Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6376-6391, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38721777

RESUMEN

DNA replication faces challenges from DNA lesions originated from endogenous or exogenous sources of stress, leading to the accumulation of single-stranded DNA (ssDNA) that triggers the activation of the ATR checkpoint response. To complete genome replication in the presence of damaged DNA, cells employ DNA damage tolerance mechanisms that operate not only at stalled replication forks but also at ssDNA gaps originated by repriming of DNA synthesis downstream of lesions. Here, we demonstrate that human cells accumulate post-replicative ssDNA gaps following replicative stress induction. These gaps, initiated by PrimPol repriming and expanded by the long-range resection factors EXO1 and DNA2, constitute the principal origin of the ssDNA signal responsible for ATR activation upon replication stress, in contrast to stalled forks. Strikingly, the loss of EXO1 or DNA2 results in synthetic lethality when combined with BRCA1 deficiency, but not BRCA2. This phenomenon aligns with the observation that BRCA1 alone contributes to the expansion of ssDNA gaps. Remarkably, BRCA1-deficient cells become addicted to the overexpression of EXO1, DNA2 or BLM. This dependence on long-range resection unveils a new vulnerability of BRCA1-mutant tumors, shedding light on potential therapeutic targets for these cancers.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1 , ADN Helicasas , Replicación del ADN , ADN de Cadena Simple , Exodesoxirribonucleasas , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Replicación del ADN/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Supervivencia Celular/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Daño del ADN
2.
Nat Commun ; 15(1): 4292, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769345

RESUMEN

Deficiencies in the BRCA1 tumor suppressor gene are the main cause of hereditary breast and ovarian cancer. BRCA1 is involved in the Homologous Recombination DNA repair pathway and, together with BARD1, forms a heterodimer with ubiquitin E3 activity. The relevance of the BRCA1/BARD1 ubiquitin E3 activity for tumor suppression and DNA repair remains controversial. Here, we observe that the BRCA1/BARD1 ubiquitin E3 activity is not required for Homologous Recombination or resistance to Olaparib. Using TULIP2 methodology, which enables the direct identification of E3-specific ubiquitination substrates, we identify substrates for BRCA1/BARD1. We find that PCNA is ubiquitinated by BRCA1/BARD1 in unperturbed conditions independently of RAD18. PCNA ubiquitination by BRCA1/BARD1 avoids the formation of ssDNA gaps during DNA replication and promotes continuous DNA synthesis. These results provide additional insight about the importance of BRCA1/BARD1 E3 activity in Homologous Recombination.


Asunto(s)
Proteína BRCA1 , Replicación del ADN , Ftalazinas , Piperazinas , Antígeno Nuclear de Célula en Proliferación , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Ftalazinas/farmacología , Piperazinas/farmacología , Recombinación Homóloga , Femenino , Células HEK293 , Línea Celular Tumoral , ADN/metabolismo
3.
Elife ; 112022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35904415

RESUMEN

The essential biometal manganese (Mn) serves as a cofactor for several enzymes that are crucial for the prevention of human diseases. Whether intracellular Mn levels may be sensed and modulate intracellular signaling events has so far remained largely unexplored. The highly conserved target of rapamycin complex 1 (TORC1, mTORC1 in mammals) protein kinase requires divalent metal cofactors such as magnesium (Mg2+) to phosphorylate effectors as part of a homeostatic process that coordinates cell growth and metabolism with nutrient and/or growth factor availability. Here, our genetic approaches reveal that TORC1 activity is stimulated in vivo by elevated cytoplasmic Mn levels, which can be induced by loss of the Golgi-resident Mn2+ transporter Pmr1 and which depend on the natural resistance-associated macrophage protein (NRAMP) metal ion transporters Smf1 and Smf2. Accordingly, genetic interventions that increase cytoplasmic Mn2+ levels antagonize the effects of rapamycin in triggering autophagy, mitophagy, and Rtg1-Rtg3-dependent mitochondrion-to-nucleus retrograde signaling. Surprisingly, our in vitro protein kinase assays uncovered that Mn2+ activates TORC1 substantially better than Mg2+, which is primarily due to its ability to lower the Km for ATP, thereby allowing more efficient ATP coordination in the catalytic cleft of TORC1. These findings, therefore, provide both a mechanism to explain our genetic observations in yeast and a rationale for how fluctuations in trace amounts of Mn can become physiologically relevant. Supporting this notion, TORC1 is also wired to feedback control mechanisms that impinge on Smf1 and Smf2. Finally, we also show that Mn2+-mediated control of TORC1 is evolutionarily conserved in mammals, which may prove relevant for our understanding of the role of Mn in human diseases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Animales , Humanos , Mamíferos/metabolismo , Manganeso/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
EMBO Rep ; 22(1): e50410, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33289333

RESUMEN

DNA damage tolerance relies on homologous recombination (HR) and translesion synthesis (TLS) mechanisms to fill in the ssDNA gaps generated during passing of the replication fork over DNA lesions in the template. Whereas TLS requires specialized polymerases able to incorporate a dNTP opposite the lesion and is error-prone, HR uses the sister chromatid and is mostly error-free. We report that the HR protein Rad52-but not Rad51 and Rad57-acts in concert with the TLS machinery (Rad6/Rad18-mediated PCNA ubiquitylation and polymerases Rev1/Pol ζ) to repair MMS and UV light-induced ssDNA gaps through a non-recombinogenic mechanism, as inferred from the different phenotypes displayed in the absence of Rad52 and Rad54 (essential for MMS- and UV-induced HR); accordingly, Rad52 is required for efficient DNA damage-induced mutagenesis. In addition, Rad52, Rad51, and Rad57, but not Rad54, facilitate Rad6/Rad18 binding to chromatin and subsequent DNA damage-induced PCNA ubiquitylation. Therefore, Rad52 facilitates the tolerance process not only by HR but also by TLS through Rad51/Rad57-dependent and -independent processes, providing a novel role for the recombination proteins in maintaining genome integrity.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Proteína Recombinante y Reparadora de ADN Rad52 , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/genética
5.
Mol Cell ; 77(1): 3-16.e4, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31607544

RESUMEN

Tracing DNA repair factors by fluorescence microscopy provides valuable information about how DNA damage processing is orchestrated within cells. Most repair pathways involve single-stranded DNA (ssDNA), making replication protein A (RPA) a hallmark of DNA damage and replication stress. RPA foci emerging during S phase in response to tolerable loads of polymerase-blocking lesions are generally thought to indicate stalled replication intermediates. We now report that in budding yeast they predominantly form far away from sites of ongoing replication, and they do not overlap with any of the repair centers associated with collapsed replication forks or double-strand breaks. Instead, they represent sites of postreplicative DNA damage bypass involving translesion synthesis and homologous recombination. We propose that most RPA and recombination foci induced by polymerase-blocking lesions in the replication template are clusters of repair tracts arising from replication centers by polymerase re-priming and subsequent expansion of daughter-strand gaps over the course of S phase.


Asunto(s)
Replicación del ADN/genética , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/genética , Genoma/genética , Daño del ADN/genética , Reparación del ADN/genética , Recombinación Homóloga/genética , Proteína de Replicación A/genética , Fase S/genética , Saccharomycetales/genética
6.
Methods Enzymol ; 619: 121-143, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30910018

RESUMEN

Investigation of cell cycle-regulated processes often necessitates the rapid manipulation of individual protein levels in synchronized populations over the course of a cell cycle. In the budding yeast, the two major orthogonal approaches by which this is accomplished are conditional gene expression via inducible or repressible promoters and regulated metabolic destabilization of a protein of interest via ubiquitin-mediated degradation signals. Here, we describe an application of these principles to the investigation of DNA damage signaling during replication. Using a combination of conditional gene expression via a tetracycline-repressible promoter and inducible protein degradation via an auxin-regulated degron system, we have analyzed the cross talk between factors controlling the bypass of lesions during replication and the activation of the DNA damage checkpoint. Here, we describe the basic principles underlying our experimental system and provide a detailed protocol to analyze the cross talk between damage bypass and checkpoint signaling. Finally, we discuss the advantages and disadvantages of using this approach and point out possible applications to other regulatory events and other organisms.


Asunto(s)
Daño del ADN , Replicación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Regulación Fúngica de la Expresión Génica , Proteolisis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
7.
Nucleic Acids Res ; 46(16): 8347-8356, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30107417

RESUMEN

Replication of damaged DNA is challenging because lesions in the replication template frequently interfere with an orderly progression of the replisome. In this situation, complete duplication of the genome is ensured by the action of DNA damage bypass pathways effecting either translesion synthesis by specialized, damage-tolerant DNA polymerases or a recombination-like mechanism called template switching (TS). Here we report that budding yeast Pif1, a helicase known to be involved in the resolution of complex DNA structures as well as the maturation of Okazaki fragments during replication, contributes to DNA damage bypass. We show that Pif1 expands regions of single-stranded DNA, so-called daughter-strand gaps, left behind the replication fork as a consequence of replisome re-priming. This function requires interaction with the replication clamp, proliferating cell nuclear antigen, facilitating its recruitment to damage sites, and complements the activity of an exonuclease, Exo1, in the processing of post-replicative daughter-strand gaps in preparation for TS. Our results thus reveal a novel function of a conserved DNA helicase that is known as a key player in genome maintenance.


Asunto(s)
Daño del ADN/genética , ADN Helicasas/genética , Reparación del ADN/genética , Exodesoxirribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , ADN/genética , Replicación del ADN/genética , ADN de Cadena Simple , ADN Polimerasa Dirigida por ADN/genética , Genoma Fúngico/genética , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/genética
8.
EMBO J ; 37(9)2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29581097

RESUMEN

Polymerase-blocking DNA lesions are thought to elicit a checkpoint response via accumulation of single-stranded DNA at stalled replication forks. However, as an alternative to persistent fork stalling, re-priming downstream of lesions can give rise to daughter-strand gaps behind replication forks. We show here that the processing of such structures by an exonuclease, Exo1, is required for timely checkpoint activation, which in turn prevents further gap erosion in S phase. This Rad9-dependent mechanism of damage signaling is distinct from the Mrc1-dependent, fork-associated response to replication stress induced by conditions such as nucleotide depletion or replisome-inherent problems, but reminiscent of replication-independent checkpoint activation by single-stranded DNA Our results indicate that while replisome stalling triggers a checkpoint response directly at the stalled replication fork, the response to replication stress elicited by polymerase-blocking lesions mainly emanates from Exo1-processed, postreplicative daughter-strand gaps, thus offering a mechanistic explanation for the dichotomy between replisome- versus template-induced checkpoint signaling.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Fase S/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Front Genet ; 7: 87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242895

RESUMEN

Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse.

10.
Proc Natl Acad Sci U S A ; 112(18): 5779-84, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25902524

RESUMEN

DNA replication initiates at defined replication origins along eukaryotic chromosomes, ensuring complete genome duplication within a single S-phase. A key feature of replication origins is their ability to control the onset of DNA synthesis mediated by DNA polymerase-α and its intrinsic RNA primase activity. Here, we describe a novel origin-independent replication process that is mediated by transcription. RNA polymerase I transcription constraints lead to persistent RNA:DNA hybrids (R-loops) that prime replication in the ribosomal DNA locus. Our results suggest that eukaryotic genomes have developed tools to prevent R-loop-mediated replication events that potentially contribute to copy number variation, particularly relevant to carcinogenesis.


Asunto(s)
Replicación del ADN , ADN Ribosómico/química , ADN/química , Inestabilidad Genómica , ARN/química , Ribonucleasa H/química , Proteínas Bacterianas , Camptotecina/química , Carcinogénesis/metabolismo , Ciclo Celular , Separación Celular , Cromosomas/química , Variaciones en el Número de Copia de ADN , Electroforesis en Gel Bidimensional , Citometría de Flujo , Dosificación de Gen , Humanos , Hidroxiurea/química , Proteínas Luminiscentes , Metilmetanosulfonato/química , Mutación , Origen de Réplica , Saccharomyces cerevisiae/metabolismo
11.
J Biol Chem ; 290(15): 9335-47, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713143

RESUMEN

Regulation of intracellular ion homeostasis is essential for eukaryotic cell physiology. An example is provided by loss of ATP2C1 function, which leads to skin ulceration, improper keratinocyte adhesion, and cancer formation in Hailey-Hailey patients. The yeast ATP2C1 orthologue PMR1 codes for a Mn(2+)/Ca(2+) transporter that is crucial for cis-Golgi manganese supply. Here, we present evidence that calcium overcomes the lack of Pmr1 through vesicle trafficking-stimulated manganese delivery and requires the endoplasmic reticulum Mn(2+) transporter Spf1 and the late endosome/trans-Golgi Nramp metal transporter Smf2. Smf2 co-localizes with the putative Mn(2+) transporter Atx2, and ATX2 overexpression counteracts the beneficial impact of calcium treatment. Our findings suggest that vesicle trafficking promotes organelle-specific ion interchange and cytoplasmic metal detoxification independent of calcineurin signaling or metal transporter re-localization. Our study identifies an alternative mode for cis-Golgi manganese supply in yeast and provides new perspectives for Hailey-Hailey disease treatment.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Manganeso/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Calcio/farmacología , ATPasas Transportadoras de Calcio/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Perfilación de la Expresión Génica , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Fluorescente , Chaperonas Moleculares , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Transportadoras/efectos de los fármacos
12.
Biochim Biophys Acta ; 1843(10): 2315-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24583118

RESUMEN

Cross-complementation studies offer the possibility to overcome limitations imposed by the inherent complexity of multicellular organisms in the study of human diseases, by taking advantage of simpler model organisms like the budding yeast Saccharomyces cerevisiae. This review deals with, (1) the use of S. cerevisiae as a model organism to study human diseases, (2) yeast-based screening systems for the detection of disease modifiers, (3) Hailey-Hailey as an example of a calcium-related disease, and (4) the presentation of a yeast-based model to search for chemical modifiers of Hailey-Hailey disease. The preliminary experimental data presented and discussed here show that it is possible to use yeast as a model system for Hailey-Hailey disease and suggest that in all likelihood, yeast has the potential to reveal candidate drugs for the treatment of this disorder. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Asunto(s)
ATPasas Transportadoras de Calcio/genética , Calcio/metabolismo , Modelos Biológicos , Chaperonas Moleculares/genética , Pénfigo Familiar Benigno/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Administración Cutánea , Señalización del Calcio , ATPasas Transportadoras de Calcio/deficiencia , Fármacos Dermatológicos/farmacología , Dihidroxicolecalciferoles/farmacología , Expresión Génica , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Mutación , Pénfigo Familiar Benigno/tratamiento farmacológico , Pénfigo Familiar Benigno/metabolismo , Pénfigo Familiar Benigno/patología , Saccharomyces cerevisiae/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología
13.
J Biol Chem ; 287(22): 18717-29, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22493290

RESUMEN

Manganese is an essential trace element, whose intracellular levels need to be carefully regulated. Mn(2+) acts as a cofactor for many enzymes and excess of Mn(2+) is toxic. Alterations in Mn(2+) homeostasis affect metabolic functions and mutations in the human Mn(2+)/Ca(2+) transporter ATP2C1 have been linked to Hailey-Hailey disease. By deletion of the yeast orthologue PMR1 we have studied the impact of Mn(2+) on cell cycle progression and show that an excess of cytosolic Mn(2+) alters S-phase transit, induces transcriptional up-regulation of cell cycle regulators, bypasses the need for S-phase cell cycle checkpoints and predisposes to genomic instability. On the other hand, we find that depletion of the Golgi Mn(2+) pool requires a functional morphology checkpoint to avoid the formation of polyploid cells.


Asunto(s)
Manganeso/metabolismo , Mitosis , Western Blotting , Ciclo Celular , Citometría de Flujo , Inestabilidad Genómica , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...