Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Cell Biol ; 223(3)2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38270563

RESUMEN

CLPB is a mitochondrial intermembrane space AAA+ domain-containing disaggregase. CLPB mutations are associated with 3-methylglutaconic aciduria and neutropenia; however, the molecular mechanism underscoring disease and the contribution of CLPB substrates to disease pathology remains unknown. Interactions between CLPB and mitochondrial quality control (QC) factors, including PARL and OPA1, have been reported, hinting at dysregulation of organelle QC in disease. Utilizing proteomic and biochemical approaches, we show a stress-specific aggregation phenotype in a CLPB-null environment and define the CLPB substrate profile. We illustrate an interplay between intermembrane space proteins including CLPB, HAX1, HTRA2, and the inner membrane quality control proteins (STOML2, PARL, YME1L1; SPY complex), with CLPB deficiency impeding SPY complex function by virtue of protein aggregation in the intermembrane space. We conclude that there is an interdependency of mitochondrial QC components at the intermembrane space/inner membrane interface, and perturbations to this network may underscore CLPB disease pathology.


Asunto(s)
Endopeptidasa Clp , Membranas Intracelulares , Proteínas de la Membrana , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteolisis , Proteómica , Humanos , Endopeptidasa Clp/genética
2.
Open Biol ; 12(12): 220274, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36475414

RESUMEN

Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/genética
3.
Proc Natl Acad Sci U S A ; 119(13): e2115566119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35333655

RESUMEN

SignificanceMitochondria are double-membraned eukaryotic organelles that house the proteins required for generation of ATP, the energy currency of cells. ATP generation within mitochondria is performed by five multisubunit complexes (complexes I to V), the assembly of which is an intricate process. Mutations in subunits of these complexes, or the suite of proteins that help them assemble, lead to a severe multisystem condition called mitochondrial disease. We show that SFXN4, a protein that causes mitochondrial disease when mutated, assists with the assembly of complex I. This finding explains why mutations in SFXN4 cause mitochondrial disease and is surprising because SFXN4 belongs to a family of amino acid transporter proteins, suggesting that it has undergone a dramatic shift in function through evolution.


Asunto(s)
Complejo I de Transporte de Electrón , Enfermedades Mitocondriales , Adenosina Trifosfato/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Humanos , Proteínas de la Membrana , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación
4.
Nat Commun ; 12(1): 7056, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862379

RESUMEN

Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings.


Asunto(s)
Adaptación Fisiológica , Metabolismo Energético/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Mitocondrias/metabolismo , Músculo Esquelético/fisiología , Adenosina Trifosfato/biosíntesis , Adolescente , Adulto , Biopsia , Transporte de Electrón/fisiología , Voluntarios Sanos , Humanos , Masculino , Músculo Esquelético/citología , Fosforilación Oxidativa , Proteoma , Calidad de Vida , Adulto Joven
5.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299348

RESUMEN

Mitochondrial diseases disrupt cellular energy production and are among the most complex group of inherited genetic disorders. Affecting approximately 1 in 5000 live births, they are both clinically and genetically heterogeneous, and can be highly tissue specific, but most often affect cell types with high energy demands in the brain, heart, and kidneys. There are currently no clinically validated treatment options available, despite several agents showing therapeutic promise. However, modelling these disorders is challenging as many non-human models of mitochondrial disease do not completely recapitulate human phenotypes for known disease genes. Additionally, access to disease-relevant cell or tissue types from patients is often limited. To overcome these difficulties, many groups have turned to human pluripotent stem cells (hPSCs) to model mitochondrial disease for both nuclear-DNA (nDNA) and mitochondrial-DNA (mtDNA) contexts. Leveraging the capacity of hPSCs to differentiate into clinically relevant cell types, these models permit both detailed investigation of cellular pathomechanisms and validation of promising treatment options. Here we catalogue hPSC models of mitochondrial disease that have been generated to date, summarise approaches and key outcomes of phenotypic profiling using these models, and discuss key criteria to guide future investigations using hPSC models of mitochondrial disease.


Asunto(s)
Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Células Madre Pluripotentes/patología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , ADN Mitocondrial/genética , Humanos , Fenotipo
6.
Med ; 2(1): 49-73, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33575671

RESUMEN

BACKGROUND: In about half of all patients with a suspected monogenic disease, genomic investigations fail to identify the diagnosis. A contributing factor is the difficulty with repetitive regions of the genome, such as those generated by segmental duplications. The ATAD3 locus is one such region, in which recessive deletions and dominant duplications have recently been reported to cause lethal perinatal mitochondrial diseases characterized by pontocerebellar hypoplasia or cardiomyopathy, respectively. METHODS: Whole exome, whole genome and long-read DNA sequencing techniques combined with studies of RNA and quantitative proteomics were used to investigate 17 subjects from 16 unrelated families with suspected mitochondrial disease. FINDINGS: We report six different de novo duplications in the ATAD3 gene locus causing a distinctive presentation including lethal perinatal cardiomyopathy, persistent hyperlactacidemia, and frequently corneal clouding or cataracts and encephalopathy. The recurrent 68 Kb ATAD3 duplications are identifiable from genome and exome sequencing but usually missed by microarrays. The ATAD3 duplications result in the formation of identical chimeric ATAD3A/ATAD3C proteins, altered ATAD3 complexes and a striking reduction in mitochondrial oxidative phosphorylation complex I and its activity in heart tissue. CONCLUSIONS: ATAD3 duplications appear to act in a dominant-negative manner and the de novo inheritance infers a low recurrence risk for families, unlike most pediatric mitochondrial diseases. More than 350 genes underlie mitochondrial diseases. In our experience the ATAD3 locus is now one of the five most common causes of nuclear-encoded pediatric mitochondrial disease but the repetitive nature of the locus means ATAD3 diagnoses may be frequently missed by current genomic strategies. FUNDING: Australian NHMRC, US Department of Defense, Japanese AMED and JSPS agencies, Australian Genomics Health Alliance and Australian Mito Foundation.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Enfermedades Mitocondriales , ATPasas Asociadas con Actividades Celulares Diversas/genética , Australia , Niño , Humanos , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Estados Unidos
7.
Mol Biol Cell ; 32(6): 475-491, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33476211

RESUMEN

Acylglycerol kinase (AGK) is a mitochondrial lipid kinase that contributes to protein biogenesis as a subunit of the TIM22 complex at the inner mitochondrial membrane. Mutations in AGK cause Sengers syndrome, an autosomal recessive condition characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis. We mapped the proteomic changes in Sengers patient fibroblasts and AGKKO cell lines to understand the effects of AGK dysfunction on mitochondria. This uncovered down-regulation of a number of proteins at the inner mitochondrial membrane, including many SLC25 carrier family proteins, which are predicted substrates of the complex. We also observed down-regulation of SFXN proteins, which contain five transmembrane domains, and show that they represent a novel class of TIM22 complex substrate. Perturbed biogenesis of SFXN proteins in cells lacking AGK reduces the proliferative capabilities of these cells in the absence of exogenous serine, suggesting that dysregulation of one-carbon metabolism is a molecular feature in the biology of Sengers syndrome.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Carbono/metabolismo , Proteínas Portadoras/metabolismo , Técnicas de Cultivo de Célula , Humanos , Células MCF-7 , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/fisiología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/fisiología , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Cultivo Primario de Células , Proteómica/métodos
8.
Mol Cell Biol ; 41(3): e0059020, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33361189

RESUMEN

Rothmund-Thomson syndrome (RTS) is an autosomal recessive disorder characterized by defects in the skeletal system, such as bone hypoplasia, short stature, low bone mass, and an increased incidence of osteosarcoma. RTS type 2 patients have germ line compound biallelic protein-truncating mutations of RECQL4. As existing murine models employ Recql4 null alleles, we have attempted to more accurately model RTS by generating mice with patient-mimicking truncating Recql4 mutations. Truncating mutations impaired the stability and subcellular localization of RECQL4 and resulted in homozygous embryonic lethality and a haploinsufficient low-bone mass phenotype. Combination of a truncating mutation with a conditional Recql4 null allele demonstrated that the skeletal defects were intrinsic to the osteoblast lineage. However, the truncating mutations did not promote tumorigenesis. We utilized murine Recql4 null cells to assess the impact of human RECQL4 mutations using an in vitro complementation assay. While some mutations created unstable protein products, others altered subcellular localization of the protein. Interestingly, the severity of the phenotypes correlated with the extent of protein truncation. Collectively, our results reveal that truncating RECQL4 mutations in mice lead to an osteoporosis-like phenotype through defects in early osteoblast progenitors and identify RECQL4 gene dosage as a novel regulator of bone mass.

9.
Methods Cell Biol ; 155: 121-156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32183956

RESUMEN

Measurement of the individual enzymes involved in mitochondrial oxidative phosphorylation (OXPHOS) forms a key part of diagnostic investigations in patients with suspected mitochondrial disease, and can provide crucial information on mitochondrial OXPHOS function in a variety of cells and tissues that are applicable to many research investigations. In this chapter, we present methods for analysis of mitochondrial respiratory chain enzymes in cells and tissues based on assays performed in two geographically separate diagnostic referral centers, as part of clinical diagnostic investigations. Techniques for sample preparation from cells and tissues, and spectrophotometric assays for measurement of the activities of OXPHOS complexes I-V, the combined activity of complexes II+III, and the mitochondrial matrix enzyme citrate synthase, are provided. The activities of mitochondrial respiratory chain enzymes are often expressed relative to citrate synthase activity, since these ratios may be more robust in accounting for variability that may arise due to tissue quality, handling and storage, cell growth conditions, or any mitochondrial proliferation that may be present in tissues from patients with mitochondrial disease. Considerations for adaption of these techniques to other cells, tissues, and organisms are presented, as well as comparisons to alternate methods for analysis of respiratory chain function. In this context, a quantitative immunofluorescence protocol is also provided that is suitable for measurement of the amount of multiple respiratory chain complexes in small diagnostic tissue samples. The analysis and interpretation of OXPHOS enzyme activities are then placed in the context of mitochondrial disease tissue pathology and diagnosis.


Asunto(s)
Pruebas de Enzimas/métodos , Enzimas/metabolismo , Mitocondrias/metabolismo , Especificidad de Órganos , Animales , Transporte de Electrón , Humanos , Fosforilación Oxidativa
11.
Elife ; 82019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31682224

RESUMEN

Human Tim8a and Tim8b are members of an intermembrane space chaperone network, known as the small TIM family. Mutations in TIMM8A cause a neurodegenerative disease, Mohr-Tranebjærg syndrome (MTS), which is characterised by sensorineural hearing loss, dystonia and blindness. Nothing is known about the function of hTim8a in neuronal cells or how mutation of this protein leads to a neurodegenerative disease. We show that hTim8a is required for the assembly of Complex IV in neurons, which is mediated through a transient interaction with Complex IV assembly factors, in particular the copper chaperone COX17. Complex IV assembly defects resulting from loss of hTim8a leads to oxidative stress and changes to key apoptotic regulators, including cytochrome c, which primes cells for death. Alleviation of oxidative stress with Vitamin E treatment rescues cells from apoptotic vulnerability. We hypothesise that enhanced sensitivity of neuronal cells to apoptosis is the underlying mechanism of MTS.


Asunto(s)
Trastornos Sordoceguera/fisiopatología , Distonía/fisiopatología , Complejo IV de Transporte de Electrones/metabolismo , Discapacidad Intelectual/fisiopatología , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Atrofia Óptica/fisiopatología , Multimerización de Proteína , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular , Proteínas Transportadoras de Cobre/metabolismo , Humanos , Proteínas de Transporte de Membrana/deficiencia , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Estrés Oxidativo , Mapas de Interacción de Proteínas
12.
J Biol Chem ; 294(14): 5386-5395, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29233888

RESUMEN

Inherited disorders of oxidative phosphorylation cause the clinically and genetically heterogeneous diseases known as mitochondrial energy generation disorders, or mitochondrial diseases. Over the last three decades, mutations causing these disorders have been identified in almost 290 genes, but many patients still remain without a molecular diagnosis. Moreover, while our knowledge of the genetic causes is continually expanding, our understanding into how these defects lead to cellular dysfunction and organ pathology is still incomplete. Here, we review recent developments in disease gene discovery, functional characterization, and shared pathogenic parameters influencing disease pathology that offer promising avenues toward the development of effective therapies.


Asunto(s)
Metabolismo Energético , Enfermedades Genéticas Congénitas , Enfermedades Mitocondriales , Mutación , Animales , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología
13.
Cell Death Differ ; 25(1): 217-225, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053141

RESUMEN

BCL-2 proteins are known to engage each other to determine the fate of a cell after a death stimulus. However, their evolutionary conservation and the many other reported binding partners suggest an additional function not directly linked to apoptosis regulation. To identify such a function, we studied mice lacking the BH3-only protein BIM. BIM-/- cells had a higher mitochondrial oxygen consumption rate that was associated with higher mitochondrial complex IV activity. The consequences of increased oxygen consumption in BIM-/- mice were significantly lower body weights, reduced adiposity and lower hepatic lipid content. Consistent with reduced adiposity, BIM-/- mice had lower fasting blood glucose, improved insulin sensitivity and hepatic insulin signalling. Lipid oxidation was increased in BIM-/- mice, suggesting a mechanism for their metabolic phenotype. Our data suggest a role for BIM in regulating mitochondrial bioenergetics and metabolism and support the idea that regulation of metabolism and cell death are connected.


Asunto(s)
Adiposidad , Proteína 11 Similar a Bcl2/fisiología , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Animales , Proteína 11 Similar a Bcl2/genética , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Hepatocitos/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Oxidación-Reducción , Consumo de Oxígeno , Pérdida de Peso
15.
Mol Cell ; 67(3): 457-470.e5, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28712726

RESUMEN

Acylglycerol kinase (AGK) is a mitochondrial lipid kinase that catalyzes the phosphorylation of monoacylglycerol and diacylglycerol to lysophosphatidic acid and phosphatidic acid, respectively. Mutations in AGK cause Sengers syndrome, which is characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Here we identified AGK as a subunit of the mitochondrial TIM22 protein import complex. We show that AGK functions in a kinase-independent manner to maintain the integrity of the TIM22 complex, where it facilitates the import and assembly of mitochondrial carrier proteins. Mitochondria isolated from Sengers syndrome patient cells and tissues show a destabilized TIM22 complex and defects in the biogenesis of carrier substrates. Consistent with this phenotype, we observe perturbations in the tricarboxylic acid (TCA) cycle in cells lacking AGK. Our identification of AGK as a bona fide subunit of TIM22 provides an exciting and unexpected link between mitochondrial protein import and Sengers syndrome.


Asunto(s)
Cardiomiopatías/enzimología , Catarata/enzimología , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Cardiomiopatías/genética , Catarata/genética , Ciclo del Ácido Cítrico , Predisposición Genética a la Enfermedad , Células HEK293 , Células HeLa , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Complejos Multiproteicos , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Estabilidad Proteica , Transporte de Proteínas , Transfección
16.
Brain ; 140(6): 1595-1610, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28549128

RESUMEN

Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes. Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia, whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism. Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells, while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corroborates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mitochondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases.


Asunto(s)
Adenosina Trifosfatasas/genética , Cerebelo/anomalías , ADN Mitocondrial/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Malformaciones del Sistema Nervioso/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adulto , Cerebelo/diagnóstico por imagen , Cerebelo/fisiopatología , Consanguinidad , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/fisiopatología , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/fisiopatología
17.
Nature ; 538(7623): 123-126, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27626371

RESUMEN

Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the mitochondrial respiratory chain and is composed of 45 subunits in humans, making it one of the largest known multi-subunit membrane protein complexes. Complex I exists in supercomplex forms with respiratory chain complexes III and IV, which are together required for the generation of a transmembrane proton gradient used for the synthesis of ATP. Complex I is also a major source of damaging reactive oxygen species and its dysfunction is associated with mitochondrial disease, Parkinson's disease and ageing. Bacterial and human complex I share 14 core subunits that are essential for enzymatic function; however, the role and necessity of the remaining 31 human accessory subunits is unclear. The incorporation of accessory subunits into the complex increases the cellular energetic cost and has necessitated the involvement of numerous assembly factors for complex I biogenesis. Here we use gene editing to generate human knockout cell lines for each accessory subunit. We show that 25 subunits are strictly required for assembly of a functional complex and 1 subunit is essential for cell viability. Quantitative proteomic analysis of cell lines revealed that loss of each subunit affects the stability of other subunits residing in the same structural module. Analysis of proteomic changes after the loss of specific modules revealed that ATP5SL and DMAC1 are required for assembly of the distal portion of the complex I membrane arm. Our results demonstrate the broad importance of accessory subunits in the structure and function of human complex I. Coupling gene-editing technology with proteomics represents a powerful tool for dissecting large multi-subunit complexes and enables the study of complex dysfunction at a cellular level.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Subunidades de Proteína/metabolismo , Línea Celular , Respiración de la Célula , Supervivencia Celular/genética , Complejo I de Transporte de Electrón/genética , Edición Génica , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Proteómica
18.
Cell Metab ; 23(5): 901-8, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166948

RESUMEN

The mitochondrial inner membrane harbors three protein translocases. Presequence translocase and carrier translocase are essential for importing nuclear-encoded proteins. The oxidase assembly (OXA) translocase is required for exporting mitochondrial-encoded proteins; however, different views exist about its relevance for nuclear-encoded proteins. We report that OXA plays a dual role in the biogenesis of nuclear-encoded mitochondrial proteins. First, a systematic analysis of OXA-deficient mitochondria led to an unexpected expansion of the spectrum of OXA substrates imported via the presequence pathway. Second, biogenesis of numerous metabolite carriers depends on OXA, although they are not imported by the presequence pathway. We show that OXA is crucial for the biogenesis of the Tim18-Sdh3 module of the carrier translocase. The export translocase OXA is thus required for the import of metabolite carriers by promoting assembly of the carrier translocase. We conclude that OXA is of central importance for the biogenesis of the mitochondrial inner membrane.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/enzimología , Núcleo Celular/metabolismo , Mutación/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Deshidrogenasa/metabolismo
19.
Stem Cells Dev ; 25(3): 239-50, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608563

RESUMEN

The vast majority of cellular ATP is produced by the oxidative phosphorylation (OXPHOS) system, which comprises the four complexes of the electron transfer chain plus the ATP synthase. Complex I is the largest of the OXPHOS complexes, and mutation of the genes encoding either the subunits or assembly factors of Complex I can result in Complex I deficiency, which is the most common OXPHOS disorder. Mutations in the Complex I gene NDUFS4 lead to Leigh syndrome, which is the most frequent presentation of Complex I deficiency in children presenting with progressive encephalopathy shortly after birth. Symptoms include motor and intellectual retardation, often accompanied by dystonia, ataxia, and growth retardation, and most patients die by 3 years of age. To understand the origins of this disease, we have generated a series of mouse embryonic stem cell lines from blastocysts that were wild type, heterozygous, and homozygous for the deletion of the Ndufs4 gene. We have demonstrated their pluripotency and potential to differentiate into all cell types of the body. Although the loss of Ndufs4 did not affect the stability of the mitochondrial and nuclear genomes, there were significant differences in patterns of chromosomal gene expression following both spontaneous differentiation and directed neural differentiation into astrocytes. The defect also affected the potential of the cells to generate beating embryoid bodies. These outcomes demonstrate that defects associated with Complex I deficiency affect early gene expression patterns, which escalate during early and later stages of differentiation and are mediated by the defect and not other chromosomal or mitochondrial DNA defects.


Asunto(s)
Astrocitos/citología , Complejo I de Transporte de Electrón/metabolismo , Eliminación de Gen , Enfermedad de Leigh/genética , Neurogénesis , Animales , Astrocitos/metabolismo , Línea Celular , Complejo I de Transporte de Electrón/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
20.
Hum Mol Genet ; 24(19): 5404-15, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26160915

RESUMEN

Biogenesis of complex IV of the mitochondrial respiratory chain requires assembly factors for subunit maturation, co-factor attachment and stabilization of intermediate assemblies. A pathogenic mutation in COA6, leading to substitution of a conserved tryptophan for a cysteine residue, results in a loss of complex IV activity and cardiomyopathy. Here, we demonstrate that the complex IV defect correlates with a severe loss in complex IV assembly in patient heart but not fibroblasts. Complete loss of COA6 activity using gene editing in HEK293T cells resulted in a profound growth defect due to complex IV deficiency, caused by impaired biogenesis of the copper-bound mitochondrial DNA-encoded subunit COX2 and subsequent accumulation of complex IV assembly intermediates. We show that the pathogenic mutation in COA6 does not affect its import into mitochondria but impairs its maturation and stability. Furthermore, we show that COA6 has the capacity to bind copper and can associate with newly translated COX2 and the mitochondrial copper chaperone SCO1. Our data reveal that COA6 is intricately involved in the copper-dependent biogenesis of COX2.


Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Portadoras/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Fibroblastos/citología , Fibroblastos/enzimología , Células HEK293 , Humanos , Lactante , Masculino , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...