Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 13(1): 2902, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614071

RESUMEN

The OX2 orexin receptor (OX2R) is a highly expressed G protein-coupled receptor (GPCR) in the brain that regulates wakefulness and circadian rhythms in humans. Antagonism of OX2R is a proven therapeutic strategy for insomnia drugs, and agonism of OX2R is a potentially powerful approach for narcolepsy type 1, which is characterized by the death of orexinergic neurons. Until recently, agonism of OX2R had been considered 'undruggable.' We harness cryo-electron microscopy of OX2R-G protein complexes to determine how the first clinically tested OX2R agonist TAK-925 can activate OX2R in a highly selective manner. Two structures of TAK-925-bound OX2R with either a Gq mimetic or Gi reveal that TAK-925 binds at the same site occupied by antagonists, yet interacts with the transmembrane helices to trigger activating microswitches. Our structural and mutagenesis data show that TAK-925's selectivity is mediated by subtle differences between OX1 and OX2 receptor subtypes at the orthosteric pocket. Finally, differences in the polarity of interactions at the G protein binding interfaces help to rationalize OX2R's coupling selectivity for Gq signaling. The mechanisms of TAK-925's binding, activation, and selectivity presented herein will aid in understanding the efficacy of small molecule OX2R agonists for narcolepsy and other circadian disorders.


Asunto(s)
Narcolepsia , Vigilia , Microscopía por Crioelectrón , Humanos , Receptores de Orexina/agonistas , Orexinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
J Biol Chem ; 295(5): 1315-1327, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31871053

RESUMEN

Pain is a significant public health burden in the United States, and current treatment approaches rely heavily on opioids, which often have limited efficacy and can lead to addiction. In humans, functional loss of the voltage-gated sodium channel Nav1.7 leads to pain insensitivity without deficits in the central nervous system. Accordingly, discovery of a selective Nav1.7 antagonist should provide an analgesic without abuse liability and an improved side-effect profile. Huwentoxin-IV, a component of tarantula venom, potently blocks sodium channels and is an attractive scaffold for engineering a Nav1.7-selective molecule. To define the functional impact of alterations in huwentoxin-IV sequence, we produced a library of 373 point mutants and tested them for Nav1.7 and Nav1.2 activity. We then combined favorable individual changes to produce combinatorial mutants that showed further improvements in Nav1.7 potency (E1N, E4D, Y33W, Q34S-Nav1.7 pIC50 = 8.1 ± 0.08) and increased selectivity over other Nav isoforms (E1N, R26K, Q34S, G36I, Nav1.7 pIC50 = 7.2 ± 0.1, Nav1.2 pIC50 = 6.1 ± 0.18, Nav1.3 pIC50 = 6.4 ± 1.0), Nav1.4 is inactive at 3 µm, and Nav1.5 is inactive at 10 µm We also substituted noncoded amino acids at select positions in huwentoxin-IV. Based on these results, we identify key determinants of huwentoxin's Nav1.7 inhibition and propose a model for huwentoxin-IV's interaction with Nav1.7. These findings uncover fundamental features of huwentoxin involved in Nav1.7 blockade, provide a foundation for additional optimization of this molecule, and offer a basis for the development of a safe and effective analgesic.


Asunto(s)
Analgésicos/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Venenos de Araña/química , Venenos de Araña/genética , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Secuencia de Aminoácidos/genética , Desarrollo de Medicamentos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Mutagénesis , Canal de Sodio Activado por Voltaje NAV1.2/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/tratamiento farmacológico , Biblioteca de Péptidos , Mutación Puntual , Ingeniería de Proteínas , Isoformas de Proteínas , Proteínas Recombinantes , Venenos de Araña/aislamiento & purificación
4.
Proc Natl Acad Sci U S A ; 111(7): 2758-63, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24497506

RESUMEN

A cone snail venom peptide, µO§-conotoxin GVIIJ from Conus geographus, has a unique posttranslational modification, S-cysteinylated cysteine, which makes possible formation of a covalent tether of peptide to its target Na channels at a distinct ligand-binding site. µO§-conotoxin GVIIJ is a 35-aa peptide, with 7 cysteine residues; six of the cysteines form 3 disulfide cross-links, and one (Cys24) is S-cysteinylated. Due to limited availability of native GVIIJ, we primarily used a synthetic analog whose Cys24 was S-glutathionylated (abbreviated GVIIJSSG). The peptide-channel complex is stabilized by a disulfide tether between Cys24 of the peptide and Cys910 of rat (r) NaV1.2. A mutant channel of rNaV1.2 lacking a cysteine near the pore loop of domain II (C910L), was >10(3)-fold less sensitive to GVIIJSSG than was wild-type rNaV1.2. In contrast, although rNaV1.5 was >10(4)-fold less sensitive to GVIIJSSG than NaV1.2, an rNaV1.5 mutant with a cysteine in the homologous location, rNaV1.5[L869C], was >10(3)-fold more sensitive than wild-type rNaV1.5. The susceptibility of rNaV1.2 to GVIIJSSG was significantly altered by treating the channels with thiol-oxidizing or disulfide-reducing agents. Furthermore, coexpression of rNaVß2 or rNaVß4, but not that of rNaVß1 or rNaVß3, protected rNaV1.1 to -1.7 (excluding NaV1.5) against block by GVIIJSSG. Thus, GVIIJ-related peptides may serve as probes for both the redox state of extracellular cysteines and for assessing which NaVß- and NaVα-subunits are present in native neurons.


Asunto(s)
Conotoxinas/toxicidad , Disulfuros/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neuronas/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Conotoxinas/genética , Conotoxinas/metabolismo , Cisteína/metabolismo , Cartilla de ADN/genética , ADN Complementario/genética , Datos de Secuencia Molecular , Oocitos/metabolismo , Técnicas de Placa-Clamp , Ratas , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo
5.
J Biol Chem ; 288(31): 22707-20, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23760503

RESUMEN

Voltage-gated sodium channels (VGSCs) are essential to the normal function of the vertebrate nervous system. Aberrant function of VGSCs underlies a variety of disorders, including epilepsy, arrhythmia, and pain. A large number of animal toxins target these ion channels and may have significant therapeutic potential. Most of these toxins, however, have not been characterized in detail. Here, by combining patch clamp electrophysiology and radioligand binding studies with peptide mutagenesis, NMR structure determination, and molecular modeling, we have revealed key molecular determinants of the interaction between the tarantula toxin huwentoxin-IV and two VGSC isoforms, Nav1.7 and Nav1.2. Nine huwentoxin-IV residues (F6A, P11A, D14A, L22A, S25A, W30A, K32A, Y33A, and I35A) were important for block of Nav1.7 and Nav1.2. Importantly, molecular dynamics simulations and NMR studies indicated that folding was normal for several key mutants, suggesting that these amino acids probably make specific interactions with sodium channel residues. Additionally, we identified several amino acids (F6A, K18A, R26A, and K27A) that are involved in isoform-specific VGSC interactions. Our structural and functional data were used to model the docking of huwentoxin-IV into the domain II voltage sensor of Nav1.7. The model predicts that a hydrophobic patch composed of Trp-30 and Phe-6, along with the basic Lys-32 residue, docks into a groove formed by the Nav1.7 S1-S2 and S3-S4 loops. These results provide new insight into the structural and molecular basis of sodium channel block by huwentoxin-IV and may provide a basis for the rational design of toxin-based peptides with improved VGSC potency and/or selectivity.


Asunto(s)
Activación del Canal Iónico , Bloqueadores de los Canales de Sodio/farmacología , Venenos de Araña/química , Secuencia de Aminoácidos , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Ensayo de Unión Radioligante , Homología de Secuencia de Aminoácido , Venenos de Araña/farmacología , Relación Estructura-Actividad
6.
ACS Chem Biol ; 2(7): 493-500, 2007 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-17602618

RESUMEN

In the postgenomic era, a major challenge remains, elucidating the thermodynamic forces governing receptor-ligand specificity and promiscuity. We report a straightforward approach for mapping side-chain contributions to binding for the multipartner interactions characteristic of the human proteome. Double barrel shotgun scanning dissects binding to two or more targets through combinatorial mutagenesis of one protein binding to multiple targets. Examined here, the caveolin-1 scaffolding domain (CSD) binds to and inhibits both endothelial nitric oxide synthase (eNOS) and protein kinase A (PKA). Homolog shotgun scanning of CSD highlights residues responsible for CSD oligomerization and binding to eNOS and PKA. The experiments uncover a general mechanism in which CSD oligomerizes and deoligomerizes to modulate binding affinity to partner proteins. The results provide a detailed look at a multipartner protein interaction, uncovering strategies for one protein binding to multiple partners.


Asunto(s)
Caveolina 1/química , Secuencia de Aminoácidos , Caveolina 1/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Homología de Secuencia de Aminoácido , Termodinámica
7.
Biochemistry ; 44(46): 15222-9, 2005 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-16285725

RESUMEN

A series of L-nitroarginine-based dipeptide inhibitors are highly selective for neuronal nitric oxide synthase (nNOS) over the endothelial isoform (eNOS). Crystal structures of these dipeptides bound to both isoforms revealed two different conformations, curled in nNOS and extended in eNOS, corresponding to higher and lower binding affinity to the two isoforms, respectively. In previous studies we found that the primary reason for selectivity is that Asp597 in nNOS, which is Asn368 in eNOS, provides greater electrostatic stabilization in the inhibitor complex. While this is the case for smaller dipeptide inhibitors, electrostatic stabilization may no longer be the sole determinant for isoform selectivity with bulkier dipeptide inhibitors. Another residue farther away from the active site, Met336 in nNOS (Val106 in eNOS), is in contact with bulkier dipeptide inhibitors. Double mutants were made to exchange the D597/M336 pair in nNOS with N368/V106 in eNOS. Here we report crystal structures and inhibition constants for bulkier dipeptide inhibitors bound to nNOS and eNOS that illustrate the important role played by residues near the entry to the active site in isoform selective inhibition.


Asunto(s)
Guanidinas/química , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Nitrocompuestos/química , Conformación Proteica , Animales , Bovinos , Cristalización , Manitol/química , Estructura Molecular , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo III/genética , Nitroarginina/química , Mutación Puntual , Unión Proteica , Ratas , Difracción de Rayos X
8.
Biochemistry ; 43(18): 5181-7, 2004 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-15122883

RESUMEN

In a continuing effort to unravel the structural basis for isoform-selective inhibition of nitric oxide synthase (NOS) by various inhibitors, we have determined the crystal structures of the nNOS and eNOS heme domain bound with two D-nitroarginine-containing dipeptide inhibitors, D-Lys-D-Arg(NO)2-NH(2) and D-Phe-D-Arg(NO)2-NH(2). These two dipeptide inhibitors exhibit similar binding modes in the two constitutive NOS isozymes, which is consistent with the similar binding affinities for the two isoforms as determined by K(i) measurements. The D-nitroarginine-containing dipeptide inhibitors are not distinguished by the amino acid difference between nNOS and eNOS (Asp 597 and Asn 368, respectively) which is key in controlling isoform selection for nNOS over eNOS observed for the L-nitroarginine-containing dipeptide inhibitors reported previously [Flinspach, M., et al. (2004) Nat. Struct. Mol. Biol. 11, 54-59]. The lack of a free alpha-amino group on the D-nitroarginine moiety makes the dipeptide inhibitor steer away from the amino acid binding pocket near the active site. This allows the inhibitor to extend into the solvent-accessible channel farther away from the active site, which enables the inhibitors to explore new isoform-specific enzyme-inhibitor interactions. This might be the structural basis for why these D-nitroarginine-containing inhibitors are selective for nNOS (or eNOS) over iNOS.


Asunto(s)
Dipéptidos/química , Inhibidores Enzimáticos/química , Hemo/química , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/química , Nitroarginina/química , Sustitución de Aminoácidos , Animales , Bovinos , Dipéptidos/metabolismo , Inhibidores Enzimáticos/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico Sintasa de Tipo III , Nitroarginina/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Ratas
9.
Nat Struct Mol Biol ; 11(1): 54-9, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14718923

RESUMEN

Three nitric oxide synthase (NOS) isoforms, eNOS, nNOS and iNOS, generate nitric oxide (NO) crucial to the cardiovascular, nervous and host defense systems, respectively. Development of isoform-selective NOS inhibitors is of considerable therapeutic importance. Crystal structures of nNOS-selective dipeptide inhibitors in complex with both nNOS and eNOS were solved and the inhibitors were found to adopt a curled conformation in nNOS but an extended conformation in eNOS. We hypothesized that a single-residue difference in the active site, Asp597 (nNOS) versus Asn368 (eNOS), is responsible for the favored binding in nNOS. In the D597N nNOS mutant crystal structure, a bound inhibitor switches to the extended conformation and its inhibition of nNOS decreases >200-fold. Therefore, a single-residue difference is responsible for more than two orders of magnitude selectivity in inhibition of nNOS over eNOS by L-N(omega)-nitroarginine-containing dipeptide inhibitors.


Asunto(s)
Dipéptidos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Amidas/química , Amidas/farmacología , Animales , Dominio Catalítico , Bovinos , Cristalografía por Rayos X , Dipéptidos/química , Técnicas In Vitro , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico Sintasa de Tipo III , Isoformas de Proteínas/química , Isoformas de Proteínas/farmacología , Estructura Terciaria de Proteína , Ratas , Electricidad Estática
10.
J Med Chem ; 46(26): 5700-11, 2003 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-14667223

RESUMEN

Selective inhibition of nitric oxide synthase (NOS) isoforms has great therapeutic potential in the treatment of certain disease states arising from the pathological overproduction of nitric oxide. In this study three structures of each NOS isoform were employed to examine selective regions in the active site using the GRID/CPCA approach. In the GRID calculations, 10 probes covering hydrophobic, steric, and hydrogen-bond-acceptor and -donor interactions were used to calculate the molecular interaction fields (MIFs) in the active site. The side chain flexibility of the residues and the grid spacings were considered at the same time. Consensus principal component analysis (CPCA) was applied to analyze the MIFs differences in the active site between the NOS isoforms. By combining the cutout tool with GRID/CPCA pseudofield differential plots, several selective regions in the active site were identified. The selectivity analysis showed that the most important determinants for NOS inhibitor selectivity are hydrophobic and charge-charge interactions. Twenty-five inhibitors of NOS were then docked into the active site using the program AutoDock3.0. The regions identified as being important for selectivity by this method are in excellent agreement with inhibitor structure-activity relationships. A rational usage of the selective region described in this work should make it possible to develop NOS isoform-selective inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Óxido Nítrico Sintasa/química , Sitios de Unión , Simulación por Computador , Dipéptidos/química , Diseño de Fármacos , Iminas/química , Isoenzimas/química , Modelos Moleculares , Conformación Molecular , Óxido Nítrico Sintasa/antagonistas & inhibidores , Nitroarginina/química , Piridinas/química , Estereoisomerismo , Relación Estructura-Actividad
11.
Biochemistry ; 41(47): 13868-75, 2002 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-12437343

RESUMEN

A series of N-alkyl-N'-hydroxyguanidine compounds have recently been characterized as non-amino acid substrates for all three nitric oxide synthase (NOS) isoforms which mimic NO formation from N(omega)-hydroxy-L-arginine. Crystal structures of the nNOS heme domain complexed with either N-isopropyl-N'-hydroxyguanidine or N-butyl-N'-hydroxyguanidine reveal two different binding modes in the substrate binding pocket. The binding mode of the latter is consistent with that observed for the substrate N(omega)-hydroxy-L-arginine bound in the nNOS active site. However, the former binds to nNOS in an unexpected fashion, thus providing new insights into the mechanism on how the hydroxyguanidine moiety leads to NO formation. Structural features of substrate binding support the view that the OH-substituted guanidine nitrogen, instead of the hydroxyl oxygen, is the source of hydrogen supplied to the active ferric-superoxy species for the second step of the NOS catalytic reaction.


Asunto(s)
Guanidinas/química , Óxido Nítrico Sintasa/química , Óxido Nítrico/biosíntesis , Alquilación , Animales , Sitios de Unión , Clonación Molecular , Guanidinas/farmacocinética , Hidroxilaminas , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I , Conformación Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...