Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nat Prod Bioprospect ; 14(1): 30, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743199

RESUMEN

Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal and food plant widely distributed in the tropical and subtropical regions of Asia, offering both health and culinary benefits. In this study the secondary metabolites in different organs of P. sarmentosum were identified and their relative abundances were characterized. The metabolic profiles of leaves, roots, stems and fruits were comprehensively investigated by liquid chromatography high-resolution mass spectrometry (LC-HR-MS) and the data subsequently analyzed using multivariate statistical methods. Manual interpretation of the tandem mass spectrometric (MS/MS) fragmentation patterns revealed the presence of 154 tentatively identified metabolites, mostly represented by alkaloids and flavonoids. Principle component analysis and hierarchical clustering indicated the predominant occurrence of flavonoids, lignans and phenyl propanoids in leaves, aporphines in stems, piperamides in fruits and lignan-amides in roots. Overall, this study provides extensive data on the metabolite composition of P. sarmentosum, supplying useful information for bioactive compounds discovery and patterns of their preferential biosynthesis or storage in specific organs. This can be used to optimize production and harvesting as well as to maximize the plant's economic value as herbal medicine or in food applications.

2.
Plant J ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578789

RESUMEN

The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.

3.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38543141

RESUMEN

The methods and solvents employed in routine extraction protocols essentially impact the composition of the resulting extracts, i.e., the relative abundances of individual biologically active metabolites and the quality and stability of the isolates. Natural deep eutectic solvents (NADESs) represent a new class of environmentally friendly solvents, which are recognized as promising extractants alternative to conventional organic liquids. However, their relative efficiencies when applied in different extraction workflows are still poorly characterized. Therefore, here, we compare the potential of three extraction methods for the extraction of biologically active natural products from Aralia elata var. mandshurica with selected natural deep eutectic solvents (NADESs) using a non-targeted metabolomics approach. The non-targeted metabolite profiling relied on reversed-phase ultra-high-performance liquid chromatography-high-resolution mass spectrometry (RP-UHPLC-HR-MS). The roots of A. elata were extracted by maceration, ultrasound-assisted extraction (UAE), and vibrocavitation-assisted extraction (VAE). Principal component analysis (PCA) revealed a clear separation of the extracts obtained with the three extraction methods employed with NADES1 (choline chloride/malic acid) and NADES2 (sorbitol/malic acid/water). Based on the results of the hierarchical clustering analysis obtained for the normalized relative abundances of individual metabolites and further statistical evaluation with the t-test, it could be concluded that NADES1 showed superior extraction efficiency for all the protocols addressed. Therefore, this NADES was selected to compare the efficiencies of the three extraction methods in more detail. PCA followed by the t-test yielded only 3 metabolites that were more efficiently extracted by maceration, whereas 46 compounds were more abundant in the extracts obtained by VAE. When VAE and UAE were compared, 108 metabolites appeared to be more abundant in the extracts obtained by VAE, whereas only 1 metabolite was more efficiently recovered by UAE. These facts clearly indicate the advantage of the VAE method over maceration and UAE. Seven of the twenty-seven metabolites tentatively identified by tandem mass spectrometry (MS/MS) were found in the roots of A. elata for the first time. Additional studies are necessary to understand the applicability of VAE for the extraction of other plant materials.

4.
Metab Eng ; 82: 193-200, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387676

RESUMEN

Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyl diphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.


Asunto(s)
Productos Biológicos , Diterpenos , Saccharomyces cerevisiae/genética , Diterpenos/química , Sistema Enzimático del Citocromo P-450/genética
5.
Plants (Basel) ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256760

RESUMEN

The transition from seed to seedling represents a critical developmental step in the life cycle of higher plants, dramatically affecting plant ontogenesis and stress tolerance. The release from dormancy to acquiring germination ability is defined by a balance of phytohormones, with the substantial contribution of abscisic acid (ABA), which inhibits germination. We studied the embryonic axis of Pisum sativum L. before and after radicle protrusion. Our previous work compared RNA sequencing-based transcriptomics in the embryonic axis isolated before and after radicle protrusion. The current study aims to analyze ABA-dependent gene regulation during the transition of the embryonic axis from the germination to post-germination stages. First, we determined the levels of abscisates (ABA, phaseic acid, dihydrophaseic acid, and neo-phaseic acid) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Second, we made a detailed annotation of ABA-associated genes using RNA sequencing-based transcriptome profiling. Finally, we analyzed the DNA methylation patterns in the promoters of the PsABI3, PsABI4, and PsABI5 genes. We showed that changes in the abscisate profile are characterized by the accumulation of ABA catabolites, and the ABA-related gene profile is accompanied by the upregulation of genes controlling seedling development and the downregulation of genes controlling water deprivation. The expression of ABI3, ABI4, and ABI5, which encode crucial transcription factors during late maturation, was downregulated by more than 20-fold, and their promoters exhibited high levels of methylation already at the late germination stage. Thus, although ABA remains important, other regulators seems to be involved in the transition from seed to seedling.

6.
Molecules ; 29(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257387

RESUMEN

The viability, productivity and survival of higher plants under the adverse factors influence are largely determined by the functional activity of the antioxidant system. The aim of our work was to investigate changes in formation of high-molecular (superoxide dismutase and peroxidase) and low-molecular (phenolics, including flavanols and proanthocyanidins) antioxidants in callus culture of Camellia sinensis under influence of phenolic precursors (L-phenylalanine-3 mM, trans-cinnamic acid-1 mM, naringenin-0.5 mM). According to the data obtained, the effect of precursors on tea callus cultures did not lead to significant increasing of superoxide dismutase and peroxidase activity in most cases. However, it led to the increased accumulation of the total phenolics content, as well as flavanols and proanthocyanidins contents. For C. sinensis callus cultures, the most promising regulator of phenolic compounds was L-phenylalanine, in the presence of which its content increased almost twice. Thus, the exogenous effect of various precursors is possible to use for the targeted regulation of certain phenolics classes accumulation in plant cells.


Asunto(s)
Camellia sinensis , Proantocianidinas , Antioxidantes/farmacología , Fenoles/farmacología , Polifenoles , Peroxidasas , Fenilalanina , Superóxido Dismutasa
7.
Plants (Basel) ; 12(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068592

RESUMEN

Drought has become one of the main factors of crop yield losses worldwide. This negatively affects the plant industry, decreasing crop yields, and it may result in resource deficits in different sectors of the world economy and its national branches. Guar (Cyamopsis tetragonoloba (L.) Taub) represents one of the strategic crops, as its seeds are the source of guar gum, which is critically important in the modern oil industry. Although guar is generally known to be a drought-tolerant plant, it is known that soil dehydration negatively affects plant fitness and crop productivity. As guar genotypes are characterized by high variability in the manifestation of drought tolerance, screening genetic resources for this feature seems to be a promising strategy for accessing drought-resistant varieties. The discovery of drought-tolerant genotypes is mandatory to secure sustainable guar production. In this context, the identification of reliable chemical and molecular markers of drought tolerance (i.e., drought-responsive and/or drought-protective metabolites, proteins and transcripts) will provide the solid basis for marker-driven breeding of new tolerant varieties. Therefore, here we provide a comprehensive overview of the available literature data on guar drought stress response, its physiological and molecular genetic aspects, and considerations on the approaches to improve the quality of this crop.

8.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139226

RESUMEN

Legumes represent an important source of food protein for human nutrition and animal feed. Therefore, sustainable production of legume crops is an issue of global importance. It is well-known that legume-rhizobia symbiosis allows an increase in the productivity and resilience of legume crops. The efficiency of this mutualistic association strongly depends on precise regulation of the complex interactions between plant and rhizobia. Their molecular dialogue represents a complex multi-staged process, each step of which is critically important for the overall success of the symbiosis. In particular, understanding the details of the molecular mechanisms behind the nodule formation and functioning might give access to new legume cultivars with improved crop productivity. Therefore, here we provide a comprehensive literature overview on the dynamics of the signaling network underlying the development of the legume-rhizobia symbiosis. Thereby, we pay special attention to the new findings in the field, as well as the principal directions of the current and prospective research. For this, here we comprehensively address the principal signaling events involved in the nodule inception, development, functioning, and senescence.


Asunto(s)
Fabaceae , Rhizobium , Humanos , Fabaceae/metabolismo , Simbiosis/fisiología , Rhizobium/fisiología , Fijación del Nitrógeno , Estudios Prospectivos , Verduras , Productos Agrícolas , Nódulos de las Raíces de las Plantas/metabolismo
9.
Biomolecules ; 13(12)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136646

RESUMEN

In light of recent climate change, with its rising temperatures and precipitation changes, we are facing the need to increase the valuable crop's tolerance against unfavorable environmental conditions. Emmer wheat is a cereal crop with high nutritional value. We investigated the possibility of improving the stress tolerance of emmer wheat by activating the synthesis of the stress hormone jasmonate by overexpressing two genes of the jasmonate biosynthetic pathway from Arabidopsis thaliana, ALLENE OXIDE SYNTHASE (AtAOS) and OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3). Analyses of jasmonates in intact and mechanically wounded leaves of non-transgenic and transgenic plants showed that the overexpression of each of the two genes resulted in increased wounding-induced levels of jasmonic acid and jasmonate-isoleucine. Against all expectations, the overexpression of AtAOS, encoding a chloroplast-localized enzyme, does not lead to an increased level of the chloroplast-formed 12-oxo-phytodienoic acid (OPDA), suggesting an effective conversion of OPDA to downstream products in wounded emmer wheat leaves. Transgenic plants overexpressing AtAOS or AtOPR3 with increased jasmonate levels show a similar phenotype, manifested by shortening of the first and second leaves and elongation of the fourth leaf, as well as increased tolerance to osmotic stress induced by the presence of the polyethylene glycol (PEG) 6000.


Asunto(s)
Arabidopsis , Triticum , Triticum/genética , Presión Osmótica , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética
10.
Life (Basel) ; 13(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37895406

RESUMEN

Autophagy is a highly conserved catabolic process in eukaryotic cells. Reactive nitrogen species play roles as inductors and signaling molecules of autophagy. A key mechanism of NO-mediated signaling is S-nitrosylation, a post-translational modification (PTM) of proteins at cysteine residues. In the present work, we analyzed the patterns of protein S-nitrosylation during the induction of autophagy in Triticum aestivum roots. The accumulation of S-nitrosylated proteins in the cells during autophagy induced with KNO2 and antimycin A was visualized using monoclonal antibodies with a Western blot analysis, and proteins were identified using a standard bottom-up proteomics approach. Protein S-nitrosylation is a labile and reversible PTM, and therefore the SNO group can be lost during experimental procedures. A subsequent bioinformatic analysis using predictive algorithms and protein-ligand docking showed that identified proteins possess hypothetical S-nitrosylation sites. Analyzing protein-protein interaction networks enabled us to discover the targets that can directly interact with autophagic proteins, and those that can interact with them indirectly via key multifunctional regulatory proteins. In this study, we show that S-nitrosylation is a key mechanism of NO-mediated regulation of autophagy in wheat roots. A combination of in silico predictive algorithms with a mass spectrometry analysis provides a targeted approach for the identification of S-nitrosylated proteins.

11.
Plants (Basel) ; 12(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37653967

RESUMEN

12-Oxophytodienoate reductase is the enzyme involved in the biosynthesis of phytohormone jasmonates, which are considered to be the major regulators of plant tolerance to biotic challenges, especially necrotrophic pathogens. However, we observe compromised tolerance to the necrotrophic fungal pathogen Botrytis cinerea in transgenic hexaploid bread wheat and tetraploid emmer wheat plants overexpressing 12-OXOPHYTODIENOATE REDUCTASE-3 gene from Arabidopsis thaliana, while in Arabidopsis plants themselves, endogenously produced and exogenously applied jasmonates exert a strong protective effect against B. cinerea. Exogenous application of methyl jasmonate on hexaploid and tetraploid wheat leaves suppresses tolerance to B. cinerea and induces the formation of chlorotic damages. Exogenous treatment with methyl jasmonate in concentrations of 100 µM and higher causes leaf yellowing even in the absence of the pathogen, in agreement with findings on the role of jasmonates in the regulation of leaf senescence. Thereby, the present study demonstrates the negative role of the jasmonate system in hexaploid and tetraploid wheat tolerance to B. cinerea and reveals previously unknown jasmonate-mediated responses.

12.
Funct Plant Biol ; 50(7): 532-539, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37258494

RESUMEN

Light is a crucial factor affecting plant growth and development. Besides providing the energy for photosynthesis, light serves as a sensory cue to control the adaptation of plants to environmental changes. We used the etiolated maize (Zea mays ) seedlings as a model system to study the red light-regulated growth. Exposure of the maize seedlings to red light resulted in growth inhibition of mesocotyls. We demonstrate for the first time (to the best our knowledge) that red light affected the patterns of apoplastic fluid (AF) metabolites extracted from the mesocotyl segments. By means of the untargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach, we identified 44 metabolites in the AF of maize mesocotyls and characterised the dynamics of their relative tissue abundances. The characteristic metabolite patterns of mesocotyls dominated with mono- and disaccharides, organic acids, amino acids, and other nitrogen-containing compounds. Upon red light irradiation, the contents of ß -alanine, putrescine and trans -aconitate significantly increased (P -value<0.05). In contrast, there was a significant decrease in the total ascorbate content in the AF of maize mesocotyls. The regulatory role of apoplastic metabolites in the red light-induced inhibition of maize mesocotyl elongation is discussed.


Asunto(s)
Luz , Zea mays , Zea mays/metabolismo , Plantones , Fotosíntesis , Transporte Biológico
13.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108821

RESUMEN

The main role of RALF small signaling peptides was reported to be the alkalization control of the apoplast for improvement of nutrient absorption; however, the exact function of individual RALF peptides such as RALF34 remains unknown. The Arabidopsis RALF34 (AtRALF34) peptide was proposed to be part of the gene regulatory network of lateral root initiation. Cucumber is an excellent model for studying a special form of lateral root initiation taking place in the meristem of the parental root. We attempted to elucidate the role of the regulatory pathway in which RALF34 is a participant using cucumber transgenic hairy roots overexpressing CsRALF34 for comprehensive, integrated metabolomics and proteomics studies, focusing on the analysis of stress response markers. CsRALF34 overexpression resulted in the inhibition of root growth and regulation of cell proliferation, specifically in blocking the G2/M transition in cucumber roots. Based on these results, we propose that CsRALF34 is not part of the gene regulatory networks involved in the early steps of lateral root initiation. Instead, we suggest that CsRALF34 modulates ROS homeostasis and triggers the controlled production of hydroxyl radicals in root cells, possibly associated with intracellular signal transduction. Altogether, our results support the role of RALF peptides as ROS regulators.


Asunto(s)
Arabidopsis , Cucumis sativus , Humanos , Señales de Clasificación de Proteína/genética , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/metabolismo , Péptidos/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Molecules ; 28(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37110849

RESUMEN

The roots of the medicinal plant Aralia elata are rich in biologically active natural products, with triterpene saponins constituting one of their major groups. These metabolites can be efficiently extracted by methanol and ethanol. Due to their low toxicity, natural deep eutectic solvents (NADES) were recently proposed as promising alternative extractants for the isolation of natural products from medicinal plants. However, although NADES-based extraction protocols are becoming common in routine phytochemical work, their application in the isolation of triterpene saponins has not yet been addressed. Therefore, here, we address the potential of NADES in the extraction of triterpene saponins from the roots of A. elata. For this purpose, the previously reported recoveries of Araliacea triterpene saponins in extraction experiments with seven different acid-based NADES were addressed by a targeted LC-MS-based quantitative approach for, to the best of our knowledge, the first time. Thereby, 20 triterpene saponins were annotated by their exact mass and characteristic fragmentation patterns in the total root material, root bark and root core of A. elata by RP-UHPLC-ESI-QqTOF-MS, with 9 of them being identified in the roots of this plant for the first time. Triterpene saponins were successfully extracted from all tested NADES, with the highest efficiency (both in terms of the numbers and recoveries of individual analytes) achieved using a 1:1 mixture of choline chloride and malic acid, as well as a 1:3 mixture of choline chloride and lactic acid. Thereby, for 13 metabolites, NADES were more efficient extractants in comparison with water and ethanol. Our results indicate that new, efficient NADES-based extraction protocols, giving access to high recoveries of triterpene saponins, might be efficiently employed in laboratory practice. Thus, our data open the prospect of replacing alcohols with NADES in the extraction of A. elata roots.


Asunto(s)
Aralia , Saponinas , Triterpenos , Disolventes Eutécticos Profundos , Extractos Vegetales , Etanol , Solventes
15.
Mar Drugs ; 21(4)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37103381

RESUMEN

The previously undescribed natural product lumnitzeralactone (1), which represents a derivative of ellagic acid, was isolated from the anti-bacterial extract of the Indonesian mangrove species Lumnitzera racemosa Willd. The structure of lumnitzeralactone (1), a proton-deficient and highly challenging condensed aromatic ring system, was unambiguously elucidated by extensive spectroscopic analyses involving high-resolution mass spectrometry (HRMS), 1D 1H and 13C nuclear magnetic resonance spectroscopy (NMR), and 2D NMR (including 1,1-ADEQUATE and 1,n-ADEQUATE). Determination of the structure was supported by computer-assisted structure elucidation (CASE system applying ACD-SE), density functional theory (DFT) calculations, and a two-step chemical synthesis. Possible biosynthetic pathways involving mangrove-associated fungi have been suggested.


Asunto(s)
Combretaceae , Ácido Elágico , Extractos Vegetales/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Combretaceae/química , Estructura Molecular
16.
Antioxidants (Basel) ; 12(3)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36978944

RESUMEN

Phaeophyceae (brown algae) essentially contribute to biotopes of cold and temperate seas. Their thalli are rich in biologically active natural products, which are strongly and universally dominated with phlorotannins-polyphenols of complex and diverse structure based on multiple differently arranged phloroglucinol units and well known as strong antioxidants with a broad spectrum of biological activities. In the algal cells, phlorotannins can either accumulate in the cytoplasm or can be secreted into the cell wall (CW). The biological activities of extractable intracellular phlorotannins have been comprehensively characterized, whereas the properties of the CW-bound polyphenol fraction are still mostly unknown. Recently, we identified dibenzodioxin bonding as the principal structural feature of the CW-bound phlorotannins in fucoid algae, whereas soluble intracellular phlorotannins rely on aryl and ether bonds. However, profiles of biological activity associated with these structural differences are still unknown. Therefore, to the best of our knowledge, for the first time we address the antioxidant, cytotoxic, neuroprotective, and antibacterial properties of the CW-bound phlorotannin fractions isolated from two representatives of the order Fucales-Fucus vesiculosus and Pelvetia canaliculata. The CW-bound phlorotannins appeared to be softer antioxidants, stronger antibacterial agents and were featured with essentially less cytotoxicity in comparison to the intracellular fraction. However, the neuroprotective effects of both sub-cellular phlorotannin fractions of F. vesiculosus and P. canaliculata were similar. Thus, due to their lower cytotoxicity, CW-bound phlorotannins can be considered as promising antioxidants and neuroprotectors.

17.
Front Plant Sci ; 13: 874761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507396

RESUMEN

Due to its outstanding throughput and analytical resolution, gel-free LC-based shotgun proteomics represents the gold standard of proteome analysis. Thereby, the efficiency of sample preparation dramatically affects the correctness and reliability of protein quantification. Thus, the steps of protein isolation, solubilization, and proteolysis represent the principal bottleneck of shotgun proteomics. The desired performance of the sample preparation protocols can be achieved by the application of detergents. However, these compounds ultimately compromise reverse-phase chromatographic separation and disrupt electrospray ionization. Filter-aided sample preparation (FASP) represents an elegant approach to overcome these limitations. Although this method is comprehensively validated for cell proteomics, its applicability to plants and compatibility with plant-specific protein isolation protocols remain to be confirmed. Thereby, the most important gap is the absence of the data on the linearity of underlying protein quantification methods for plant matrices. To fill this gap, we address here the potential of FASP in combination with two protein isolation protocols for quantitative analysis of pea (Pisum sativum) seed and Arabidopsis thaliana leaf proteomes by the shotgun approach. For this aim, in comprehensive spiking experiments with bovine serum albumin (BSA), we evaluated the linear dynamic range (LDR) of protein quantification in the presence of plant matrices. Furthermore, we addressed the interference of two different plant matrices in quantitative experiments, accomplished with two alternative sample preparation workflows in comparison to conventional FASP-based digestion of cell lysates, considered here as a reference. The spiking experiments revealed high sensitivities (LODs of up to 4 fmol) for spiked BSA and LDRs of at least 0.6 × 102. Thereby, phenol extraction yielded slightly better recoveries, whereas the detergent-based method showed better linearity. Thus, our results indicate the very good applicability of FASP to quantitative plant proteomics with only limited impact of the protein isolation technique on the method's overall performance.

18.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430380

RESUMEN

Gel-free bottom-up shotgun proteomics is the principal methodological platform for the state-of-the-art proteome research. This methodology assumes quantitative isolation of the total protein fraction from a complex biological sample, its limited proteolysis with site-specific proteases, analysis of the resulted peptides with nanoscaled reversed-phase high-performance liquid chromatography-(tandem) mass spectrometry (nanoRP-HPLC-MS and MS/MS), protein identification by sequence database search and peptide-based quantitative analysis. The most critical steps of this workflow are protein reconstitution and digestion; therefore, detergents and chaotropic agents are strongly mandatory to ensure complete solubilization of complex protein isolates and to achieve accessibility of all protease cleavage sites. However, detergents are incompatible with both RP separation and electrospray ionization (ESI). Therefore, to make LC-MS analysis possible, several strategies were implemented in the shotgun proteomics workflow. These techniques rely either on enzymatic digestion in centrifugal filters with subsequent evacuation of the detergent, or employment of MS-compatible surfactants, which can be degraded upon the digestion. In this review we comprehensively address all currently available strategies for the detergent-assisted proteolysis in respect of their relative efficiency when applied to different biological matrices. We critically discuss the current progress and the further perspectives of these technologies in the context of its advances and gaps.


Asunto(s)
Detergentes , Proteómica , Proteómica/métodos , Proteolisis , Espectrometría de Masas en Tándem , Proteoma , Péptidos/química
19.
Plants (Basel) ; 11(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365312

RESUMEN

Water avens (Geum rivale L.) is a common Rosaceae plant widely spread in Europe and North America. It is rich in biologically active natural products, some of which are promising as prospective pharmaceuticals. The extracts of water avens are well known for their triterpenoid metabolites and associated anti-inflammatory, antimicrobial and antioxidant activities. However, the polyphenolic profiles of G. rivale L. are still awaiting complete characterization. Accordingly, the contribution of its individual components to the antioxidant, antibacterial and neuroprotective activity of the extracts is still unknown. As this plant can be available on an industrial scale, a better knowledge of its properly-relevant constituents might give access to new highly-efficient pharmaceutical substances and functional products. Therefore, herein we comprehensively characterize the secondary metabolome of G. rivale by ESI-HR-MS, ESI-HR-MSn and NMR spectroscopy with a special emphasis on the polyphenolic composition of its aerial parts. Furthermore, a multilateral evaluation of the antioxidant, neuroprotective and antibacterial properties of the aqueous and ethyl acetate fractions of the total aqueous alcoholic extract as well as individual isolated polyphenols was accomplished. Altogether four phenolic acid derivatives (trigalloyl hexose, caffeoyl-hexoside malate, ellagic acid and ellagic acid pentoside), six flavonoids (three quercetin derivatives, kaempferol and three its derivatives and two isorhamnetin derivatives) and four tannins (HHDP-hexoside, proantocyanidin dimer, pedunculagin I and galloyl-bis-HHDP-hexose) were identified in this plant for the first time. The obtained aqueous and ethyl acetate fractions of the total extract as well as the isolated individual compounds showed pronounced antioxidant activity. In addition, a pronounced antibacterial activity against several strains was proved for the studied fractions (for ethyl acetate fraction the highest activity against E. coli АТСС 25922 and S. aureus strains ATCC 27853 and SG-511 (MIC 15.6 µg/mL) was observed; for aqueous fraction-against Staphylococcus aureus SG-511 (MIC 31.2 µg/mL)). However, the anti-neurodegenerative (neuroprotective) properties could not be found with the employed methods. However, the antibacterial activity of the fractions could not be associated with any of the isolated individual major phenolics (excepting 3-O-methylellagic acid). Thus, the aerial parts of water avens represent a promising source of polyphenolic compounds with antioxidant activity and therefrom derived human health benefits, although the single constituents isolated so far lack a dominant selectively bioactive constituent in the bioassays performed.

20.
Life (Basel) ; 12(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362927

RESUMEN

Glycyrrhiza glabra or licorice has long been known as a commonly used Ayurvedic herb. This study aims to investigate the effect of extraction methods on the chemical composition and biologically active properties of Glycyrrhiza glabra extract samples. The highest yield of the Glycyrrhiza glabra extract (21.31 ± 0.64 wt.%) was produced using the Soxhlet extraction method with methanol. The highest concentrations of biologically active substances (3,4-dihydroxybenzoic acid, n-coumaric acid, luteolin-7-glucoside, acacetin, apigenin-7-O-glucoside, chicoric acid, and hesperetin) were found in these samples of Glycyrrhiza glabra extracts. When applying the maceration method using a mixture of solvents methanol-NaOH, rosmarinic acid was identified, and catechin was found in large quantities with a mixture of methanol-trifluoroacetic acid (TFA). Growth inhibition zones were determined for Escherichia coli (13.6 ± 0.41 mm), Pseudomonas aeruginosa (10.8 ± 0.32 mm), Bacillus subtilis (16.1 ± 0.48 mm), and Candida albicans (13.2 ± 0.39 mm) when exposed to samples of Glycyrrhiza glabra extracts obtained by the Soxhlet method with methanol. The antioxidant activity of Glycyrrhiza glabra extract samples obtained by the Soxhlet method was 117.62 ± 7.91 µmol Trolox equivalent/g, using the ABTS method (highest value), and 23.91 ± 1.12 µmol Trolox equivalent/g according to the FRAP method (smallest). The antioxidant activity of the extract samples according to the DPPH method was an intermediate value of 58.16 ± 3.90 µmol Trolox equivalent/g. Antibacterial and antioxidant activities are manifested by the polyphenolic compounds and flavonoids contained in the samples of the methanol extract of Glycyrrhiza glabra produced using the Soxhlet method. These Glycyrrhiza glabra extract samples have the potential to become a natural alternative to existing therapies for the elimination of bacterial infections or the prevention of premature aging caused by free radicals and oxidative stress in the human body.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...