESUMEN

Nannochloropsis gaditana is a non-flagellated microalgae that has been widely used for different purposes, mostly related with the industrial production of biofuels or aquiculture. However, in order to increase the economic viability of the obtained microalgae biomass from a production plant coupled to a coal power plant, a proteomic approach was initiated by using fresh and atomized microalgae samples, as the main used commercial forms. Above 51,000 high quality spectra were obtained per sample in the MS/MS analysis of whole proteome of N. gaditana, yielding above 7,500 peptides, leading the identification of 1,950 proteins, from the N. gaditana protein database, where 655 proteins were presented in all the replicates. The identified proteins were categorized according to gene ontology classification by molecular function and biological process. In this study, it has been described the first proteomic analysis of the microalgae N. gaditana under industrial conditions containing an important number of identified proteins. A significative presence of proteins with a potential role in different agri-food and biomedical applications was detected and studied being the core of future N. gaditana research to expand the current biotechnological applications of this microalga. SIGNIFICANCE OF THE STUDY: Three quarters of the planet earth correspond to seas and oceans, however its potential biotechnological use is still unknown. We described the first proteomic description of the microalgae N. gaditana under industrial conditions. Following the spirit of the EU initiatives of blue growth and the statements of circular economy, CO2 waste from a coal plant power has been transformed in a resource for microalgae biomass production, common product presentations were evaluated by proteomic, and its potential use of identified proteins in Agri-food and Biomedicine has been revealed.


Asunto(s)
Bases de Datos de Proteínas , Microalgas/crecimiento & desarrollo , Péptidos/metabolismo , Proteoma/metabolismo , Proteómica , Estramenopilos/crecimiento & desarrollo
9.
Data Brief ; 7: 1447-1450, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27761508

RESUMEN

Phosphorylation is one of the main post-translational modification (PTM) involved in signaling network in the ascomycete Botrytis cinerea, one of the most relevant phytopathogenic fungus. The data presented in this article provided a differential mass spectrometry-based analysis of the phosphoproteome of B. cinerea under two different phenotypical conditions induced by the use of two different elicitors: glucose and deproteinized Tomate Cell Walls (TCW). A total 1138 and 733 phosphoproteins were identified for glucose and TCW culture conditions respectively. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier (PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD003099). Further interpretation and discussion of these data are provided in our research article entitled "Phosphoproteome analysis of B.cinerea in response to different plant-based elicitors" (Liñeiro et al., 2016) [1].

10.
Proteomics ; 16(17): 2363-76, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27329576

RESUMEN

Botrytis cinerea is a model fungus for the study of phytopathogenicity that exhibits a wide arsenal of tools to infect plant tissues. Most of these factors are related to signal transduction cascades, in which membrane proteins play a key role as a bridge between environment and intracellular molecular processes. This work describes the first description of the membranome of Botrytis under different pathogenicity conditions induced by different plant-based elicitors: glucose and tomato cell wall (TCW). A discovery proteomics analysis of membrane proteins was carried out by mass spectrometry. A total of 2794 proteins were successfully identified, 46% of them were classified as membrane proteins based on the presence of transmembrane regions and lipidation. Further analyses showed significant differences in the membranome composition depending on the available carbon source: 804 proteins were exclusively identified when the fungus was cultured with glucose as a sole carbon source, and 251 proteins were exclusively identified with TCW. Besides, among the 1737 common proteins, a subset of 898 proteins presented clear differences in their abundance. GO enrichment and clustering interaction analysis revealed changes in the composition of membranome with increase of signalling function in glucose conditions and carbohydrate degradation process in TCW conditions. All MS data have been deposited in the ProteomeXchange with identifier PXD003099 (http://proteomecentral.proteomexchange.org/dataset/PXD003099).


Asunto(s)
Botrytis/química , Proteínas Fúngicas/análisis , Enfermedades de las Plantas/microbiología , Proteómica/métodos , Solanum lycopersicum/microbiología , Botrytis/metabolismo , Proteínas Fúngicas/metabolismo , Mapas de Interacción de Proteínas , Espectrometría de Masas en Tándem/métodos
11.
J Proteomics ; 139: 84-94, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27003611

RESUMEN

The phytopathogen Botrytis cinerea is a ubiquitous fungus with a high capacity to adapt its metabolism to different hosts and environmental conditions in order to deploy a variety of virulence and pathogenicity factors and develop a successful plant infection. Here we report the first comparative phosphoproteomic study of B. cinerea, aimed to analyze the phosphoprotein composition of the fungus and its changes under different phenotypical conditions induced by two different carbon sources as plant based elicitors: glucose and deproteinized tomato cell wall (TCW). A total of 2854 and 2269 different phosphosites (2883 and 1137 phosphopeptides) were identified in glucose and TCW respectively, which map to 1338 phosphoproteins in glucose and 733 in TCW. Out of the identified phosphoproteins, 173 were exclusively found when glucose was the only carbon source and 11 when the carbon source was TCW. Differences in the pattern of phosphorylation-sites were also detected according to the carbon source. Gene ontology classification of the identified phosphoproteins showed that most of the characteristic proteins of the different carbon sources were related to signalling and transmembrane transport, thus highlighting the importance of these processes in the fungal adaptation to the surrounding conditions. BIOLOGICAL SIGNIFICANCE: The characterization of the B. cinerea phosphoproteome under different induction conditions reported here is the first comparative phosphoproteomic approach in this model phytopathogenic fungus. The identified phosphopeptides contribute to expand the map of known phosphoproteins in this pathogen and the observed changes according to the used carbon source contribute to understand the adaptation of the fungus to the environment changes. This knowledge improves the understanding of the adaptation mechanism, defines the role of the phosphoproteins involved in this process, and enables the advance in the design of novel strategies against the fungi.


Asunto(s)
Botrytis/metabolismo , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Enfermedades de las Plantas/microbiología , Proteoma/metabolismo , Solanum lycopersicum/microbiología
12.
Proteomics ; 16(4): 576-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26621492

RESUMEN

Saccharomyces bayanus var. uvarum plays an important role in the fermentation of red wine from the D.O. Ribera del Duero. This is due to the special organoleptic taste that this yeast gives the wines and their ability to ferment at low temperature. To determine the molecular factors involved in the fermentation process at low temperature, a differential proteomic approach was performed by using 2D-DIGE, comparing, qualitatively and quantitatively, the profiles obtained at 13 and 25°C. A total of 152 protein spots were identified. We detected proteins upregulated at 13°C that were shown to be related to temperature stress, the production of aromatic compounds involved in the metabolism of amino acids, and the production of fusel alcohols and their derivatives, each of which is directly related to the quality of the wines. To check the temperature effects, an aromatic analysis by GC-MS was performed. The proteomic and "aromatomic" results are discussed in relation to the oenological properties of S. bayanus var. uvarum.


Asunto(s)
Proteínas Fúngicas/metabolismo , Saccharomyces/metabolismo , Vino/microbiología , Frío , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Aromáticos/metabolismo , Proteoma/metabolismo , Proteómica , Electroforesis Bidimensional Diferencial en Gel
13.
Arch Microbiol ; 197(2): 117-33, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25141797

RESUMEN

Botrytis cinerea is one of the most relevant plant pathogenic fungi. The first step during its infection process is the germination of the conidia. Here, we report on the first proteome analysis during the germination of B. cinerea conidia, where 204 spots showed significant differences in their accumulation between ungerminated and germinated conidia by two-dimensional polyacrylamide gel electrophoresis and qPCR. The identified proteins were grouped by gene ontology revealing that the infective tools are mainly preformed inside the ungerminated conidia allowing a quick fungal development at the early stages of conidial germination. From 118 identified spots, several virulence factors have been identified while proteins, such as mannitol-1-phosphate dehydrogenase, 6,7-dimethyl-8-ribityllumazine synthase or uracil phosphoribosyltransferase, have been disclosed as a new potential virulence factors in botrytis whose role in pathogenicity needs to be studied to gain new insights about the role of these proteins as therapeutic targets and virulence factors.


Asunto(s)
Botrytis/crecimiento & desarrollo , Botrytis/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Esporas Fúngicas/crecimiento & desarrollo , Factores de Virulencia/genética , Botrytis/metabolismo , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Proteoma/análisis
14.
Arch Microbiol ; 195(5): 297-302, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23397445

RESUMEN

Molecular characterization of wine yeast population during spontaneous fermentation in biodynamic wines from Ribera del Duero D.O. located at northern plateau of Spain has been carried out during two consecutive years. A total of 829 yeast strains were isolated from the samples and characterized by electrophoretic karyotype. The results show the presence of three population of yeast differentiated by their electrophoretic karyotypes, (1) non-Saccharomyces yeast dominant in the initial phase of the fermentations (NS); (2) Saccharomyces bayanus var uvarum detected mainly mid-way through the fermentation process at 20-25 °C; and (3) Saccharomyces cerevisiae which remained dominant until the end of the fermentation. This is the first study showing the population dynamic of S. bayanus var. uvarum in red wines produced in Ribera del Duero that could represent an important source of autochthonous wine yeasts with novel oenological properties.


Asunto(s)
Técnicas de Tipificación Micológica , Saccharomyces cerevisiae/aislamiento & purificación , Saccharomyces/aislamiento & purificación , Vino/microbiología , Levaduras/clasificación , Levaduras/aislamiento & purificación , Fermentación , Saccharomyces/genética , Saccharomyces cerevisiae/genética , España , Levaduras/genética
15.
Arch Microbiol ; 195(4): 227-46, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23371377

RESUMEN

Colletotrichum acutatum is an important phytopathogenic fungus causing anthracnose in commercially important fruit crops, such as strawberry. The conidia produced by the fungus are survival structures which play a key role in host infection and fungal propagation. Despite its relevance to the fungal life cycle, conidial biology has not been extensively investigated. Here, we provide the first proteomic description of the conidial germination in C. acutatum by comparing the proteomic profiles of ungerminated and germinated conidia. Using two-dimensional electrophoresis combined with MALDI-TOF/TOF mass spectrometry, we have identified 365 proteins in 354 spots, which represent 245 unique proteins, including some proteins with key functions in pathogenesis. All these proteins have been classified according to their molecular function and their involvement in biological processes, including cellular energy production, oxidative metabolism, stress, fatty acid synthesis, protein synthesis, and folding. This report constitutes the first comprehensive study of protein expression during the early stage of the C. acutatum conidial germination. It advances our understanding of the molecular mechanisms involved in the conidial germination process, and provides a useful basis for the further characterization of proteins involved in fungal biology and fungus life cycles.


Asunto(s)
Colletotrichum/fisiología , Esporas Fúngicas/química , Colletotrichum/química , Colletotrichum/patogenicidad , Electroforesis en Gel Bidimensional , Fragaria/microbiología , Proteínas Fúngicas/análisis , Germinación , Proteoma/análisis , Esporas Fúngicas/fisiología , Virulencia
16.
Proteomics ; 10(12): 2270-80, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20376862

RESUMEN

Botrytis cinerea is a phytopathogenic fungus infecting a number of crops (tomatoes, grapes and strawberries), which has been adopted as a model system in molecular phytopathology. B. cinerea uses a wide variety of infection strategies, which are mediated by a set of genes/proteins called pathogenicity/virulence factors. Many of these factors have been described as secreted proteins, and thus the study of this sub-proteome, the secretome, under changing circumstances can help us to understand the roles of these factors, possibly revealing new loci for the fight against the pathogen. A 2-DE, MALDI TOF/TOF-based approach has been developed to establish the proteins secreted to culture media supplemented with different carbon sources and plant-based elicitors (in this study: glucose, cellulose, starch, pectin and tomato cell walls). Secreted proteins were obtained from the culture media by deoxycholate-trichloroacetic acid/phenol extraction, and 76 spots were identified, yielding 95 positive hits that correspond to 56 unique proteins, including several known virulence factors (i.e. pectin methyl esterases, xylanases and proteases). The observed increases in secretion of proteins with established virulence-related functions indicate that this in vitro-induction/proteome-mining approach is a promising strategy for discovering new pathogenicity factors and dissecting infection mechanisms in a discrete fashion.


Asunto(s)
Botrytis/efectos de los fármacos , Botrytis/metabolismo , Carbono/farmacología , Electroforesis en Gel Bidimensional/métodos , Extractos Vegetales/farmacología , Plantas/química , Proteómica , Celulosa/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Pectinas/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Almidón/farmacología
17.
Proteomics ; 9(10): 2892-902, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19415670

RESUMEN

The ascomycete Botrytis cinerea is a phytopathogenic fungus infecting and causing significant yield losses in a number of crops. Moreover, in the last few years, B. cinerea has been adopted as an important model system in molecular phytopathology. In spite of these contributions, the molecular basis of the infection cycle remains unclear. Proteomic approaches have revealed significant information about the infective cycle of several pathogens, including B. cinerea. The main aim of this study is to make available a proteomic database containing a significant number of identified proteins from B. cinerea. In brief, three independent B. cinerea cultures supplemented with carboxymethylcellulose were used, and the extracted proteins were independently separated by 2-D PAGE to obtain the proteome map from B. cinerea. Two hundred and sixty-seven spots were selected for MALDI TOF/TOF MS analysis, resulting in 303 positive identifications, mostly representing unannotated proteins. Identified proteins were then classified into categories using the PANTHER classification system (www.pantherdb.org), showing the relevance of protein metabolism and modification process and oxidoreductase activity. Since cellulose is one of the major components of the plant cell wall, many of the identified proteins may have a crucial role in the pathogenicity process. In brief, this proteomic map of B. cinerea will be a useful basis for exploring the proteins involved in the infection cycle, which will in turn provide new targets for crop diagnosis and focused fungicide design.


Asunto(s)
Botrytis/metabolismo , Celulosa/metabolismo , Bases de Datos de Proteínas , Proteínas Fúngicas/análisis , Proteómica , Botrytis/química , Electroforesis en Gel Bidimensional , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Arch Microbiol ; 187(3): 207-15, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17124592

RESUMEN

Botrytis cinerea is a phytopathogenic fungus causing disease in a substantial number of economically important crops. In an attempt to identify putative fungal virulence factors, the two-dimensional gel electrophoresis (2-DE) protein profile from two B. cinerea strains differing in virulence and toxin production were compared. Protein extracts from fungal mycelium obtained by tissue homogenization were analyzed. The mycelial 2-DE protein profile revealed the existence of qualitative and quantitative differences between the analyzed strains. The lack of genomic data from B. cinerea required the use of peptide fragmentation data from MALDI-TOF/TOF and ESI ion trap for protein identification, resulting in the identification of 27 protein spots. A significant number of spots were identified as malate dehydrogenase (MDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The different expression patterns revealed by some of the identified proteins could be ascribed to differences in virulence between strains. Our results indicate that proteomic analysis are becoming an important tool to be used as a starting point for identifying new pathogenicity factors, therapeutic targets and for basic research on this plant pathogen in the postgenomic era.


Asunto(s)
Botrytis/patogenicidad , Proteínas Fúngicas/análisis , Genes Fúngicos/fisiología , Proteoma/análisis , Factores de Virulencia/aislamiento & purificación , Botrytis/química , Botrytis/genética , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica/genética , Proteoma/química , Investigación
19.
Proteomics ; 6 Suppl 1: S88-96, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16544282

RESUMEN

Botrytis cinerea is a phytopathogenic fungi causing disease in a number of important crops. It is considered a very complex species in which different populations seem to be adapted to different hosts. In order to characterize fungal virulence factors, a proteomic research was started. A protocol for protein extraction from mycelium tissue, with protein separation by 2-DE and MS analysis, was optimised as a first approach to defining the B. cinerea proteome. Around 400 spots were detected in 2-DE CBB-stained gels, covering the 5.4-7.7 pH and 14-85 kDa ranges. The averages of analytical and biological coefficients of variance for 64 independent spots were 16.1% and 37.5%, respectively. Twenty-two protein spots were identified by MALDI-TOF or ESI IT MS/MS, with some of them corresponding to forms of malate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase. Two more spots matched a cyclophilin and a protein with an unknown function.


Asunto(s)
Proteínas Fúngicas/metabolismo , Plantas/microbiología , Proteoma/metabolismo , Electroforesis en Gel Bidimensional , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...