Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7262, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36433967

RESUMEN

N-glycan-mediated activation of the thrombopoietin receptor (MPL) under pathological conditions has been implicated in myeloproliferative neoplasms induced by mutant calreticulin, which forms an endogenous receptor-agonist complex that traffics to the cell surface and constitutively activates the receptor. However, the molecular basis for this mechanism is elusive because oncogenic activation occurs only in the cell-intrinsic complex and is thus cannot be replicated with external agonists. Here, we describe the structure and function of a marine sponge-derived MPL agonist, thrombocorticin (ThC), a homodimerized lectin with calcium-dependent fucose-binding properties. In-depth characterization of lectin-induced activation showed that, similar to oncogenic activation, sugar chain-mediated activation persists due to limited receptor internalization. The strong synergy between ThC and thrombopoietin suggests that ThC catalyzes the formation of receptor dimers on the cell surface. Overall, the existence of sugar-mediated MPL activation, in which the mode of activation is different from the original ligand, suggests that receptor activation is unpredictably diverse in living organisms.


Asunto(s)
Poríferos , Receptores de Trombopoyetina , Animales , Lectinas , Poríferos/metabolismo , Receptores de Trombopoyetina/metabolismo , Azúcares , Trombopoyetina
2.
J Struct Biol ; 212(3): 107656, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33132189

RESUMEN

Dysfunction in mitochondrial dynamics is believed to contribute to a host of neurological disorders and has recently been implicated in cancer metastasis. The outer mitochondrial membrane adapter protein Miro functions in the regulation of mitochondrial mobility and degradation, however, the structural basis for its roles in mitochondrial regulation remain unknown. Here, we report a 1.7Å crystal structure of N-terminal GTPase domain (nGTPase) of human Miro1 bound unexpectedly to GTP, thereby revealing a non-catalytic configuration of the putative GTPase active site. We identify two conserved surfaces of the nGTPase, the "SELFYY" and "ITIP" motifs, that are potentially positioned to mediate dimerization or interaction with binding partners. Additionally, we report small angle X-ray scattering (SAXS) data obtained from the intact soluble HsMiro1 and its paralog HsMiro2. Taken together, the data allow modeling of a crescent-shaped assembly of the soluble domain of HsMiro1/2. PDB RSEFERENCE: Crystal structure of the human Miro1 N-terminal GTPase bound to GTP, 6D71.


Asunto(s)
GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo , Secuencia de Aminoácidos , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Dominios Proteicos/fisiología , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos
3.
Proc Natl Acad Sci U S A ; 115(22): E5193-E5202, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760086

RESUMEN

Store-operated Orai1 channels are activated through a unique inside-out mechanism involving binding of the endoplasmic reticulum Ca2+ sensor STIM1 to cytoplasmic sites on Orai1. Although atomic-level details of Orai structure, including the pore and putative ligand binding domains, are resolved, how the gating signal is communicated to the pore and opens the gate is unknown. To address this issue, we used scanning mutagenesis to identify 15 residues in transmembrane domains (TMs) 1-4 whose perturbation activates Orai1 channels independently of STIM1. Cysteine accessibility analysis and molecular-dynamics simulations indicated that constitutive activation of the most robust variant, H134S, arises from a pore conformational change that opens a hydrophobic gate to augment pore hydration, similar to gating evoked by STIM1. Mutational analysis of this locus suggests that H134 acts as steric brake to stabilize the closed state of the channel. In addition, atomic packing analysis revealed distinct functional contacts between the TM1 pore helix and the surrounding TM2/3 helices, including one set mediated by a cluster of interdigitating hydrophobic residues and another by alternative ridges of polar and hydrophobic residues. Perturbing these contacts via mutagenesis destabilizes STIM1-mediated Orai1 channel gating, indicating that these bridges between TM1 and the surrounding TM2/3 ring are critical for conveying the gating signal to the pore. These findings help develop a framework for understanding the global conformational changes and allosteric interactions between topologically distinct domains that are essential for activation of Orai1 channels.


Asunto(s)
Calcio/química , Calcio/metabolismo , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Humanos , Simulación de Dinámica Molecular , Proteína ORAI1/genética , Dominios Proteicos
4.
Sci Rep ; 6: 33019, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27605430

RESUMEN

Hereditary Parkinson's disease is commonly caused by mutations in the protein kinase PINK1 or the E3 ubiquitin ligase Parkin, which function together to eliminate damaged mitochondria. PINK1 phosphorylates both Parkin and ubiquitin to stimulate ubiquitination of dozens of proteins on the surface of the outer mitochondrial membrane. However, the mechanisms by which Parkin recognizes specific proteins for modification remain largely unexplored. Here, we show that the C-terminal GTPase (cGTPase) of the Parkin primary substrate human Miro is necessary and sufficient for efficient ubiquitination. We present several new X-ray crystal structures of both human Miro1 and Miro2 that reveal substrate recognition and ubiquitin transfer to be specific to particular protein domains and lysine residues. We also provide evidence that Parkin substrate recognition is functionally separate from substrate modification. Finally, we show that prioritization for modification of a specific lysine sidechain of the cGTPase (K572) within human Miro1 is dependent on both its location and chemical microenvironment. Activation of Parkin by phosphorylation or by binding of pUb is required for prioritization of K572 for modification, suggesting that Parkin activation and acquisition of substrate specificity are coupled.


Asunto(s)
Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo , Sustitución de Aminoácidos , Cristalografía por Rayos X , Humanos , Lisina/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosforilación , Dominios Proteicos , Estructura Cuaternaria de Proteína , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas de Unión al GTP rho/genética
5.
EMBO Rep ; 14(11): 968-74, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24071720

RESUMEN

Miro is a highly conserved calcium-binding GTPase at the regulatory nexus of mitochondrial transport and autophagy. Here we present crystal structures comprising the tandem EF hand and carboxy terminal GTPase (cGTPase) domains of Drosophila Miro. The structures reveal two previously unidentified 'hidden' EF hands, each paired with a canonical EF hand. Each EF hand pair is bound to a helix that structurally mimics an EF hand ligand. A key nucleotide-sensing element and a Pink1 phosphorylation site both lie within an extensive EF hand-cGTPase interface. Our results indicate structural mechanisms for calcium, nucleotide and phosphorylation-dependent regulation of mitochondrial function by Miro.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Motivos EF Hand , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo , Secuencia de Aminoácidos , Animales , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Soluciones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas ras/química
6.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 9): 1163-74, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22948917

RESUMEN

The galectins are a family of proteins that bind with highest affinity to N-acetyllactosamine disaccharides, which are common constituents of asparagine-linked complex glycans. They play important and diverse physiological roles, particularly in the immune system, and are thought to be critical metastatic agents for many types of cancer cells, including gliomas. A recent bioactivity-based screen of marine sponge (Cinachyrella sp.) extract identified an ancestral member of the galectin family based on its unexpected ability to positively modulate mammalian ionotropic glutamate receptor function. To gain insight into the mechanistic basis of this activity, the 2.1 Å resolution X-ray structure of one member of the family, galectin CchG-1, is reported. While the protomer exhibited structural similarity to mammalian prototype galectin, CchG-1 adopts a novel tetrameric arrangement in which a rigid toroidal-shaped 'donut' is stabilized in part by the packing of pairs of vicinal disulfide bonds. Twofold symmetry between binding-site pairs provides a basis for a model for interaction with ionotropic glutamate receptors.


Asunto(s)
Galectinas/química , Poríferos/química , Estructura Cuaternaria de Proteína , Secuencia de Aminoácidos , Animales , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Homología Estructural de Proteína
7.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 10): 1043-53, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18931411

RESUMEN

Two structures of the nucleotide-bound NG domain of Ffh, the GTPase subunit of the bacterial signal recognition particle (SRP), have been determined at ultrahigh resolution in similar crystal forms. One is GDP-bound and one is GMPPCP-bound. The asymmetric unit of each structure contains two protein monomers, each of which exhibits differences in nucleotide-binding conformation and occupancy. The GDP-bound Ffh NG exhibits two binding conformations in one monomer but not the other and the GMPPCP-bound protein exhibits full occupancy of the nucleotide in one monomer but only partial occupancy in the other. Thus, under the same solution conditions, each crystal reveals multiple binding states that suggest that even when nucleotide is bound its position in the Ffh NG active site is dynamic. Some differences in the positioning of the bound nucleotide may arise from differences in the crystal-packing environment and specific factors that have been identified include the relative positions of the N and G domains, small conformational changes in the P-loop, the positions of waters buried within the active site and shifts in the closing loop that packs against the guanine base. However, ;loose' binding may have biological significance in promoting facile nucleotide exchange and providing a mechanism for priming the SRP GTPase prior to its activation in its complex with the SRP receptor.


Asunto(s)
GTP Fosfohidrolasas/química , Nucleótidos/metabolismo , Sitios de Unión , Cristalización , Modelos Moleculares , Conformación Proteica
8.
Proteins ; 66(4): 984-95, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17186523

RESUMEN

FtsY and Ffh are structurally similar prokaryotic Signal Recognition Particle GTPases that play an essential role in the Signal Recognition Particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The two GTPases assemble in a GTP-dependent manner to form a heterodimeric SRP targeting complex. We report here the 2.1 A X-ray structure of FtsY from T. aquaticus bound to GDP. The structure of the monomeric protein reveals, unexpectedly, canonical binding interactions for GDP. A comparison of the structures of the monomeric and complexed FtsY NG GTPase domain suggests that it undergoes a conformational change similar to that of Ffh NG during the assembly of the symmetric heterodimeric complex. However, in contrast to Ffh, in which the C-terminal helix shifts independently of the other subdomains, the C-terminal helix and N domain of T. aquaticus FtsY together behave as a rigid body during assembly, suggesting distinct mechanisms by which the interactions of the NG domain "module" are regulated in the context of the two SRP GTPases.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Thermus/enzimología , Proteínas Bacterianas/genética , Cristalografía por Rayos X , GTP Fosfohidrolasas/genética , Guanosina Difosfato/química , Hidrólisis , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Homología Estructural de Proteína , Thermus/química , Thermus/genética
9.
J Struct Biol ; 158(1): 122-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17184999

RESUMEN

Ffh and FtsY are GTPase components of the signal recognition particle co-translational targeting complex that assemble during the SRP cycle to form a GTP-dependent and pseudo twofold symmetric heterodimer. Previously the SRP GTPase heterodimer has been stabilized and purified for crystallographic studies using both the non-hydrolysable GTP analog GMPPCP and the pseudo-transition state analog GDP:AlF4, revealing in both cases a buried nucleotide pair that bridges and forms a key element of the heterodimer interface. A complex of Ffh and FtsY from Thermus aquaticus formed in the presence of the analog GMPPNP could not be obtained, however. The origin of this failure was previously unclear, and it was thought to have arisen from either instability of the analog, or, alternatively, from differences in its interactions within the tightly conscribed composite active site chamber of the complex. Using insights gained from the previous structure determinations, we have now determined the structure of the SRP GTPase targeting heterodimer stabilized by the non-hydrolysable GTP analog GMPPNP. The structure demonstrates how the different GTP analogs are accommodated within the active site chamber despite slight differences in the geometry of the phosphate chain. It also reveals a K+ coordination site at the highly conserved DARGG loop at the N/G interdomain interface.


Asunto(s)
Proteínas Bacterianas/química , GTP Fosfohidrolasas/química , Guanilil Imidodifosfato/química , Receptores Citoplasmáticos y Nucleares/química , Partícula de Reconocimiento de Señal/química , Thermus/enzimología , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Estabilidad de Enzimas , Potasio/química , Estructura Terciaria de Proteína
10.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 12): 1520-34, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17139088

RESUMEN

Two new structures of the SRP GTPase Ffh have been determined at 1.1 A resolution and provide the basis for comparative examination of the extensive water structure of the apo conformation of these GTPases. A set of well defined water-binding positions have been identified in the active site of the two-domain ;NG' GTPase, as well as at two functionally important interfaces. The water hydrogen-bonding network accommodates alternate conformations of the protein side chains by undergoing local rearrangements and, in one case, illustrates binding of a solute molecule within the active site by displacement of water molecules without further disruption of the water-interaction network. A subset of the water positions are well defined in several lower resolution structures, including those of different nucleotide-binding states; these appear to function in maintaining the protein structure. Consistent arrangements of surface water between three different ultrahigh-resolution structures provide a framework for beginning to understand how local water structure contributes to protein-ligand and protein-protein binding in the SRP GTPases.


Asunto(s)
GTP Fosfohidrolasas/química , Partícula de Reconocimiento de Señal/química , Agua/química , Sitios de Unión , Cristalografía por Rayos X , Electrones , Proteínas de Escherichia coli/química , Enlace de Hidrógeno , Modelos Moleculares , Estructura Secundaria de Proteína , Agua/análisis
11.
J Mol Biol ; 360(3): 631-43, 2006 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16780874

RESUMEN

The signal recognition particle (SRP) GTPases Ffh and FtsY play a central role in co-translational targeting of proteins, assembling in a GTP-dependent manner to generate the SRP targeting complex at the membrane. A suite of residues in FtsY have been identified that are essential for the hydrolysis of GTP that accompanies disengagement. We have argued previously on structural grounds that this region mediates interactions that serve to activate the complex for disengagement and term it the activation region. We report here the structure of a complex of the SRP GTPases formed in the presence of GDP:AlF4. This complex accommodates the putative transition-state analog without undergoing significant change from the structure of the ground-state complex formed in the presence of the GTP analog GMPPCP. However, small shifts that do occur within the shared catalytic chamber may be functionally important. Remarkably, an external nucleotide interaction site was identified at the activation region, revealed by an unexpected contaminating GMP molecule bound adjacent to the catalytic chamber. This site exhibits conserved sequence and structural features that suggest a direct interaction with RNA plays a role in regulating the activity of the SRP targeting complex.


Asunto(s)
Compuestos de Aluminio/química , Proteínas Bacterianas/química , Fluoruros/química , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Partícula de Reconocimiento de Señal/química , Sitios de Unión/genética , Cristalografía por Rayos X , Dimerización , Fluorometría , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Magnesio/química , Modelos Moleculares , Conformación Molecular , Unión Proteica , ARN Bacteriano/química , Thermus/química
12.
Anal Biochem ; 333(1): 57-64, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15351280

RESUMEN

Ran is a small GTPase that cycles between a guanosine diphosphate (GDP)-bound form (RanGDP) and a guanosine triphosphate (GTP)-bound form (RanGTP) and plays important roles in nuclear transport and mitosis. For studies of Ran function and its interactions with partner proteins, pure RanGDP and RanGTP complexes are critical. Ran complexed with the nonhydrolyzable GTP analog, GMPPNP (RanGMPPNP), is used instead of RanGTP when inhibition of hydrolysis is required. In this study, we demonstrate that the binding of Ran to a UNO Q ion exchange column is remarkably sensitive to small shifts in MgCl(2) concentration, and we use this property to purify recombinant RanGTP, RanGMPPNP, and RanGDP complexes. At 10 mM MgCl(2), Ran was found predominantly in the flow-through and, thus, was separated from the vast majority of bacterial proteins. After reducing the concentration of MgCl(2) to 5 mM, further purification of RanGTP, RanGMPPNP, and RanGDP was achieved by loading onto ion exchange columns and elution with an NaCl gradient. Purity of the resulting preparations was confirmed by releasing the bound nucleotide and checking it against a known nucleotide by high-performance liquid chromatography (HPLC). To further confirm the purity and function of the Ran preparations, appropriate protein-binding, enzymatic, and nuclear import assays were carried out. These methods should facilitate studies of cellular processes involving Ran by providing pure functional Ran-nucleotide complexes.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Nucleótidos de Guanina/química , Proteína de Unión al GTP ran/química , Proteína de Unión al GTP ran/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Nucleótidos de Guanina/metabolismo , Humanos , Cloruro de Magnesio/química , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo
13.
Science ; 303(5656): 373-7, 2004 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-14726591

RESUMEN

Two structurally homologous guanosine triphosphatase (GTPase) domains interact directly during signal recognition particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The 2.05 angstrom structure of a complex of the NG GTPase domains of Ffh and FtsY reveals a remarkably symmetric heterodimer sequestering a composite active site that contains two bound nucleotides. The structure explains the coordinate activation of the two GTPases. Conformational changes coupled to formation of their extensive interface may function allosterically to signal formation of the targeting complex to the signal-sequence binding site and the translocon. We propose that the complex represents a molecular "latch" and that its disengagement is regulated by completion of assembly of the GTPase active site.


Asunto(s)
Proteínas Bacterianas/química , Guanosina Trifosfato/análogos & derivados , Proteínas de Unión al GTP Heterotriméricas/química , Receptores Citoplasmáticos y Nucleares/química , Partícula de Reconocimiento de Señal/química , Thermus/química , Secuencias de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Dimerización , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , Receptores Citoplasmáticos y Nucleares/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
14.
Proteins ; 54(2): 222-30, 2004 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-14696184

RESUMEN

Ffh is the signal sequence recognition and targeting subunit of the prokaryotic signal recognition particle (SRP). Previous structural studies of the NG GTPase domain of Ffh demonstrated magnesium-dependent and magnesium-independent binding conformations for GDP and GMPPNP that are believed to reflect novel mechanisms for exchange and activation in this member of the GTPase superfamily. The current study of the NG GTPase bound to Mg(2+)GDP reveals two new binding conformations-in the first the magnesium interactions are similar to those seen previously, however, the protein undergoes a conformational change that brings a conserved aspartate into its second coordination sphere. In the second, the protein conformation is similar to that seen previously, but the magnesium coordination sphere is disrupted so that only five oxygen ligands are present. The loss of the coordinating water molecule, at the position that would be occupied by the oxygen of the gamma-phosphate of GTP, is consistent with that position being privileged for exchange during phosphate release. The available structures of the GDP-bound protein provide a series of structural snapshots that illuminate steps along the pathway of GDP release following GTP hydrolysis.


Asunto(s)
Proteínas Bacterianas/química , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Magnesio/metabolismo , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/metabolismo , Secuencias de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/metabolismo , Hidrólisis , Ligandos , Modelos Moleculares , Oxígeno/metabolismo , Conformación Proteica , Thermus/química , Thermus/enzimología
15.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 10): 1834-7, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14501130

RESUMEN

The GTPases Ffh and FtsY are components of the prokaryotic signal recognition particle protein-targeting pathway. The two proteins interact in a GTP-dependent manner, forming a complex that can be stabilized by use of the non-hydrolyzable GTP analog GMPPCP. Crystals of the complex of the NG GTPase domains of the two proteins have been obtained from ammonium sulfate solutions. Crystals grow with several different morphologies, predominately as poorly diffracting plates and needle clusters, but occasionally as well diffracting rods. It has been demonstrated that all forms of the crystals observed contain an intact complex. Diffraction data to 2.0 A resolution have been measured.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , GTP Fosfohidrolasas/química , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Receptores Citoplasmáticos y Nucleares/química , Partícula de Reconocimiento de Señal/química , Thermus/enzimología , Cristalización , Cristalografía por Rayos X , Estructura Terciaria de Proteína
16.
J Mol Biol ; 320(4): 783-99, 2002 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-12095255

RESUMEN

The NG domain of the prokaryotic signal recognition protein Ffh is a two-domain GTPase that comprises part of the prokaryotic signal recognition particle (SRP) that functions in co-translational targeting of proteins to the membrane. The interface between the N and G domains includes two highly conserved sequence motifs and is adjacent in sequence and structure to one of the conserved GTPase signature motifs. Previous structural studies have shown that the relative orientation of the two domains is dynamic. The N domain of Ffh has been proposed to function in regulating the nucleotide-binding interactions of the G domain. However, biochemical studies suggest a more complex role for the domain in integrating communication between signal sequence recognition and interaction with receptor. Here, we report the structure of the apo NG GTPase of Ffh from Thermus aquaticus refined at 1.10 A resolution. Although the G domain is very well ordered in this structure, the N domain is less well ordered, reflecting the dynamic relationship between the two domains previously inferred. We demonstrate that the anisotropic displacement parameters directly visualize the underlying mobility between the two domains, and present a detailed structural analysis of the packing of the residues, including the critical alpha4 helix, that comprise the interface. Our data allows us to propose a structural explanation for the functional significance of sequence elements conserved at the N/G interface.


Asunto(s)
Proteínas Bacterianas/química , GTP Fosfohidrolasas/química , Partícula de Reconocimiento de Señal/química , Thermus/enzimología , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína
17.
Biochim Biophys Acta ; 1597(1): 107-14, 2002 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-12009409

RESUMEN

The structural basis for the GTP-dependent co-translational targeting complex between the signal recognition particle (SRP) and its receptor is unknown. The complex has been shown to have unusual kinetics of formation, and association in vivo is likely to be dependent on catalysis by the SRP RNA. We have determined conditions for RNA-independent association of the 'NG' GTPase domains of the prokaryotic homologs of the SRP components, Ffh and FtsY, from Thermus aquaticus. Consistent with previous studies of the Escherichia coli proteins, the kinetics of association and dissociation are slow. The T. aquaticus FtsY is sensitive to an endogenous proteolytic activity that cleaves at two sites--the first in a lengthy linker peptide that spans the interface between the N and G domains, and the second near the N-terminus of the N domain of FtsY. Remarkably, this second cleavage occurs only on formation of the Ffh/FtsY complex. The change in protease sensitivity of this region, which is relatively unstructured in the FtsY but not in the Ffh NG domain, implies that it undergoes conformational change on formation of the complex between the two proteins. The N domain, therefore, participates in the interactions that mediate the GTP-dependent formation of the targeting complex.


Asunto(s)
GTP Fosfohidrolasas/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Thermus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Péptido Hidrolasas/química , Conformación Proteica , Estructura Secundaria de Proteína , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Péptidos/química , Partícula de Reconocimiento de Señal/química , Thermus/enzimología
18.
Proc Natl Acad Sci U S A ; 99(5): 2738-42, 2002 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-11867764

RESUMEN

Transglutaminase 2 (TG2) is a distinctive member of the family of Ca2+-dependent enzymes recognized mostly by their abilities to catalyze the posttranslational crosslinking of proteins. TG2 uniquely binds and hydrolyzes GTP; binding GTP inhibits its crosslinking activity but allows it to function in signal transduction (hence the G(h) designation). The core domain of TG2 (residues 139-471, rat) comprises the papain-like catalytic triad and the GTP-binding domain (residues 159-173) and contains almost all of the conserved tryptophans of the protein. Examining point mutations at Trp positions 180, 241, 278, 332, and 337 showed that, upon binding 2'-(or 3')-O-(N-methylanthraniloyl)GTP (mantGTP), the Phe-332 mutant was the weakest (35% less than wild type) in resonance energy transfer from the protein (lambda(exc, max) = 290 nm) to the mant fluorophore (lambda(em) = 444 nm) and had a reduced affinity for mantGTP. Trp-332, situated near the catalytic center and the nucleotide-binding area of TG2, may be part of the allosteric relay machinery that transmits negative effector signals from nucleotide binding to the active center of TG2. A most important observation was that, whereas no enzyme activity could be detected when Trp-241 was replaced with Ala or Gln, partial preservation of catalytic activity was seen with substitutions by Tyr > Phe > His. The results indicate that Trp-241 is essential for catalysis, possibly by stabilizing the transition states by H-bonding, quadrupole-ion, or van der Waals interactions. This contrasts with the evolutionarily related papain family of cysteine proteases, which uses Gln-19 (papain) for stabilizing the transition state.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Transglutaminasas/metabolismo , Triptófano/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catálisis , Secuencia Conservada , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteína Glutamina Gamma Glutamiltransferasa 2 , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transglutaminasas/química , Transglutaminasas/genética , Triptófano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA