Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phys Med Biol ; 62(5): 1885-1904, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28182580

RESUMEN

The purpose of this work was to validate GATE-based clinical scale absorbed dose calculations in nuclear medicine dosimetry. GATE (version 6.2) and MCNPX (version 2.7.a) were used to derive dosimetric parameters (absorbed fractions, specific absorbed fractions and S-values) for the reference female computational model proposed by the International Commission on Radiological Protection in ICRP report 110. Monoenergetic photons and electrons (from 50 keV to 2 MeV) and four isotopes currently used in nuclear medicine (fluorine-18, lutetium-177, iodine-131 and yttrium-90) were investigated. Absorbed fractions, specific absorbed fractions and S-values were generated with GATE and MCNPX for 12 regions of interest in the ICRP 110 female computational model, thereby leading to 144 source/target pair configurations. Relative differences between GATE and MCNPX obtained in specific configurations (self-irradiation or cross-irradiation) are presented. Relative differences in absorbed fractions, specific absorbed fractions or S-values are below 10%, and in most cases less than 5%. Dosimetric results generated with GATE for the 12 volumes of interest are available as supplemental data. GATE can be safely used for radiopharmaceutical dosimetry at the clinical scale. This makes GATE a viable option for Monte Carlo modelling of both imaging and absorbed dose in nuclear medicine.


Asunto(s)
Dosis de Radiación , Cintigrafía/métodos , Femenino , Humanos , Método de Montecarlo , Fantasmas de Imagen , Radiometría/métodos , Radiofármacos
2.
Phys Med Biol ; 61(11): 4001-18, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27163656

RESUMEN

Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.


Asunto(s)
Computadores , Método de Montecarlo , Tomografía Computarizada de Emisión de Fotón Único , Cámaras gamma , Fantasmas de Imagen , Fotones , Programas Informáticos , Factores de Tiempo
3.
IEEE Trans Med Imaging ; 35(7): 1696-706, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26863655

RESUMEN

A wide range of medical imaging applications benefits from the availability of realistic ground truth data. In the case of positron emission tomography (PET), ground truth data is crucial to validate processing algorithms and assessing their performances. The design of such ground truth data often relies on Monte-Carlo simulation techniques. Since the creation of a large dataset is not trivial both in terms of computing time and realism, we propose the OSSI-PET database containing 350 simulated [(11)C]Raclopride dynamic scans for rats, created specifically for the Inveon pre-clinical PET scanner. The originality of this database lies on the availability of several groups of scans with controlled biological variations in the striata. Besides, each group consists of a large number of realizations (i.e., noise replicates). We present the construction methodology of this database using rat pharmacokinetic and anatomical models. A first application using the OSSI-PET database is presented. Several commonly used reconstruction techniques were compared in terms of image quality, accuracy and variability of the activity estimates and of the computed kinetic parameters. The results showed that OP-OSEM3D iterative reconstruction method outperformed the other tested methods. Analytical methods such as FBP2D and 3DRP also produced satisfactory results. However, FORE followed by OSEM2D reconstructions should be avoided. Beyond the illustration of the potential of the database, this application will help scientists to understand the different sources of noise and bias that can occur at the different steps in the processing and will be very useful for choosing appropriate reconstruction methods and parameters.


Asunto(s)
Tomografía de Emisión de Positrones , Algoritmos , Animales , Bases de Datos Factuales , Método de Montecarlo , Racloprida , Ratas
4.
Med Phys ; 42(12): 6885-94, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26632045

RESUMEN

PURPOSE: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. METHODS: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit gate offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on gate to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user's imaging requirements and generates automatically command files used as input for gate. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant gate input files are generated for the virtual patient model and associated pharmacokinetics. RESULTS: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body "step and shoot" acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry computation performed on the ICRP 110 model is also presented. CONCLUSIONS: The proposed platform offers a generic framework to implement any scintigraphic imaging protocols and voxel/organ-based dosimetry computation. Thanks to the modular nature of TestDose, other imaging modalities could be supported in the future such as positron emission tomography.


Asunto(s)
Cámaras gamma , Método de Montecarlo , Radiometría/métodos , Programas Informáticos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Humanos , Imagenología Tridimensional , Radioisótopos de Indio , Cinética , Modelos Teóricos , Medicina Nuclear/métodos , Radiometría/instrumentación , Radiofármacos , Tomografía Computarizada de Emisión de Fotón Único/instrumentación
5.
Phys Med Biol ; 60(13): 4987-5006, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26061230

RESUMEN

In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled (125)I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400 × 250 × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10(-6) simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.


Asunto(s)
Algoritmos , Braquiterapia/métodos , Neoplasias de la Próstata/radioterapia , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Masculino , Método de Montecarlo , Dosificación Radioterapéutica
6.
Neuroimage ; 118: 484-93, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26080302

RESUMEN

Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity.


Asunto(s)
Algoritmos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Animales , Humanos , Método de Montecarlo , Ratas
7.
IEEE J Biomed Health Inform ; 17(2): 336-45, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24235110

RESUMEN

This work deals with the extraction of patient-specific coronary venous anatomy in preoperative multislice computed tomography (MSCT) volumes. A hybrid approach has been specifically designed for low-contrast vascular structure detection. It makes use of a minimum cost path technique with a Fast-Marching front propagation to extract the vessel centerline. A second procedure was applied to refine the position of the path and estimate the local radius along the vessel. This was achieved with an iterative multiscale algorithm based on geometrical moments. Parameter tuning was performed using a dedicated numerical phantom, and then the algorithm was applied to extract the coronary venous system. Results are provided on three MSCT volume sequences acquired for patients selected for a cardiac resynchronization therapy procedure. A visibility study was carried out by a medical expert who labeled venous segments on a set of 18 volumes. A comparison with two other Fast-Marching techniques and a geometrical moment based tracking method is also reported.


Asunto(s)
Vasos Coronarios/anatomía & histología , Vasos Coronarios/diagnóstico por imagen , Imagenología Tridimensional/métodos , Tomografía Computarizada Multidetector/métodos , Algoritmos , Bases de Datos Factuales , Humanos , Fantasmas de Imagen
8.
Artículo en Inglés | MEDLINE | ID: mdl-21097327

RESUMEN

In this paper, we propose an analysis of the coronary arterial tree obtained through magnetic resonance angiography (MRA). Ten datasets of the state-of-the-art SSFP MRI sequence are first qualitatively evaluated and labelled. Second, a quantitative analysis of anatomical and image features is performed. Finally, a comparison with an existing semi-automatic centreline extraction method is reported. The discussion deals with the clinical usage of such an imaging modality for both global anatomy visualisation and quantification purpose.


Asunto(s)
Angiografía Coronaria/métodos , Vasos Coronarios/anatomía & histología , Angiografía por Resonancia Magnética/métodos , Humanos , Interpretación de Imagen Asistida por Computador
9.
IEEE Trans Inf Technol Biomed ; 14(1): 101-6, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19783508

RESUMEN

This paper describes a method for the characterization of coronary artery motion using multislice computed tomography (MSCT) volume sequences. Coronary trees are first extracted by a spatial vessel tracking method in each volume of MSCT sequence. A point-based matching algorithm, with feature landmarks constraint, is then applied to match the 3-D extracted centerlines between two consecutive instants over a complete cardiac cycle. The transformation functions and correspondence matrices are estimated simultaneously, and allow deformable fitting of the vessels over the volume series. Either point-based or branch-based motion features can be derived. Experiments have been conducted in order to evaluate the performance of the method with a matching error analysis.


Asunto(s)
Angiografía Coronaria/métodos , Vasos Coronarios/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Corazón/fisiología , Humanos , Modelos Cardiovasculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA