Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 114: 325-348, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683962

RESUMEN

Acquired peripheral hearing loss (APHL) in midlife has been identified as the greatest modifiable risk factor for dementia; however, the pathophysiological neural mechanisms linking APHL with an increased risk of dementia remain to be elucidated. Here, in an adult male mouse model of noise-induced hearing loss (NIHL), one of the most common forms of APHL, we demonstrated accelerated age-related cognitive decline and hippocampal neurodegeneration during a 6-month follow-up period, accompanied by progressive hippocampal microglial aberrations preceded by immediate-onset transient elevation in serum glucocorticoids and delayed-onset sustained myelin disruption in the hippocampus. Pretreatment with the glucocorticoid receptor antagonist RU486 before stressful noise exposure partially mitigated the early activation of hippocampal microglia, which were present at 7 days post noise exposure (7DPN), but had no impact on later microglial aberrations, hippocampal neurodegeneration, or cognitive decline exhibited at 1 month post noise exposure (1MPN). One month of voluntary wheel exercise following noise exposure barely affected either the hearing threshold shift or hippocampal myelin changes but effectively countered cognitive impairment and the decline in hippocampal neurogenesis in NIHL mice at 1MPN, paralleled by the normalization of microglial morphology, which coincided with a reduction in microglial myelin inclusions and a restoration of microglial hypoxia-inducible factor-1α (HIF1α) expression. Our results indicated that accelerated cognitive deterioration and hippocampal neuroplastic decline following NIHL are most likely driven by the maladaptive response of hippocampal microglia to myelin damage secondary to hearing loss, and we also demonstrated the potential of voluntary physical exercise as a promising and cost-effective strategy to alleviate the detrimental impact of APHL on cognitive function and thus curtail the high and continuously increasing global burden of dementia. Furthermore, the findings of the present study highlight the contribution of myelin debris overload to microglial malfunction and identify the microglial HIF1α-related pathway as an attractive candidate for future comprehensive investigation to obtain a more definitive picture of the underlying mechanisms linking APHL and dementia.

2.
Pharmacol Res ; 195: 106881, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37541638

RESUMEN

Microglia are the resident immune cells of the central nervous system, undertaking surveillance role and reacting to brain homeostasis and neurological diseases. Recent studies indicate that microglia modulate epilepsy-induced neuronal activities, however, the mechanisms underlying microglia-neuron communication in epilepsy are still unclear. Here we report that epileptic neuronal hyperexcitability activates microglia and drives microglial ATP/ADP hydrolyzing ectoenzyme CD39 (encoded by Entpd1) expression via recruiting the cAMP responsive element binding protein (CREB)-regulated transcription coactivator-1 (CRTC1) from cytoplasm to the nucleus and binding to CREB. Activated microglia in turn suppress epileptic neuronal hyperexcitability in a CD39 dependent manner. Disrupting microglial CREB/CRTC1 signaling, however, decreases CD39 expression and diminishes the inhibitory effect of microglia on epileptic neuronal hyperexcitability. Overall, our findings reveal CD39-dependent control of epileptic neuronal hyperexcitability by microglia is through an excitation-transcription coupling mechanism.


Asunto(s)
Epilepsia , Microglía , Humanos , Encéfalo/metabolismo , Transducción de Señal , Epilepsia/metabolismo
3.
J Genet Genomics ; 50(3): 163-177, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473687

RESUMEN

Formation and plasticity of neural circuits rely on precise regulation of synaptic growth. At Drosophila neuromuscular junction (NMJ), Bone Morphogenetic Protein (BMP) signaling is critical for many aspects of synapse formation and function. The evolutionarily conserved retromer complex and its associated GTPase-activating protein TBC1D5 are critical regulators of membrane trafficking and cellular signaling. However, their functions in regulating the formation of NMJ are less understood. Here, we report that TBC1D5 is required for inhibition of synaptic growth, and loss of TBC1D5 leads to abnormal presynaptic terminal development, including excessive satellite boutons and branch formation. Ultrastructure analysis reveals that the size of synaptic vesicles and the density of subsynaptic reticulum are increased in TBC1D5 mutant boutons. Disruption of interactions of TBC1D5 with Rab7 and retromer phenocopies the loss of TBC1D5. Unexpectedly, we find that TBC1D5 is functionally linked to Rab6, in addition to Rab7, to regulate synaptic growth. Mechanistically, we show that loss of TBC1D5 leads to upregulated BMP signaling by increasing the protein level of BMP type II receptor Wishful Thinking (Wit) at NMJ. Overall, our data establish that TBC1D5 in coordination with retromer constrains synaptic growth by regulating Rab7 activity, which negatively regulates BMP signaling through inhibiting Wit level.


Asunto(s)
Proteínas de Drosophila , Proteínas Activadoras de GTPasa , Animales , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Transducción de Señal/fisiología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Sinapsis/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores de Superficie Celular
4.
Neurobiol Dis ; 158: 105489, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461265

RESUMEN

Myelin consists of several layers of tightly compacted membranes that form an insulating sheath around axons. These membranes are highly enriched in cholesterol, which is essential for the myelination process. Proper myelination is crucial for various neurophysiological functions while demyelination may cause CNS disease, such as multiple sclerosis (MS). Recent studies demonstrated that demyelination occurs not only in the white matter but also in the grey matter, such as the hippocampus, which may cause cognitive deficits and mental disorders. Valproic acid (VPA) is an anticonvulsant agent prescribed for the treatment of epilepsy and seizure. Recently, VPA was reported to alter cholesterol metabolism in neural cells, suggesting that it may play an important role in myelin biogenesis. Here in this study, we found significant demyelination in the hippocampus of the mouse cuprizone model, which is accompanied by reduced cholesterol biosynthesis and increased anxiety-like behavior. VPA treatment, however, suppressed cuprizone-induced hippocampal demyelination and anxiety-like behavior by promoting cholesterol biosynthesis. These data identify an important role of VPA in the hippocampal demyelination process and the hippocampal demyelination-related behavior deficit via regulation of cholesterol biosynthesis, which provides new insights into the mechanisms of VPA as a protective agent against CNS demyelination.


Asunto(s)
Ansiedad/prevención & control , Colesterol/biosíntesis , Cuprizona , Enfermedades Desmielinizantes/prevención & control , Hipocampo/patología , Inhibidores de la Monoaminooxidasa , Fármacos Neuroprotectores/farmacología , Ácido Valproico/farmacología , Animales , Ansiedad/inducido químicamente , Ansiedad/psicología , Enfermedades Desmielinizantes/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple , Fármacos Neuroprotectores/uso terapéutico , Desempeño Psicomotor/efectos de los fármacos , Ácido Valproico/uso terapéutico
5.
Free Radic Biol Med ; 171: 26-41, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33965566

RESUMEN

The metalloproteinase ADAM10 is the most important amyloid precursor protein (APP) α-secretase, preventing the deposit of neurotoxic amyloid ß (Aß) peptide and generating a soluble APP fragment (sAPPα) with neurotrophic functions. Recent studies have suggested that ADAM10 also play a role in the pathogenesis of inflammatory CNS diseases, such as multiple sclerosis (MS). Demyelination is the hallmarks of MS but the mechanisms involved remain unclear. Here in this study, we examined the role that ADAM10 might play in the cuprizone-induced demyelination model. Our results demonstrated that ADAM10 expression and sAPPα production were significantly reduced in the corpus callosum in response to cuprizone treatment. Overexpression of ADAM10 increased sAPPα production and suppressed demyelination as well as neuroinflammation and oxidative stress in cuprizone-induced demyelination model. Pharmacological inhibition of ADAM10 activity, however, abrogates the protective effect of ADAM10 against demyelination, neuroinflammation and oxidative stress. It has been reported that CNS demyelination may induce seizure activity. Here, we found that overexpression of ADAM10 reduced seizure susceptibility in cuprizone-induced demyelination model, suggesting that ADAM10-derived sAPPα suppresses demyelination and reduces seizure susceptibility via ameliorating neuroinflammation and oxidative stress in cuprizone-induced demyelination model.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides , Animales , Cuerpo Calloso/metabolismo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/genética
6.
Int Immunopharmacol ; 87: 106801, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32702600

RESUMEN

Epilepsy is one of the most common neurological diseases. It adversely affects cognitive function. Neuroinflammation has been widely recognized as an important factor involved in the pathophysiology of epilepsy. Cyclooxygenase (COX) is a type of oxidoreductase enzyme that acts in the metabolic pathway converting arachidonic acid to prostaglandins, which mediate inflammatory reactions. The activation of inducible cyclooxygenase-2 (COX-2) is considered to be a precipitating factor of neuroinflammation in the brain. Neuroinflammatory processes in the brain are known to contribute to the cascade of events leading to neuronal injury, which may consequently cause cognitive decline. Here in this study, we showed that pentylenetetrazole (PTZ)-kindled mice exhibited an increased level of COX-2 and its main product prostaglandin E2 (PGE2) along with neuroinflammation and neuronal injury in the hippocampus. Pharmacological inhibition of COX-2 by celecoxib, however, significantly reduced hippocampal neuroinflammation and neuronal injury. Furthermore, inhibition of COX-2 by celecoxib attenuated cognitive impairment in the PTZ-kindled mice, suggesting that COX-2-PGE2 signaling pathway mediated neuroinflammation and neuronal injury contributes to cognitive dysfunction in the PTZ-kindled epilepsy mice. Targeting COX-2-PGE2 signaling pathway in the epileptic brain appears to be a viable strategy for attenuating neuronal injury and preventing cognitive deficits in epilepsy patients.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Epilepsia/metabolismo , Hipocampo/patología , Neuronas/fisiología , Animales , Disfunción Cognitiva , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Inflamación Neurogénica , Pentilenotetrazol , Transducción de Señal
7.
Neuropharmacology ; 170: 108044, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32179291

RESUMEN

Epilepsy is a chronic neurological disorder often associated with recurrent seizures. A growing body of evidence suggests that seizures cause structural and functional alterations of the brain. It is reported that behavioral abnormalities frequently occur in patients with epilepsy and experimental epilepsy models. However, the precise pathological mechanisms associated with these epilepsy comorbidities remain largely unknown. Neurogenesis persists throughout life in the hippocampal dentate gyrus (DG) to maintain proper brain function. However, aberrant neurogenesis usually generates abnormal neural circuits and consequently causes neuronal dysfunction. Neuroinflammatory responses are well known to affect neurogenesis and lead to aberrant reorganization of neural networks in the hippocampal DG. Here, in this study, we observed a significant increase in neuroinflammation and in the proliferation and survival of newborn granular cells in the hippocampus of pilocarpine-induced status epilepticus (SE) mice. More importantly, these proliferating and surviving newborn granular cells are largely ectopically located in the hippocampal DG hilus region. Our behavior test demonstrated that SE mice displayed severe aggressive behavior. Pharmacological inhibition of neuroinflammation, however, suppressed the ectopic neurogenesis and countered the enhanced aggressive behavior in SE mice, indicating that seizure-induced neuroinflammation may contribute to ectopic neurogenesis and aggressive behavior in SE mice. These findings establish a key role for neuroinflammation in seizure-induced aberrant neurogenesis and aggressive behavior. Suppressing neuroinflammation in the epileptic brain may reduce ectopic neurogenesis and effectively block the pathophysiological process that leads to aggressive behavior in TLE mice.


Asunto(s)
Agresión/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Pilocarpina/toxicidad , Convulsiones/inducido químicamente , Estado Epiléptico/inducido químicamente , Agresión/psicología , Animales , Proliferación Celular/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Inflamación/inducido químicamente , Inflamación/patología , Inflamación/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Agonistas Muscarínicos/toxicidad , Neurogénesis/fisiología , Convulsiones/patología , Convulsiones/psicología , Estado Epiléptico/patología , Estado Epiléptico/psicología
8.
Autophagy ; 15(7): 1258-1279, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30786811

RESUMEN

Notwithstanding the numerous drugs available for liver cancer, emerging evidence suggests that chemotherapeutic resistance is a significant issue. HGF and its receptor MET play critical roles in liver carcinogenesis and metastasis, mainly dependent on the activity of receptor tyrosine kinase. However, for unknown reasons, all HGF-MET kinase activity-targeted drugs have failed or have been suspended in clinical trials thus far. Macroautophagy/autophagy is a protective 'self-eating' process for resisting metabolic stress by recycling obsolete components, whereas the impact of autophagy-mediated reprogrammed metabolism on therapeutic resistance is largely unclear, especially in liver cancer. In the present study, we first observed that HGF stimulus facilitated the Warburg effect and glutaminolysis to promote biogenesis in multiple liver cancer cells. We then identified the pyruvate dehydrogenase complex (PDHC) and GLS/GLS1 as crucial substrates of HGF-activated MET kinase; MET-mediated phosphorylation inhibits PDHC activity but activates GLS to promote cancer cell metabolism and biogenesis. We further found that the key residues of kinase activity in MET (Y1234/1235) also constitute a conserved LC3-interacting region motif (Y1234-Y1235-x-V1237). Therefore, on inhibiting HGF-mediated MET kinase activation, Y1234/1235-dephosphorylated MET induced autophagy to maintain biogenesis for cancer cell survival. Moreover, we verified that Y1234/1235-dephosphorylated MET correlated with autophagy in clinical liver cancer. Finally, a combination of MET inhibitor and autophagy suppressor significantly improved the therapeutic efficiency of liver cancer in vitro and in mice. Together, our findings reveal an HGF-MET axis-coordinated functional interaction between tyrosine kinase signaling and autophagy, and establish a MET-autophagy double-targeted strategy to overcome chemotherapeutic resistance in liver cancer. Abbreviations: ALDO: aldolase, fructose-bisphosphate; CQ: chloroquine; DLAT/PDCE2: dihydrolipoamide S-acetyltransferase; EMT: epithelial-mesenchymal transition; ENO: enolase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GLS/GLS1: glutaminase; GLUL/GS: glutamine-ammonia ligase; GPI/PGI: glucose-6-phosphate isomerase; HCC: hepatocellular carcinoma; HGF: hepatocyte growth factor; HK: hexokinase; LDH: lactate dehydrogenase; LIHC: liver hepatocellular carcinoma; LIR: LC3-interacting region; PDH: pyruvate dehydrogenase; PDHA1: pyruvate dehydrogenase E1 alpha 1 subunit; PDHX: pyruvate dehydrogenase complex component X; PFK: phosphofructokinase; PK: pyruvate kinase; RTK: receptor tyrosine kinase; TCGA: The Cancer Genome Atlas.


Asunto(s)
Autofagia/efectos de los fármacos , Autofagia/genética , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Complejo Piruvato Deshidrogenasa/antagonistas & inhibidores , Transducción de Señal/genética , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Quimioterapia Combinada , Glutaminasa/química , Glutaminasa/genética , Glutaminasa/metabolismo , Células Hep G2 , Factor de Crecimiento de Hepatocito/genética , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Desnudos , Fosforilación , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Trasplante Heterólogo
9.
J Neurosci Res ; 96(3): 467-480, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29231975

RESUMEN

Discs-large (Dlg) plays important roles in nerve tissue and epithelial tissue in Drosophila. However, the precise positioning of Dlg in the neuromuscular junction remains to be confirmed using an optimized labeling method. In this study, we improved the method of pre-embedding immunogold electron microscopy without the osmic tetroxide procedure, and we found that Lowicryl K4 M resin and low temperature helped to preserve the authenticity of the labeling signal with relatively good contrast. Dlg was strongly expressed in the entire subsynaptic reticulum (SSR) membrane of type Ib boutons, expressed in parts of the SSR membrane of type Is boutons, weakly expressed in axon terminals and axons, and not expressed in pre- or postsynaptic membranes of type Is boutons. In muscle cells and stratum corneum cells, Dlg was expressed both in the cytoplasm and in organelles with biomembranes. The precise location of Dlg in SSR membranes, rather than in postsynaptic membranes, shows that Dlg, with its multiple domains, acts as a remote or indirect regulator in postsynaptic signal transduction.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/ultraestructura , Inmunohistoquímica/métodos , Larva/ultraestructura , Microscopía Inmunoelectrónica/métodos , Proteínas Supresoras de Tumor/metabolismo , Resinas Acrílicas , Animales , Drosophila/metabolismo , Larva/metabolismo , Células Musculares/metabolismo , Células Musculares/ultraestructura , Unión Neuromuscular/ultraestructura , Tetróxido de Osmio/toxicidad , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Reticulum/ultraestructura , Retículo Sarcoplasmático/ultraestructura , Sinapsis , Membranas Sinápticas/ultraestructura
10.
J Neurosci ; 37(48): 11592-11604, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29074576

RESUMEN

Human genetic studies support that loss-of-function mutations in the SH3 domain and ankyrin repeat containing family proteins (SHANK1-3), the large synaptic scaffolding proteins enriched at the postsynaptic density of excitatory synapses, are causative for autism spectrum disorder and other neuropsychiatric disorders in humans. To better understand the in vivo functions of Shank and facilitate dissection of neuropathology associated with SHANK mutations in human, we generated multiple mutations in the Shank gene, the only member of the SHANK family in Drosophila melanogaster Both male and female Shank null mutants were fully viable and fertile with no apparent morphological or developmental defects. Expression analysis revealed apparent enrichment of Shank in the neuropils of the CNS. Specifically, Shank coexpressed with another PSD scaffold protein, Homer, in the calyx of mushroom bodies in the brain. Consistent with high expression in mushroom body calyces, Shank mutants show an abnormal calyx structure and reduced olfactory acuity. These morphological and functional phenotypes were fully rescued by pan-neuronal reexpression of Shank, and only partially rescued by presynaptic but no rescue by postsynaptic reexpression of Shank. Our findings thus establish a previously unappreciated presynaptic function of Shank.SIGNIFICANCE STATEMENT Mutations in SHANK family genes are causative for idiopathic autism spectrum disorder. To understand the neural function of Shank, a large scaffolding protein enriched at the postsynaptic densities, we examined the role of Drosophila Shank in synapse development at the peripheral neuromuscular junctions and the central mushroom body calyx. Our results demonstrate that, in addition to its conventional postsynaptic function, Shank also acts presynaptically in synapse development in the brain. This study offers novel insights into the synaptic role of Shank.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Proteínas del Tejido Nervioso/ultraestructura , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Animales , Animales Modificados Genéticamente , Drosophila , Femenino , Masculino , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/ultraestructura , Unión Neuromuscular/fisiología , Unión Neuromuscular/ultraestructura
11.
Autophagy ; 13(10): 1722-1741, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28786753

RESUMEN

Circular RNAs are a subclass of noncoding RNAs in mammalian cells; however, whether these RNAs are involved in the regulation of astrocyte activation is largely unknown. Here, we have shown that the circular RNA HIPK2 (circHIPK2) functions as an endogenous microRNA-124 (MIR124-2HG) sponge to sequester MIR124-2HG and inhibit its activity, resulting in increased sigma non-opioid intracellular receptor 1 (SIGMAR1/OPRS1) expression. Knockdown of circHIPK2 expression significantly inhibited astrocyte activation via the regulation of autophagy and endoplasmic reticulum (ER) stress through the targeting of MIR124-2HG and SIGMAR1. These findings were confirmed in vivo in mouse models, as microinjection of a circHIPK2 siRNA lentivirus into mouse hippocampi inhibited astrocyte activation induced by methamphetamine or lipopolysaccharide (LPS). These findings provide novel insights regarding the specific contribution of circHIPK2 to astrocyte activation in the context of drug abuse as well as for the treatment of a broad range of neuroinflammatory disorders.


Asunto(s)
Astrocitos/fisiología , Autofagia/fisiología , Proteínas Portadoras/fisiología , Estrés del Retículo Endoplásmico/fisiología , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/fisiología , ARN/fisiología , Animales , Animales Recién Nacidos , Proteínas Portadoras/genética , Células Cultivadas , Encefalitis/genética , Encefalitis/patología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , ARN Circular
12.
Autophagy ; 12(9): 1538-59, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27464000

RESUMEN

BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143(+/-) mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Autofagia , Metanfetamina/toxicidad , MicroARNs/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Regiones no Traducidas 3' , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Heterocigoto , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , MicroARNs/genética , Microglía/metabolismo , Microglía/patología , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , Regulación hacia Arriba
13.
Life Sci ; 147: 143-52, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26829385

RESUMEN

AIMS: RB1CC1/FIP200 was essential for autophagosome formation. Therefore, RB1CC1/FIP200 cellular levels are critical for the activation of the autophagy pathways. Following the screen of miRNAs affecting RB1CC1/FIP200 level and rapamycin-induced autophagy, we discovered miR-20a and miR-20b could regulate autophagy by targeting RB1CC1/FIP200. MAIN METHODS: Inhibitory effect of miR-20a and 20b on basal and rapamycin-stimulated autophagy was demonstrated using various autophagic tests including GFP-LC3 puncta analysis, LC3II/LC3I gel shift and TEM observation. KEY FINDINGS: We discovered RB1CC1/FIP200 as cellular targets of miR-20a and miR-20b. Upon miR-20a and miR-20b overexpression, both mRNA and protein levels of RB1CC1/FIP200 decreased. miR-20a and miR-20b target sequences present in the 3' UTR of RB1CC1/FIP200 mRNAs and introduction of mutations abolished the miR-20a and miR-20b responsiveness. In MCF7 and MDA-MB-231 breast cancer cells, miR-20a and miR-20b over-expression attenuated basal and rapamycin-induced autophagy; while suppression of miR-20a or miR-20b by specific antagomir showed normal rapamycin-induced autophagic activity. SIGNIFICANCE: To our knowledge, this is the first study showing the significance of miR-20a and miR-20b regulating autophagy by targeting RB1CC1/FIP200.


Asunto(s)
Autofagia/genética , Neoplasias de la Mama/genética , MicroARNs/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Relacionadas con la Autofagia , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Proteínas Tirosina Quinasas/genética , ARN Mensajero/metabolismo , Sirolimus/farmacología
14.
Sci Rep ; 5: 8029, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25619721

RESUMEN

Novel molecularly targeted agents that block the development and metastasis of human brain metastatic breast cancer hold great promise for their translational value. In this study, we constructed a novel targeting composite peptide BRBP1-TAT-KLA comprising of three elements: a brain metastatic breast carcinoma cell (231-BR)-binding peptide BRBP1, a cell penetrating peptide TAT, and a proapoptotic peptide KLA. This composite peptide efficiently internalized in 231-BR cells and consequently induced mitochondrial damage and cellular apoptosis. Exposure of 231-BR cells to BRBP1-TAT-KLA significantly decreased cell viability and increased apoptosis compared with the cells treated with the control peptides. In vivo relevance of these findings was further corroborated in the 231-BR tumor-bearing mice that demonstrated significantly delayed tumor development and metastasis following administration of BRBP1-TAT-KLA compared with those treated with TAT-KLA alone. Interestingly, BRBP1-TAT-KLA inhibited the formation of both large and micro-metastases, while TAT-KLA alone failed to significantly reduce micro-metastases in the breast cancer brain metastasis mice. BRBP1-TAT-KLA selectively homed to the tumors in vivo where it induced cellular apoptosis without significant toxicity on non-tumor tissues. Our findings therefore demonstrated the enhanced antitumor effects of the BRBP1 compound peptide BRBP1-TAT-KLA, providing insights toward development of a potential therapeutic strategy for brain metastatic breast cancer.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Productos del Gen tat/genética , Oligopéptidos/genética , Fragmentos de Péptidos/administración & dosificación , Péptidos/genética , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Productos del Gen tat/administración & dosificación , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Fragmentos de Péptidos/genética , Péptidos/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Biol Chem ; 289(46): 31867-31877, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25228693

RESUMEN

Neuroligins (Nlgs) are a family of cell adhesion molecules thought to be important for synapse maturation and function. Mammalian studies have shown that different Nlgs have different roles in synaptic maturation and function. In Drosophila melanogaster, the roles of Drosophila neuroligin1 (DNlg1), neuroligin2, and neuroligin4 have been examined. However, the roles of neuroligin3 (dnlg3) in synaptic development and function have not been determined. In this study, we used the Drosophila neuromuscular junctions (NMJs) as a model system to investigate the in vivo role of dnlg3. We showed that DNlg3 was expressed in both the CNS and NMJs where it was largely restricted to the postsynaptic site. We generated dnlg3 mutants and showed that these mutants exhibited an increased bouton number and reduced bouton size compared with the wild-type (WT) controls. Consistent with alterations in bouton properties, pre- and postsynaptic differentiations were affected in dnlg3 mutants. This included abnormal synaptic vesicle endocytosis, increased postsynaptic density length, and reduced GluRIIA recruitment. In addition to impaired synaptic development and differentiation, we found that synaptic transmission was reduced in dnlg3 mutants. Altogether, our data showed that DNlg3 was required for NMJ development, synaptic differentiation, and function.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Cruzamientos Genéticos , Drosophila melanogaster/genética , Endocitosis , Microscopía Electrónica , Mutación , Unión Neuromuscular/metabolismo , Plasticidad Neuronal , Terminales Presinápticos/metabolismo , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo
16.
PLoS One ; 9(8): e105497, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25166897

RESUMEN

In Drosophila, ventral nerve cord (VNC) occupies most of the larval central nervous system (CNS). However, there is little literature elaborating upon the specific types and growth of neurites as defined by their structural appearance in Drosophila larval VNC neuropil. Here we report the ultrastructural development of different types VNC neurites in ten selected time points in embryonic and larval stages utilizing transmission electron microscopy. There are four types of axonal neurites as classified by the type of vesicular content: clear vesicle (CV) neurites have clear vesicles and some T-bar structures; Dense-core vesicle (DV) neurites have dense-core vesicles and without T-bar structures; Mixed vesicle (MV) neurites have mixed vesicles and some T-bar structures; Large vesicle (LV) neurites are dominated by large, translucent spherical vesicles but rarely display T-bar structures. We found dramatic remodeling in CV neurites which can be divided into five developmental phases. The neurite is vacuolated in primary (P) phase, they have mitochondria, microtubules or big dark vesicles in the second (S) phase, and they contain immature synaptic features in the third (T) phase. The subsequent bifurcate (B) phase appears to undergo major remodeling with the appearance of the bifurcation or dendritic growth. In the final mature (M) phase, high density of commensurate synaptic vesicles are distributed around T-bar structures. There are four kinds of morphological elaboration of the CVI neurite sub-types. First, new neurite produces at the end of axon. Second, new neurite bubbles along the axon. Third, the preexisting neurite buds and develops into several neurites. The last, the bundled axons form irregularly shape neurites. Most CVI neurites in M phase have about 1.5-3 µm diameter, they could be suitable to analyze their morphology and subcellular localization of specific proteins by light microscopy, and they could serve as a potential model in CNS in vivo development.


Asunto(s)
Axones/ultraestructura , Neuritas/ultraestructura , Neurópilo/ultraestructura , Animales , Drosophila , Microtúbulos/ultraestructura
17.
J Neurosci ; 33(30): 12352-63, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23884941

RESUMEN

The precise regulation of synaptic growth is critical for the proper formation and plasticity of functional neural circuits. Identification and characterization of factors that regulate synaptic growth and function have been under intensive investigation. Here we report that brain tumor (brat), which was identified as a translational repressor in multiple biological processes, plays a crucial role at Drosophila neuromuscular junction (NMJ) synapses. Immunohistochemical analysis demonstrated that brat mutants exhibited synaptic overgrowth characterized by excess satellite boutons at NMJ terminals, whereas electron microscopy revealed increased synaptic vesicle size but reduced density at active zones compared with wild-types. Spontaneous miniature excitatory junctional potential amplitudes were larger and evoked quantal content was lower at brat mutant NMJs. In agreement with the morphological and physiological phenotypes, loss of Brat resulted in reduced FM1-43 uptake at the NMJ terminals, indicating that brat regulates synaptic endocytosis. Genetic analysis revealed that the actions of Brat at synapses are mediated through mothers against decapentaplegic (Mad), the signal transduction effector of the bone morphogenetic protein (BMP) signaling pathway. Furthermore, biochemical analyses showed upregulated levels of Mad protein but normal mRNA levels in the larval brains of brat mutants, suggesting that Brat suppresses Mad translation. Consistently, knockdown of brat by RNA interference in Drosophila S2 cells also increased Mad protein level. These results together reveal an important and previously unidentified role for Brat in synaptic development and endocytosis mediated by suppression of BMP signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Endocitosis/fisiología , Unión Neuromuscular/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Colorantes Fluorescentes/farmacocinética , Masculino , Microscopía Electrónica , Mutagénesis , Unión Neuromuscular/ultraestructura , Compuestos de Piridinio/farmacocinética , Compuestos de Amonio Cuaternario/farmacocinética , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología , Sinapsis/ultraestructura , Vesículas Sinápticas/fisiología , Vesículas Sinápticas/ultraestructura , Factores de Transcripción/genética
18.
J Neurosci ; 31(2): 687-99, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21228178

RESUMEN

Neuroligins belong to a highly conserved family of cell adhesion molecules that have been implicated in synapse formation and function. However, the precise in vivo roles of Neuroligins remain unclear. In the present study, we have analyzed the function of Drosophila neuroligin 2 (dnl2) in synaptic development and function. We show that dnl2 is strongly expressed in the embryonic and larval CNS and at the larval neuromuscular junction (NMJ). dnl2 null mutants are viable but display numerous structural defects at the NMJ, including reduced axonal branching and fewer synaptic boutons. dnl2 mutants also show an increase in the number of active zones per bouton but a decrease in the thickness of the subsynaptic reticulum and length of postsynaptic densities. dnl2 mutants also exhibit a decrease in the total glutamate receptor density and a shift in the subunit composition of glutamate receptors in favor of GluRIIA complexes. In addition to the observed defects in synaptic morphology, we also find that dnl2 mutants show increased transmitter release and altered kinetics of stimulus-evoked transmitter release. Importantly, the defects in presynaptic structure, receptor density, and synaptic transmission can be rescued by postsynaptic expression of dnl2. Finally, we show that dnl2 colocalizes and binds to Drosophila neurexin (dnrx) in vivo. However, whereas homozygous mutants for either dnl2 or dnrx are viable, double mutants are lethal and display more severe defects in synaptic morphology. Altogether, our data show that, although dnl2 is not absolutely required for synaptogenesis, it is required postsynaptically for synapse maturation and function.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Drosophila melanogaster/fisiología , Proteínas del Tejido Nervioso/fisiología , Unión Neuromuscular/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular Neuronal/biosíntesis , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestructura , Mutación , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/ultraestructura , Neuronas/metabolismo , Densidad Postsináptica/ultraestructura , Terminales Presinápticos/ultraestructura , Receptores de Glutamato/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...