Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 92(4): 044907, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243450

RESUMEN

The development of high thermal conductivity thin film materials for the thermal management of electronics requires accurate and precise methods for characterizing heat spreading capability, namely, in-plane thermal conductivity. However, due to the complex nature of thin film thermal property measurements, resolving the in-plane thermal conductivity of high thermal conductivity anisotropic thin films with high accuracy is particularly challenging. Capable transient techniques exist; however, they usually measure thermal diffusivity and require heat capacity and density to deduce thermal conductivity. Here, we present an explicit uncertainty analysis framework for accurately resolving in-plane thermal conductivity via two independent steady-state thermometry techniques: particle-assisted Raman thermometry and electrical resistance thermometry. Additionally, we establish error-based criteria to determine the limiting experimental conditions that permit the simplifying assumption of one-dimensional thermal conduction to further reduce thermal analysis. We demonstrate the accuracy and precision (<5% uncertainty) of both steady-state techniques through in-plane thermal conductivity measurements of anisotropic nanocrystalline diamond thin films.

2.
ACS Appl Mater Interfaces ; 11(20): 18517-18527, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31042348

RESUMEN

The development of electronic devices, especially those that involve heterogeneous integration of materials, has led to increased challenges in addressing their thermal operational temperature demands. The heat flow in these systems is significantly influenced or even dominated by thermal boundary resistance at the interface between dissimilar materials. However, controlling and tuning heat transport across an interface and in the adjacent materials has so far drawn limited attention. In this work, we grow chemical vapor-deposited diamond on silicon substrates by graphoepitaxy and experimentally demonstrate tunable thermal transport across diamond membranes and diamond-silicon interfaces. We observed the highest diamond-silicon thermal boundary conductance (TBC) measured to date and increased diamond thermal conductivity due to strong grain texturing in the diamond near the interface. Additionally, nonequilibrium molecular dynamics simulations and a Landauer approach are used to understand the diamond-silicon TBC. These findings pave the way for tuning or increasing thermal conductance in heterogeneously integrated electronics that involve polycrystalline materials and will impact applications including electronics thermal management and diamond growth.

3.
Nano Lett ; 11(10): 4304-8, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21913676

RESUMEN

We present the first nanomechanical resonators microfabricated in single-crystal diamond. Shell-type resonators only 70 nm thick, the thinnest single crystal diamond structures produced to date, demonstrate a high-quality factor (Q ≈ 1000 at room temperature, Q ≈ 20 000 at 10 K) at radio frequencies (50-600 MHz). Quality factor dependence on temperature and frequency suggests an extrinsic origin to the dominant dissipation mechanism and methods to further enhance resonator performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA