Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 657: 124170, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38679244

RESUMEN

Improving the anticancer efficacy of chemotherapeutic drugs and photosensitizers requires innovative multifunctional nanoplatforms. This study introduces a chemo- and phototherapeutic drug delivery system (DDS) based on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs), both PEGylated and non-PEGylated, with a mean size of 200 ± 75 nm. Colchicine (Colch) and purpurin18 (P18) were co-encapsulated into these NPs, and their in vitro drug release profiles were investigated. The anticancer potential of these systems was evaluated across various cell lines (i.e., CaCo-2, PC-3, MCF-7, and MRC-5 cells), demonstrating enhanced NP uptake by cancer cells compared to free drugs. Co-administration of Colch and P18 in 2D and 3D cell line models exhibited a synergistic effect, harnessing both chemotherapeutic and photodynamic effects, leading to higher cancer cell elimination efficacy. This newly developed multifunctional DDS presents a promising platform for combined chemo- and photodynamic therapy in cancer treatment.


Asunto(s)
Colchicina , Portadores de Fármacos , Liberación de Fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Humanos , Colchicina/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Portadores de Fármacos/química , Línea Celular Tumoral , Esferoides Celulares/efectos de los fármacos , Nanopartículas/administración & dosificación , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Neoplasias/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos
2.
Molecules ; 29(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474622

RESUMEN

An extensive thermodynamic study of N-methylformamide (CAS RN: 123-39-7) and N,N-dimethylformamide (CAS RN: 68-12-2), is presented in this work. The liquid heat capacities of N-methylformamide were measured by Tian-Calvet calorimetry in the temperature interval (250-300) K. The vapor pressures for N-methylformamide and N,N-dimethylformamide were measured using static method in the temperature range 238 K to 308 K. The ideal-gas thermodynamic properties were calculated using a combination of the density functional theory (DFT) and statistical thermodynamics. A consistent thermodynamic description was developed using the method of simultaneous correlation, where the experimental and selected literature data for vapor pressures, vaporization enthalpies, and liquid phase heat capacities and the calculated ideal-gas heat capacities were treated together to ensure overall thermodynamic consistency of the results. The resulting vapor pressure equation is valid from the triple point to the normal boiling point temperature.

3.
Int J Pharm ; 650: 123724, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38123107

RESUMEN

Due to their unique properties, such as controlled drug release and improved bioavailability, polymeric microparticles and nanoparticles (MPs and NPs) have gained considerable interest in the pharmaceutical industry. Nevertheless, the high costs associated with biodegradable polymers and the active pharmaceutical ingredients (APIs) used for treating serious diseases, coupled with the vast number of API-polymer combinations, make the search for effective API-polymer MPs and NPs a costly and time-consuming process. In this work, the correlation between the compatibility of selected model APIs (i.e., ibuprofen, naproxen, paracetamol, and indomethacin) with poly(lactide-co-glycolide) (PLGA) derived from respective binary phase diagrams and characteristics of prepared MPs and NPs, such as the drug loading and solid-state properties, was investigated to probe the possibility of implementing the modeling of API-polymer thermodynamic and kinetic phase behavior as part of rational design of drug delivery systems based on MPs and NPs. API-PLGA-based MPs and NPs were formulated using an emulsion-solvent evaporation technique and were characterized for morphology, mean size, zeta potential, drug loading, and encapsulation efficiency. The solid-state properties of the encapsulated APIs were assessed using differential scanning calorimetry and X-ray powder diffraction. The evaluated compatibility was poor for all considered API-PLGA pairs, which is in alignment with the experimental results showing low drug loading in terms of amorphous API content. At the same time, drug loading of the studied APIs in terms of amorphous content was found to follow the same trend as their solubility in PLGA, indicating a clear correlation between API solubility in PLGA and achievable drug loading. These findings suggest that API-polymer phase behavior modeling and compatibility screening can be employed as an effective preformulation tool to estimate optimum initial API concentration for MP and NP preparation or, from a broader perspective, to tune or select polymeric carriers offering desired drug loading.


Asunto(s)
Nanopartículas , Polímeros , Polímeros/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Preparaciones Farmacéuticas , Tamaño de la Partícula , Portadores de Fármacos/química
4.
Int J Pharm ; 648: 123604, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37981251

RESUMEN

The development of an amorphous solid dispersion (ASD) is a promising strategy for improving the low bioavailability of many poorly water-soluble active pharmaceutical ingredients (APIs). The construction of a temperature-composition (T-C) phase diagram for an API-polymer combination is imperative as it can provide critical information that is essential for formulating stable ASDs. However, the currently followed differential scanning calorimetry (DSC)-based strategies for API solubility determination in a polymer at elevated temperatures are inefficient and, on occasions, unreliable, which may lead to an inaccurate prediction at lower temperatures of interest (i.e., T = 25 °C). Recently, we proposed a novel DSC-based protocol called the "step-wise dissolution" (S-WD) method, which is both cost- and time-effective. The objective of this study was to test the applicability of the S-WD method regarding expeditious verification of the purely-predicted API-polymer compatibility via the perturbed chain-statistical associating fluid theory (PC-SAFT) equation of state (EOS). Fifteen API-polymer T-C phase diagrams were reliably constructed, with three distinct API-polymer case types being identified regarding the approach used for the S-WD method. Overall, the PC-SAFT EOS provided satisfactory qualitative descriptions of the API-polymer compatibility, but not necessarily accurate quantitative predictions of the API solubility in the polymer at T = 25 °C. The S-WD method was subsequently modified and an optimal protocol was proposed, which can significantly reduce the required experimental effort.


Asunto(s)
Polímeros , Agua , Polímeros/química , Rastreo Diferencial de Calorimetría , Termodinámica , Temperatura , Solubilidad , Composición de Medicamentos/métodos
5.
Molecules ; 28(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37513312

RESUMEN

As a follow-up to our effort to establish reliable thermodynamic data for amino acids, the heat capacity and phase behavior are reported for N-acetyl glycine amide (CAS RN: 2620-63-5), N-acetyl-L-alanine amide (CAS RN: 15962-47-7), N-acetyl-L-valine amide (CAS RN: 37933-88-3), N-acetyl-L-isoleucine amide (CAS RN: 56711-06-9), and N-acetyl-L-leucine amide (CAS RN: 28529-34-2). Prior to heat capacity measurement, thermogravimetric analysis and X-ray powder diffraction were performed to determine decomposition temperatures and initial crystal structures, respectively. The crystal heat capacities of the five N-acetyl amino acid amides were measured by Tian-Calvet calorimetry in the temperature interval (266-350 K), by power compensation DSC in the temperature interval (216-471 K), and by relaxation (heat-pulse) calorimetry in the temperature interval (2-268 K). As a result, reference heat capacities and thermodynamic functions for the crystalline phase from 0 K up to 470 K were developed.


Asunto(s)
Isoleucina , Valina , Leucina/metabolismo , Isoleucina/metabolismo , Valina/metabolismo , Amidas , Calor , Aminoácidos , Alanina , Glicina
6.
Mol Pharm ; 20(8): 3960-3974, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386723

RESUMEN

The bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs) can be improved via the formulation of an amorphous solid dispersion (ASD), where the API is incorporated into a suitable polymeric carrier. Optimal carriers that exhibit good compatibility (i.e., solubility and miscibility) with given APIs are typically identified through experimental means, which are routinely labor- and cost-inefficient. Therefore, the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state, a popular thermodynamic model in pharmaceutical applications, is examined in terms of its performance regarding the computational pure prediction of API-polymer compatibility based on activity coefficients (API fusion properties were taken from experiments) without any binary interaction parameters fitted to API-polymer experimental data (that is, kij = 0 in all cases). This kind of prediction does not need any experimental binary information and has been underreported in the literature so far, as the routine modeling strategy used in the majority of the existing PC-SAFT applications to ASDs comprised the use of nonzero kij values. The predictive performance of PC-SAFT was systematically and thoroughly evaluated against reliable experimental data for almost 40 API-polymer combinations. We also examined the effect of different sets of PC-SAFT parameters for APIs on compatibility predictions. Quantitatively, the total average error calculated over all systems was approximately 50% in the weight fraction solubility of APIs in polymers, regardless of the specific API parametrization. The magnitude of the error for individual systems was found to vary significantly from one system to another. Interestingly, the poorest results were obtained for systems with self-associating polymers such as poly(vinyl alcohol). Such polymers can form intramolecular hydrogen bonds, which are not accounted for in the PC-SAFT variant routinely applied to ASDs (i.e., that used in this work). However, the qualitative ranking of polymers with respect to their compatibility with a given API was reasonably predicted in many cases. It was also predicted correctly that some polymers always have better compatibility with the APIs than others. Finally, possible future routes to improve the cost-performance ratio of PC-SAFT in terms of parametrization are discussed.


Asunto(s)
Polímeros , Agua , Polímeros/química , Termodinámica , Agua/química , Preparaciones Farmacéuticas , Solubilidad , Composición de Medicamentos
7.
Molecules ; 28(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985463

RESUMEN

In this work, the solid-liquid equilibrium (SLE) of four binary systems combining two active pharmaceutical ingredients (APIs) capable of forming co-amorphous systems (CAMs) was investigated. The binary systems studied were naproxen-indomethacin, naproxen-ibuprofen, naproxen-probucol, and indomethacin-paracetamol. The SLE was experimentally determined by differential scanning calorimetry. The thermograms obtained revealed that all binary mixtures investigated form eutectic systems. Melting of the initial binary crystalline mixtures and subsequent quenching lead to the formation of CAM for all binary systems and most of the compositions studied. The experimentally obtained liquidus and eutectic temperatures were compared to theoretical predictions using the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state and conductor-like screening model for real solvents (COSMO-RS), as implemented in the Amsterdam Modeling Suite (COSMO-RS-AMS). On the basis of the obtained results, the ability of these models to predict the phase diagrams for the investigated API-API binary systems was evaluated. Furthermore, the glass transition temperature (Tg) of naproxen (NAP), a compound with a high tendency to recrystallize, whose literature values are considerably scattered, was newly determined by measuring and modeling the Tg values of binary mixtures in which amorphous NAP was stabilized. Based on this analysis, erroneous literature values were identified.

8.
Pharmaceutics ; 15(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36839967

RESUMEN

Prediction of compatibility of the active pharmaceutical ingredient (API) with the polymeric carrier plays an essential role in designing drug delivery systems and estimating their long-term physical stability. A key element in deducing API-polymer compatibility is knowledge of a complete phase diagram, i.e., the solubility of crystalline API in polymer and mutual miscibility of API and polymer. In this work, the phase behavior of ibuprofen (IBU) with different grades of poly(D,L-lactide-co-glycolide) (PLGA) and polylactide (PLA), varying in composition of PLGA and molecular weight of PLGA and PLA, was investigated experimentally using calorimetry and computationally by the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EOS). The phase diagrams constructed based on a PC-SAFT EOS modeling optimized using the solubility data demonstrated low solubility at typical storage temperature (25 °C) and limited miscibility (i.e., presence of the amorphous-amorphous phase separation region) of IBU with all polymers studied. The ability of PC-SAFT EOS to capture the experimentally observed trends in the phase behavior of IBU-PLA/PLGA systems with respect to copolymer composition and molecular weight was thoroughly investigated and evaluated.

9.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615652

RESUMEN

In an effort to establish reliable thermodynamic data for amino acids, heat capacity and phase behavior are reported for L-cysteine (CAS RN: 52-90-4), L-serine (CAS RN: 56-45-1), L-threonine (CAS RN: 72-19-5), L-lysine (CAS RN: 56-87-1), and L-methionine (CAS RN: 63-68-3). Prior to heat capacity measurements, initial crystal structures were identified by X-ray powder diffraction, followed by a thorough investigation of the polymorphic behavior using differential scanning calorimetry in the temperature range from 183 K to the decomposition temperature determined by thermogravimetric analysis. Crystal heat capacities of all five amino acids were measured by Tian-Calvet calorimetry in the temperature interval (262-358) K and by power compensation DSC in the temperature interval from 215 K to over 420 K. Experimental values of this work were compared and combined with the literature data obtained with adiabatic calorimetry. Low-temperature heat capacities of L-threonine and L-lysine, for which no or limited literature data was available, were measured using the relaxation (heat pulse) calorimetry. As a result, reference heat capacities and thermodynamic functions for the crystalline phase from near 0 K to over 420 K were developed.


Asunto(s)
Calor , Lisina , Metionina , Cisteína/química , Treonina , Serina
10.
Int J Pharm ; 623: 121855, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35623485

RESUMEN

The formulation of amorphous solid dispersions (ASDs) represents a promising strategy for improving the poor bioavailability of many active pharmaceutical ingredients (APIs). The objective of this study was to investigate and compare the long-term physical stability (LTPS) of polyvinyl alcohol (PVA)-based solid dispersions formulated via hot-melt extrusion (HME) with their respective API-PVA temperature-composition (T-C) phase diagram. Furthermore, the impact of API glass-forming ability (GFA) on the LTPS was evaluated through the selection of two APIs with contrasting GFA (i.e., indomethacin (IND; good GFA) and naproxen (NAP; poor GFA)). Even though the predicted solubility of both APIs in PVA was less than 1 wt% at T = 25 °C, IND remained fully amorphous in HME-formulated IND-PVA extrudates with initial API loadings of 50, 40, and 30 wt% after a 24-month storage period. Meanwhile, NAP recrystallized to a considerable degree in each analogous sample with an amorphous NAP content of 22.5-23.5 wt% remaining after a 12-month storage period. While the constructed T-C phase diagrams were still in agreement with their respective LTPS study, they did not account for the impact of water uptake as well as potential HME-induced effects on the extrudate glass-transition temperature. This work may serve as a useful reference point for researchers who are interested in determining the solubility of an API in a semi-crystalline polymer and the challenges therein.


Asunto(s)
Polímeros , Alcohol Polivinílico , Química Farmacéutica , Composición de Medicamentos , Polímeros/química , Solubilidad , Termodinámica
11.
Int J Pharm ; 613: 121424, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34968683

RESUMEN

Commonly applied approaches to enhance the dissolution properties of low water-soluble crystalline active pharmaceutical ingredients (APIs) include their amorphization by incorporation into a polymeric matrix and the formation of amorphous solid dispersions, or blending APIs with low-molecular-weight excipients and the formation of a co-amorphous system. This study focused on the preparation and characterization of binary (consisting of indomethacin (IND) and polymer - copovidone (PVP VA 64), as a carrier, or amino acid - L-arginine (ARG), as a co-former) and ternary (comprising the same API, polymer, and amino acid) formulations. Formulations were produced by ball milling (BM) and/or hot-melt extrusion (HME), and extensive physicochemical characterization was performed. Specifically, the physicochemical and solid-state properties of a model IND-ARG system incorporated into a polymeric matrix of PVP VA 64 by HME and BM as well as by combined BM/HME method together with the impact of the preparation strategy on the dissolution profiles and long-term physical stability were investigated. Ball-milled binary and ternary formulations were found to be amorphous. The residual crystals corresponding to IND-ARG salt were identified in the ternary formulations produced via HME. Despite the presence of a crystalline phase, dissolution tests showed that ternary systems prepared by HME exhibited improved IND solubility when compared to pure crystalline IND and their corresponding physical mixture. None of the binary and ternary formulations that were initially fully amorphous did undergo recrystallization during the entire period of preservation (minimum of 12 months) in dry conditions at 25 °C.


Asunto(s)
Arginina , Indometacina , Polímeros , Solubilidad , Compuestos de Vinilo
12.
Pharmaceutics ; 13(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34452214

RESUMEN

Glass transition temperature (Tg) is an important material property, which predetermines the kinetic stability of amorphous solids. In the context of active pharmaceutical ingredients (API), there is motivation to maximize their Tg by forming amorphous mixtures with other chemicals, labeled excipients. Molecular dynamics simulations are a natural computational tool to investigate the relationships between structure, dynamics, and cohesion of amorphous materials with an all-atom resolution. This work presents a computational study, addressing primarily the predictions of the glass transition temperatures of four selected API (carbamazepine, racemic ibuprofen, indomethacin, and naproxen) with two nucleobases (adenine and cytosine). Since the classical non-polarizable simulations fail to reach the quantitative accuracy of the predicted Tg, analyses of internal dynamics, hydrogen bonding, and cohesive forces in bulk phases of pure API and their mixtures with the nucleobases are performed to interpret the predicted trends. This manuscript reveals the method for a systematic search of beneficial pairs of API and excipients (with maximum Tg when mixed). Monitoring of transport and cohesive properties of API-excipients systems via molecular simulation will enable the design of such API formulations more efficiently in the future.

13.
Molecules ; 26(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299573

RESUMEN

In an effort to establish reliable thermodynamic data for proteinogenic amino acids, heat capacities for l-histidine (CAS RN: 71-00-1), l-phenylalanine (CAS RN: 63-91-2), l-proline (CAS RN: 147-85-3), l-tryptophan (CAS RN: 73-22-3), and l-tyrosine (CAS RN: 60-18-4) were measured over a wide temperature range. Prior to heat capacity measurements, thermogravimetric analysis was performed to determine the decomposition temperatures while X-ray powder diffraction (XRPD) and heat-flux differential scanning calorimetry (DSC) were used to identify the initial crystal structures and their possible transformations. Crystal heat capacities of all five amino acids were measured by Tian-Calvet calorimetry in the temperature interval from 262 to 358 K and by power compensation DSC in the temperature interval from 307 to 437 K. Experimental values determined in this work were then combined with the literature data obtained by adiabatic calorimetry. Low temperature heat capacities of l-histidine, for which no literature data were available, were determined in this work using the relaxation (heat pulse) calorimetry from 2 K. As a result, isobaric crystal heat capacities and standard thermodynamic functions up to 430 K for all five crystalline amino acids were developed.


Asunto(s)
Histidina/química , Fenilalanina/química , Prolina/química , Triptófano/química , Tirosina/química , Calor , Termodinámica
14.
Mol Pharm ; 18(4): 1742-1757, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33656884

RESUMEN

Knowledge of the active pharmaceutical ingredient (API) solubility in a polymer is imperative for successful amorphous solid dispersion design and formulation but acquiring this information at storage temperature is challenging. Various solubility determination methods have been established, which utilize differential scanning calorimetry (DSC). In this work, three commonly used DSC-based protocols [i.e., melting point depression (MPD), recrystallization, and zero-enthalpy extrapolation (Z-EE)] and a method that we have developed called "step-wise dissolution" (S-WD) were analyzed. For temperature-composition phase diagram construction, two glass-transition temperature equations (i.e., those of Gordon-Taylor and Kwei) and three solid-liquid equilibrium curve modeling approaches [i.e., the Flory-Huggins model, an empirical equation, and the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EOS)] were considered. Indomethacin (IND) and Kollidon 12 PF (PVP K12) were selected as the API and polymer, respectively. An annealing time investigation revealed that the IND-PVP K12 dissolution process was remarkably faster than demixing, which contradicted previously published statements. Thus, the recrystallization method overestimated the solubility of IND in PVP K12 when a 2-h time of annealing was set as the benchmark. Likewise, the MPD and Z-EE methods overestimated the API solubility because of unreliable IND melting endotherm evaluation at lower API loadings and a relatively slow heating rate, respectively. When the experimental results obtained using the S-WD method (in conjunction with the Kwei equation) were applied to the PC-SAFT EOS, which was regarded as the most reliable combination, the predicted IND solubility in PVP K12 at T = 25 °C was approximately 40 wt %. When applicable, the S-WD method offers the advantage of using a limited number of DSC sample pans and API-polymer physical mixture compositions, which is both cost- and time-effective.


Asunto(s)
Química Farmacéutica/métodos , Excipientes/química , Polímeros/química , Rastreo Diferencial de Calorimetría , Cristalización , Modelos Químicos , Solubilidad , Temperatura de Transición
15.
Int J Pharm ; 589: 119845, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32931845

RESUMEN

The preparation of an amorphous solid dispersion (ASD) is a promising strategy for improving the poor oral bioavailability of many active pharmaceutical ingredients (APIs). However, poor predictability of ASD long-term physical stability remains a prevalent problem. The purpose of this study was to evaluate and compare the predictive performance of selected models concerning solid-liquid equilibrium (SLE) curve and glass-transition temperature (Tg) line modeling of ibuprofen (IBU) in cellulosic polymers (i.e., hydroxypropyl methylcellulose (HPMC) and hydroxypropyl methylcellulose acetate succinate (HPMCAS)). For SLE curve modeling, an empiricalanalyticalapproach(Kyeremateng et al., 2014)and the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EOS) were chosen. Due to the unavailability of PC-SAFT parameters for both polymers, an approximation procedure for parametrization was applied. The Gordon-Taylor equation and Kwei equation were considered for Tg line determination. The impact of various computational set-ups (e.g., model parametrization or extrapolation length) on IBU solubility prediction at storage conditions was thoroughly investigated, assessed and confronted with the results from an 18-month physical stability study. IBU developed stable 20 wt% API content ASDs with both HPMC and HPMCAS.The extrapolation behavior and subsequent ASD thermodynamic stability prediction at storage conditions deduced from the aforementioned models weresignificantly different. Overall, the PC-SAFT EOS predicted higher IBU solubility in both polymers and, thus, a lower recrystallization tendency when compared to the empirical analytical approach. At higherIBU concentrations, liquid-liquid demixing inIBU-polymer systems was predicted by the PC-SAFT EOS, which was in qualitative disagreement with experimental observation.


Asunto(s)
Química Farmacéutica , Excipientes , Estabilidad de Medicamentos , Derivados de la Hipromelosa , Metilcelulosa , Solubilidad
16.
Int J Pharm ; 579: 119138, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061725

RESUMEN

Glycodendrimers are a novel group of dendrimers (DDMs) characterized by surface modifications with various types of glycosides. It has been shown previously that such modifications significantly decrease the cytotoxicity of DDMs. Here, we present an investigation of glucose-modified carbosilane DDMs (first-third-generation, DDM1-3Glu) interactions with two models of biological structures: lipid membranes (liposomes) and serum protein (human serum albumin, HSA). The changes in lipid membrane fluidity with increasing concentration of DDMs was monitored by spectrofluorimetry and calorimetry methods. The influence of glycodendrimers on serum protein was investigated by monitoring changes in protein fluorescence intensity (fluorescence quenching) and as protein secondary structure alterations by circular dichroism spectrometry. Generally, all generations of DDMGlu induced a decrease of membrane fluidity and interacted weakly with HSA. Interestingly, in contrast to other dendritic type polymers, the extent of the DDM interaction with both biological models was not related to DDM generation. The most significant interaction with protein was shown in the case of DDM2Glu, whereas DDM1Glu induced the highest number of changes in membrane fluidity. In conclusion, our results suggest that the flexibility of a DDM molecule, as well as its typical structure (hydrophobic interior and hydrophilic surface) along with the formation of larger aggregates of DDM2-3Glu, significantly affect the type and extent of interaction with biological structures.


Asunto(s)
Dendrímeros/farmacología , Portadores de Fármacos/farmacología , Glucosa/farmacología , Albúmina Sérica Humana/metabolismo , Silanos/farmacología , Antineoplásicos/administración & dosificación , Dicroismo Circular , Dendrímeros/química , Portadores de Fármacos/química , Glucosa/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas , Fluidez de la Membrana/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Silanos/química , Espectrometría de Fluorescencia
17.
J Pharm Sci ; 109(2): 1008-1019, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31605688

RESUMEN

For successful formulation of amorphous solid dispersions (ASDs) using hot-melt extrusion, it is imperative to understand the effect that heat and shear rate has on the physicochemical properties of the excipient. In this study, we investigated the influence of hot-melt extrusion parameters on solvent-free binary ASDs of ibuprofen (IBU), a model active pharmaceutical ingredient, in methacrylic acid-ethyl acrylate copolymer type A, 1:1, EUDRAGIT® L100-55 (EUD). To evaluate the impact of barrel temperature, screw speed, and residence time on EUD mass average molar mass and IBU release profile, size-exclusion chromatography and dissolution testing were used, respectively. The optimal conditions were established for IBU loadings less than 40 wt. %. For ASD formulations prepared using the ideal variables, spectral and thermal analyses confirmed that, under dry conditions at a temperature of 25°C, IBU remained amorphous during an 18-month storage period. After 28 months, formulations with active pharmaceutical ingredient content above 30 wt. % started to recrystallize. A temperature-composition phase diagram, constructed using melting point depression and glass-transition temperature measurements of IBU-EUD mixtures, correlated well with the long-term physical stability. The effect that minor-to-moderate polymer degradation within the extrudates has on their long-term physical stability and dissolution characteristics is analyzed and discussed.


Asunto(s)
Química Farmacéutica , Portadores de Fármacos , Composición de Medicamentos , Estabilidad de Medicamentos , Excipientes , Calor , Polímeros , Solubilidad
18.
J Chem Phys ; 151(14): 144504, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615223

RESUMEN

In this work, a R1SM approach was applied for the calculation of ideal-gas thermodynamic properties of five amino acids with aliphatic side chains: glycine, alanine, valine, leucine, and isoleucine. The first step of the calculation was an extensive conformational analysis that located several conformers not reported previously. A new systematic and user-friendly nomenclature of the conformers was introduced, and the stable conformers were clearly assigned with the previously used labeling where possible. Stability and calculated relative energies of the conformers were compared between various levels of theory and with several experimental studies, demonstrating a good performance of the selected B3LYP-D3/6-311+G(2df,p) level of theory. As a second step, the theoretically calculated vibrational frequencies were compared to the previously reported experimental spectra to verify the performance of the applied double-linear scaling factor. Finally, ideal-gas heat capacities, enthalpies, and absolute entropies were calculated, accounting for all stable conformers using the R1SM model. The resulting thermodynamic data are presented for the first time, since they cannot be determined experimentally and their rigorous calculation requires a complex thermodynamic model.


Asunto(s)
Aminoácidos/química , Termodinámica , Teoría Funcional de la Densidad , Gases/química , Modelos Químicos , Conformación Molecular , Estadística como Asunto
19.
Phys Chem Chem Phys ; 21(34): 18501-18515, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31411212

RESUMEN

Cohesive properties (lattice and cohesive energy of the crystal and corresponding sublimation enthalpy) of the complete set of twenty enantiopure anhydrous proteinogenic amino acids are investigated using first-principles calculations. In contrast to neutral amino acid molecules in the vapor phase, all amino acids form crystals in their zwitterionic form. Therefore, reliable ab initio calculations of the proton transfer energy are an indispensable step of such calculations. Simplifying procedures, designed to rationalize the computational cost of the quasi-harmonic approximation, which proves too demanding if performed fully at the given quantum level of theory, are presented and tested. For this purpose, atomic multipoles (up to the quadrupoles) for the amoeba force field are parametrized for all amino acid zwitterions. While the calculated lattice energies of the amino acids range from 235-458 kJ mol-1 in absolute value, the proton transfer energies typically amount to 100-220 kJ mol-1, which translates to sublimation enthalpies ranging from 117-202 kJ mol-1, appreciably exceeding the sublimation enthalpy values common for nonionic molecular crystals. Critically assessed experimental data on sublimation enthalpies are used as a benchmark for comparison of the data calculated in this work. Cohesive properties of most amino acids calculated in this work, combining the PBE-D3(BJ)/PAW and CCSD(T)-F12/aug-cc-pVDZ levels of theory used for predictions of the lattice energies and of the proton transfer energies, respectively, exhibit a reasonable agreement with the experiment. At the same time, this work contains the first published data on cohesive properties for several enantiopure amino acids.


Asunto(s)
Aminoácidos/química , Simulación por Computador , Cristalización , Transición de Fase , Protones , Teoría Cuántica , Termodinámica
20.
J Chem Phys ; 150(22): 224101, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31202221

RESUMEN

First-principles calculations, coupled with statistical thermodynamics, can provide ideal-gas thermodynamic properties but get complicated and less reliable with an increasing number of conformers. An approach designed for calculation of ideal-gas thermodynamic properties of long-chain molecules, R1SM, and its simplified version, sR1SM, is tested in this work by calculation of ideal-gas heat capacities and entropies for a homologous series of n-alkanes up to n-tetradecane. The R1SM approach incorporates the rigid rotor-harmonic oscillator approximation in combination with a correction for internal rotations of methyl tops using the one-dimensional hindered rotor scheme and the mixing model accounting for the population of conformers based on the Boltzmann distribution. The R1SM approach is applicable for compounds with up to hundreds of conformers, while the simplified sR1SM approach can be used for molecules with up to 105 conformers when coupled with rules for enumeration of stable conformers and estimation scheme for their energies. The obtained results for n-alkanes are compared with experimental values and previously employed computational schemes. As the conformational behavior and conformer energies are inherent parts of the proposed approaches, a thorough conformational study of n-alkanes is performed and compared with experiments and the Tasi rules for enumeration of n-alkane conformers. Finally, the standard uncertainty of the R1SM-calculated ideal-gas thermodynamic properties is estimated based on the error propagation from the used input quantities and approximations as well as on comparison to experimental values and amounts to less than 1% for both ideal-gas heat capacity and standard ideal-gas entropy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...