Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Res ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719473

RESUMEN

H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradoxical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb (H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organization and the maintenance of gene transcription for healthy cellular function.

2.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557491

RESUMEN

Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.


Asunto(s)
Anomalías Múltiples , Acetilcarnitina , Hipotiroidismo Congénito , Anomalías Craneofaciales , Histona Acetiltransferasas , Discapacidad Intelectual , Inestabilidad de la Articulación , Animales , Humanos , Ratones , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/genética , Acetilación , Acetilcarnitina/farmacología , Acetilcarnitina/uso terapéutico , Blefarofimosis , Cromatina , Anomalías Craneofaciales/tratamiento farmacológico , Anomalías Craneofaciales/genética , Exones , Facies , Cardiopatías Congénitas , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética
3.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446206

RESUMEN

Inhibitor of growth 4 and 5 (ING4, ING5) are structurally similar chromatin-binding proteins in the KAT6A, KAT6B and KAT7 histone acetyltransferase protein complexes. Heterozygous mutations in the KAT6A or KAT6B gene cause human disorders with cardiac defects, but the contribution of their chromatin-adaptor proteins to development is unknown. We found that Ing5-/- mice had isolated cardiac ventricular septal defects. Ing4-/-Ing5-/- embryos failed to undergo chorioallantoic fusion and arrested in development at embryonic day 8.5, displaying loss of histone H3 lysine 14 acetylation, reduction in H3 lysine 23 acetylation levels and reduced developmental gene expression. Embryonic day 12.5 Ing4+/-Ing5-/- hearts showed a paucity of epicardial cells and epicardium-derived cells, failure of myocardium compaction, and coronary vasculature defects, accompanied by reduced expression of epicardium genes. Cell adhesion gene expression and proepicardium outgrowth were defective in the ING4- and ING5-deficient state. Our findings suggest that ING4 and ING5 are essential for heart development and promote epicardium and epicardium-derived cell fates and imply mutation of the human ING5 gene as a possible cause of isolated ventricular septal defects.


Asunto(s)
Proteínas Portadoras , Defectos del Tabique Interventricular , Lisina , Humanos , Animales , Ratones , Linaje de la Célula , Histonas , Acetilación , Cromatina , Factores de Transcripción , Proteínas Supresoras de Tumor , Proteínas de Homeodominio/genética , Proteínas de Ciclo Celular , Histona Acetiltransferasas
4.
Stem Cell Reports ; 19(4): 469-485, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38518784

RESUMEN

The histone lysine acetyltransferase KAT6B (MYST4, MORF, QKF) is the target of recurrent chromosomal translocations causing hematological malignancies with poor prognosis. Using Kat6b germline deletion and overexpression in mice, we determined the role of KAT6B in the hematopoietic system. We found that KAT6B sustained the fetal hematopoietic stem cell pool but did not affect viability or differentiation. KAT6B was essential for normal levels of histone H3 lysine 9 (H3K9) acetylation but not for a previously proposed target, H3K23. Compound heterozygosity of Kat6b and the closely related gene, Kat6a, abolished hematopoietic reconstitution after transplantation. KAT6B and KAT6A cooperatively promoted transcription of genes regulating hematopoiesis, including the Hoxa cluster, Pbx1, Meis1, Gata family, Erg, and Flt3. In conclusion, we identified the hematopoietic processes requiring Kat6b and showed that KAT6B and KAT6A synergistically promoted HSC development, function, and transcription. Our findings are pertinent to current clinical trials testing KAT6A/B inhibitors as cancer therapeutics.


Asunto(s)
Neoplasias Hematológicas , Hematopoyesis , Ratones , Animales , Diferenciación Celular/genética , Células Madre Hematopoyéticas , Histona Acetiltransferasas/genética
5.
Cancer Discov ; 14(2): 362-379, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37877779

RESUMEN

Mutations in the tumor suppressor TP53 cause cancer and impart poor chemotherapeutic responses, reportedly through loss-of-function, dominant-negative effects and gain-of-function (GOF) activities. The relative contributions of these attributes is unknown. We found that removal of 12 different TP53 mutants with reported GOFs by CRISPR/Cas9 did not impact proliferation and response to chemotherapeutics of 15 human cancer cell lines and colon cancer-derived organoids in culture. Moreover, removal of mutant TP53/TRP53 did not impair growth or metastasis of human cancers in immune-deficient mice or growth of murine cancers in immune-competent mice. DepMap mining revealed that removal of 158 different TP53 mutants had no impact on the growth of 391 human cancer cell lines. In contrast, CRISPR-mediated restoration of wild-type TP53 extinguished the growth of human cancer cells in vitro. These findings demonstrate that LOF but not GOF effects of mutant TP53/TRP53 are critical to sustain expansion of many tumor types. SIGNIFICANCE: This study provides evidence that removal of mutant TP53, thereby deleting its reported GOF activities, does not impact the survival, proliferation, metastasis, or chemotherapy responses of cancer cells. Thus, approaches that abrogate expression of mutant TP53 or target its reported GOF activities are unlikely to exert therapeutic impact in cancer. See related commentary by Lane, p. 211 . This article is featured in Selected Articles from This Issue, p. 201.


Asunto(s)
Neoplasias del Colon , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Línea Celular Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Mutación , Neoplasias del Colon/genética , Proliferación Celular
6.
Brain Behav Immun ; 115: 258-279, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820975

RESUMEN

Paternal pre-conceptual environmental experiences, such as stress and diet, can affect offspring brain and behavioral phenotypes via epigenetic modifications in sperm. Furthermore, maternal immune activation due to infection during gestation can reprogram offspring behavior and brain functioning in adulthood. However, the effects of paternal pre-conceptual exposure to immune activation on the behavior and physiology of offspring (F1) and grand-offspring (F2) are not currently known. We explored effects of paternal pre-conceptual exposure to viral-like immune activation on F1 and F2 behavioral and physiological phenotypes using a C57BL/6J mouse model. Males were treated with a single injection (intraperitoneal) of the viral mimetic polyinosinic:polycytidylic acid (Poly I:C: 12 mg/kg) then bred with naïve female mice four weeks after the Poly I:C (or 0.9% saline control) injection. The F1 offspring of Poly I:C treated fathers displayed increased depression-like behavior in the Porsolt swim test, an altered stress response in the novelty-suppressed feeding test, and significant transcriptomic changes in their hippocampus. Additionally, the F1 male offspring of Poly I:C treated F0 males showed significantly increased immune responsivity after a Poly I:C immune challenge (12 mg/kg). Furthermore, the F2 male grand-offspring took longer to enter and travelled significantly shorter distances in the light zone of the light/dark box. An analysis of the small noncoding RNA profiles in sperm from Poly I:C treated males and their male offspring revealed significant effects of Poly I:C on the sperm microRNA content at the time of conception and on the sperm PIWI-interacting RNA content of the male offspring. Notably, eight miRNAs with an FDR < 0.05 (miR-141-3p, miR-126b-5p, miR-669o-5p, miR-10b-3p, miR-471-5p, miR-463-5p, miR-148b-3p, and miR-181c-5p) were found to be significantly downregulated in the sperm of Poly I:C treated males. Collectively, we demonstrate that paternal pre-conceptual exposure to a viral immune challenge results in both intergenerational and transgenerational effects on brain and behavior that may be mediated by alterations in the sperm small noncoding RNA content.


Asunto(s)
MicroARNs , ARN Pequeño no Traducido , Masculino , Femenino , Ratones , Animales , Humanos , Ratones Endogámicos C57BL , Semen , Espermatozoides , Padre , MicroARNs/genética , MicroARNs/farmacología , ARN Pequeño no Traducido/farmacología , Poli I/farmacología
7.
Cells ; 12(23)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067098

RESUMEN

Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Humanos , Estados Unidos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Medicare , Encéfalo , Nanotecnología
8.
J Biomed Sci ; 30(1): 24, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055751

RESUMEN

BACKGROUND: Typical symptoms of uncomplicated dengue fever (DF) include headache, muscle pains, rash, cough, and vomiting. A proportion of cases progress to severe dengue hemorrhagic fever (DHF), associated with increased vascular permeability, thrombocytopenia, and hemorrhages. Progression to severe dengue is difficult to diagnose at the onset of fever, which complicates patient triage, posing a socio-economic burden on health systems. METHODS: To identify parameters associated with protection and susceptibility to DHF, we pursued a systems immunology approach integrating plasma chemokine profiling, high-dimensional mass cytometry and peripheral blood mononuclear cell (PBMC) transcriptomic analysis at the onset of fever in a prospective study conducted in Indonesia. RESULTS: After a secondary infection, progression to uncomplicated dengue featured transcriptional profiles associated with increased cell proliferation and metabolism, and an expansion of ICOS+CD4+ and CD8+ effector memory T cells. These responses were virtually absent in cases progressing to severe DHF, that instead mounted an innate-like response, characterised by inflammatory transcriptional profiles, high circulating levels of inflammatory chemokines and with high frequencies of CD4low non-classical monocytes predicting increased odds of severe disease. CONCLUSIONS: Our results suggests that effector memory T cell activation might play an important role ameliorating severe disease symptoms during a secondary dengue infection, and in the absence of that response, a strong innate inflammatory response is required to control viral replication. Our research also identified discrete cell populations predicting increased odds of severe disease, with potential diagnostic value.


Asunto(s)
Dengue , Dengue Grave , Humanos , Leucocitos Mononucleares , Estudios Prospectivos , Linfocitos T
9.
Cell Death Differ ; 30(6): 1447-1456, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36894688

RESUMEN

Many lymphoid malignancies arise from deregulated c-MYC expression in cooperation with additional genetic lesions. While many of these cooperative genetic lesions have been discovered and their functions characterised, DNA sequence data of primary patient samples suggest that many more do exist. However, the nature of their contributions to c-MYC driven lymphomagenesis have not yet been investigated. We identified TFAP4 as a potent suppressor of c-MYC driven lymphoma development in a previous genome-wide CRISPR knockout screen in primary cells in vivo [1]. CRISPR deletion of TFAP4 in Eµ-MYC transgenic haematopoietic stem and progenitor cells (HSPCs) and transplantation of these manipulated HSPCs into lethally irradiated animals significantly accelerated c-MYC-driven lymphoma development. Interestingly, TFAP4 deficient Eµ-MYC lymphomas all arose at the pre-B cell stage of B cell development. This observation prompted us to characterise the transcriptional profile of pre-B cells from pre-leukaemic mice transplanted with Eµ-MYC/Cas9 HSPCs that had been transduced with sgRNAs targeting TFAP4. This analysis revealed that TFAP4 deletion reduced expression of several master regulators of B cell differentiation, such as Spi1, SpiB and Pax5, which are direct target genes of both TFAP4 and MYC. We therefore conclude that loss of TFAP4 leads to a block in differentiation during early B cell development, thereby accelerating c-MYC-driven lymphoma development.


Asunto(s)
Linfoma , Proteínas Proto-Oncogénicas c-myc , Ratones , Animales , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Genes myc , Linfoma/patología , Células Precursoras de Linfocitos B/metabolismo , Ratones Transgénicos
10.
Nat Immunol ; 24(5): 814-826, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997670

RESUMEN

Missense mutations in PLCG2 can cause autoinflammation with phospholipase C gamma 2-associated antibody deficiency and immune dysregulation (APLAID). Here, we generated a mouse model carrying an APLAID mutation (p.Ser707Tyr) and found that inflammatory infiltrates in the skin and lungs were only partially ameliorated by removing inflammasome function via the deletion of caspase-1. Also, deleting interleukin-6 or tumor necrosis factor did not fully prevent APLAID mutant mice from autoinflammation. Overall, these findings are in accordance with the poor response individuals with APLAID have to treatments that block interleukin-1, JAK1/2 or tumor necrosis factor. Cytokine analysis revealed increased granulocyte colony-stimulating factor (G-CSF) levels as the most distinct feature in mice and individuals with APLAID. Remarkably, treatment with a G-CSF antibody completely reversed established disease in APLAID mice. Furthermore, excessive myelopoiesis was normalized and lymphocyte numbers rebounded. APLAID mice were also fully rescued by bone marrow transplantation from healthy donors, associated with reduced G-CSF production, predominantly from non-hematopoietic cells. In summary, we identify APLAID as a G-CSF-driven autoinflammatory disease, for which targeted therapy is feasible.


Asunto(s)
Trasplante de Médula Ósea , Factor Estimulante de Colonias de Granulocitos , Animales , Ratones , Citocinas , Interleucina-1 , Factor de Necrosis Tumoral alfa/genética , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/metabolismo
11.
Blood ; 141(26): 3199-3214, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-36928379

RESUMEN

Polycythemia vera (PV) is a myeloproliferative neoplasm driven by activating mutations in JAK2 that result in unrestrained erythrocyte production, increasing patients' hematocrit and hemoglobin concentrations, placing them at risk of life-threatening thrombotic events. Our genome-wide association study of 440 PV cases and 403 351 controls using UK Biobank data showed that single nucleotide polymorphisms in HFE known to cause hemochromatosis are highly associated with PV diagnosis, linking iron regulation to PV. Analysis of the FinnGen dataset independently confirmed overrepresentation of homozygous HFE variants in patients with PV. HFE influences the expression of hepcidin, the master regulator of systemic iron homeostasis. Through genetic dissection of mouse models of PV, we show that the PV erythroid phenotype is directly linked to hepcidin expression: endogenous hepcidin upregulation alleviates erythroid disease whereas hepcidin ablation worsens it. Furthermore, we demonstrate that in PV, hepcidin is not regulated by expanded erythropoiesis but is likely governed by inflammatory cytokines signaling via GP130-coupled receptors. These findings have important implications for understanding the pathophysiology of PV and offer new therapeutic strategies for this disease.


Asunto(s)
Policitemia Vera , Animales , Ratones , Policitemia Vera/genética , Policitemia Vera/complicaciones , Hepcidinas/genética , Estudio de Asociación del Genoma Completo , Hierro/metabolismo , Fenotipo , Homeostasis
12.
Cell Death Dis ; 14(2): 123, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792599

RESUMEN

Necroptosis is a lytic and inflammatory form of cell death that is highly constrained to mitigate detrimental collateral tissue damage and impaired immunity. These constraints make it difficult to define the relevance of necroptosis in diseases such as chronic and persistent viral infections and within individual organ systems. The role of necroptotic signalling is further complicated because proteins essential to this pathway, such as receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), have been implicated in roles outside of necroptotic signalling. We sought to address this issue by individually defining the role of RIPK3 and MLKL in chronic lymphocytic choriomeningitis virus (LCMV) infection. We investigated if necroptosis contributes to the death of LCMV-specific CD8+ T cells or virally infected target cells during infection. We provide evidence showing that necroptosis was redundant in the pathogenesis of acute forms of LCMV (Armstrong strain) and the early stages of chronic (Docile strain) LCMV infection in vivo. The number of immune cells, their specificity and reactivity towards viral antigens and viral loads are not altered in the absence of either MLKL or RIPK3 during acute and during the early stages of chronic LCMV infection. However, we identified that RIPK3 promotes immune dysfunction and prevents control of infection at later stages of chronic LCMV disease. This was not phenocopied by the loss of MLKL indicating that the phenotype was driven by a necroptosis-independent function of RIPK3. We provide evidence that RIPK3 signaling evoked a dysregulated type 1 interferone response which we linked to an impaired antiviral immune response and abrogated clearance of chronic LCMV infection.


Asunto(s)
Virus de la Coriomeningitis Linfocítica , Proteínas Quinasas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Virus de la Coriomeningitis Linfocítica/metabolismo , Necroptosis , Linfocitos T CD8-positivos/metabolismo , Muerte Celular , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
13.
Cell Death Differ ; 30(4): 1059-1071, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36755069

RESUMEN

MLKL and RIPK3 are the core signaling proteins of the inflammatory cell death pathway, necroptosis, which is a known mediator and modifier of human disease. Necroptosis has been implicated in the progression of disease in almost every physiological system and recent reports suggest a role for necroptosis in aging. Here, we present the first comprehensive analysis of age-related histopathological and immunological phenotypes in a cohort of Mlkl-/- and Ripk3-/- mice on a congenic C57BL/6 J genetic background. We show that genetic deletion of Mlkl in female mice interrupts immune system aging, specifically delaying the age-related reduction of circulating lymphocytes. -Seventeen-month-old Mlkl-/- female mice were also protected against age-related chronic sterile inflammation in connective tissue and skeletal muscle relative to wild-type littermate controls, exhibiting a reduced number of immune cell infiltrates in these sites and fewer regenerating myocytes. These observations implicate MLKL in age-related sterile inflammation, suggesting a possible application for long-term anti-necroptotic therapy in humans.


Asunto(s)
Inflamación , Proteínas Quinasas , Ratones , Humanos , Femenino , Animales , Lactante , Necrosis/metabolismo , Proteínas Quinasas/metabolismo , Ratones Endogámicos C57BL , Inflamación/patología , Muerte Celular , Factores de Transcripción/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
14.
Cell Rep ; 42(1): 111980, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36641753

RESUMEN

In the conventional model of transcriptional activation, transcription factors bind to response elements and recruit co-factors, including histone acetyltransferases. Contrary to this model, we show that the histone acetyltransferase KAT7 (HBO1/MYST2) is required genome wide for histone H3 lysine 14 acetylation (H3K14ac). Examining neural stem cells, we find that KAT7 and H3K14ac are present not only at transcribed genes but also at inactive genes, intergenic regions, and in heterochromatin. KAT7 and H3K14ac were not required for the continued transcription of genes that were actively transcribed at the time of loss of KAT7 but indispensable for the activation of repressed genes. The absence of KAT7 abrogates neural stem cell plasticity, diverse differentiation pathways, and cerebral cortex development. Re-expression of KAT7 restored stem cell developmental potential. Overexpression of KAT7 enhanced neuron and oligodendrocyte differentiation. Our data suggest that KAT7 prepares chromatin for transcriptional activation and is a prerequisite for gene activation.


Asunto(s)
Plasticidad de la Célula , Histonas , Histonas/metabolismo , Activación Transcripcional/genética , Acetilación , Plasticidad de la Célula/genética , Células Madre/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo
15.
Clin Transl Med ; 13(1): e1150, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653319

RESUMEN

BACKGROUND: Low-density neutrophils (LDN) are a distinct subset of neutrophils rarely detected in healthy people but appear in the blood of patients with autoimmune diseases, including systemic lupus erythematosus (SLE), and are mobilised in response to granulocyte colony-stimulating factor (G-CSF). The aim of this study was to identify novel mechanisms responsible for the pathogenic capacity of LDN in SLE. METHODS: Neutrophils were isolated from donors treated with G-CSF, and whole-cell proteomic analysis was performed on LDN and normal-density neutrophils. RESULTS: CD98 is significantly upregulated in LDN from G-CSF donors and defines a subset of LDN within the blood of SLE patients. CD98 is a transmembrane protein that dimerises with L-type amino acid transporters. We show that CD98 is responsible for the increased bioenergetic capacity of LDN. CD98 on LDN mediates the uptake of essential amino acids that are used by mitochondria to produce adenosine triphosphate, especially in the absence of glucose. Inhibition of CD98 reduces the metabolic flexibility of this population, which may limit their pathogenic capacity. CD98+ LDN produce more proinflammatory cytokines and chemokines than their normal density counterparts and are resistant to apoptosis, which may also contribute to tissue inflammation and end organ damage in SLE. CONCLUSIONS: CD98 provides a phenotypic marker for LDN that facilitates identification of this population without density-gradient separation and represents a novel therapeutic target to limit its pathogenic capacity.


Asunto(s)
Proteína-1 Reguladora de Fusión , Lupus Eritematoso Sistémico , Neutrófilos , Humanos , Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Neutrófilos/metabolismo , Proteómica , Proteína-1 Reguladora de Fusión/metabolismo
16.
Blood Adv ; 7(8): 1560-1571, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36075025

RESUMEN

Platelets have been shown to enhance the survival of lymphoma cell lines. However, it remains unclear whether they play a role in lymphoma. Here, we investigated the potential role of platelets and/or megakaryocytes in the progression of Eµ-myc lymphoma. Eµ-myc tumor cells were transplanted into recipient wild-type (WT) control, Mpl-/-, or TpoTg mice, which exhibited normal, low, and high platelet and megakaryocyte counts, respectively. TpoTg mice that underwent transplantation exhibited enhanced lymphoma progression with increased white blood cell (WBC) counts, spleen and lymph node weights, and enhanced liver infiltration when compared with WT mice. Conversely, tumor-bearing Mpl-/- mice had reduced WBC counts, lymph node weights, and less liver infiltration than WT mice. Using an Mpl-deficient thrombocytopenic immunocompromised mouse model, our results were confirmed using the human non-Hodgkin lymphoma GRANTA cell line. Although we found that platelets and platelet-released molecules supported Eµ-myc tumor cell survival in vitro, pharmacological inhibition of platelet function or anticoagulation in WT mice transplanted with Eµ-myc did not improve disease outcome. Furthermore, transient platelet depletion or sustained Bcl-xL-dependent thrombocytopenia did not alter lymphoma progression. Cytokine analysis of the bone marrow fluid microenvironment revealed increased levels of the proinflammatory molecule interleukin 1 in TpoTg mice, whereas these levels were lower in Mpl-/- mice. Moreover, RNA sequencing of blood-resident Eµ-myc lymphoma cells from TpoTg and WT mice after tumor transplantation revealed the upregulation of hallmark gene sets associated with an inflammatory response in TpoTg mice. We propose that the proinflammatory microenvironment in TpoTg mice promotes lymphoma progression.


Asunto(s)
Linfoma , Trombocitopenia , Ratones , Animales , Humanos , Megacariocitos/metabolismo , Receptores de Trombopoyetina , Plaquetas/metabolismo , Trombocitopenia/genética , Linfoma/genética , Microambiente Tumoral
17.
Cell Death Dis ; 13(7): 627, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35853868

RESUMEN

Histone acetylation is essential for initiating and maintaining a permissive chromatin conformation and gene transcription. Dysregulation of histone acetylation can contribute to tumorigenesis and metastasis. Using inducible cre-recombinase and CRISPR/Cas9-mediated deletion, we investigated the roles of the histone lysine acetyltransferase TIP60 (KAT5/HTATIP) in human cells, mouse cells, and mouse embryos. We found that loss of TIP60 caused complete cell growth arrest. In the absence of TIP60, chromosomes failed to align in a metaphase plate during mitosis. In some TIP60 deleted cells, endoreplication occurred instead. In contrast, cell survival was not affected. Remarkably, the cell growth arrest caused by loss of TIP60 was independent of the tumor suppressors p53, INK4A and ARF. TIP60 was found to be essential for the acetylation of H2AZ, specifically at lysine 7. The mRNA levels of 6236 human and 8238 mouse genes, including many metabolism genes, were dependent on TIP60. Among the top 50 differentially expressed genes, over 90% were downregulated in cells lacking TIP60, supporting a role for TIP60 as a key co-activator of transcription. We propose a primary role of TIP60 in H2AZ lysine 7 acetylation and transcriptional activation, and that this fundamental role is essential for cell proliferation. Growth arrest independent of major tumor suppressors suggests TIP60 as a potential anti-cancer drug target.


Asunto(s)
Histonas , Lisina Acetiltransferasa 5 , Lisina , Proteína p53 Supresora de Tumor , Acetilación , Animales , Puntos de Control del Ciclo Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Lisina Acetiltransferasa 5/deficiencia , Lisina Acetiltransferasa 5/genética , Lisina Acetiltransferasa 5/metabolismo , Ratones , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Blood ; 140(20): 2127-2141, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-35709339

RESUMEN

Venetoclax (VEN) inhibits the prosurvival protein BCL2 to induce apoptosis and is a standard therapy for chronic lymphocytic leukemia (CLL), delivering high complete remission rates and prolonged progression-free survival in relapsed CLL but with eventual loss of efficacy. A spectrum of subclonal genetic changes associated with VEN resistance has now been described. To fully understand clinical resistance to VEN, we combined single-cell short- and long-read RNA-sequencing to reveal the previously unappreciated scale of genetic and epigenetic changes underpinning acquired VEN resistance. These appear to be multilayered. One layer comprises changes in the BCL2 family of apoptosis regulators, especially the prosurvival family members. This includes previously described mutations in BCL2 and amplification of the MCL1 gene but is heterogeneous across and within individual patient leukemias. Changes in the proapoptotic genes are notably uncommon, except for single cases with subclonal losses of BAX or NOXA. Much more prominent was universal MCL1 gene upregulation. This was driven by an overlying layer of emergent NF-κB (nuclear factor kappa B) activation, which persisted in circulating cells during VEN therapy. We discovered that MCL1 could be a direct transcriptional target of NF-κB. Both the switch to alternative prosurvival factors and NF-κB activation largely dissipate following VEN discontinuation. Our studies reveal the extent of plasticity of CLL cells in their ability to evade VEN-induced apoptosis. Importantly, these findings pinpoint new approaches to circumvent VEN resistance and provide a specific biological justification for the strategy of VEN discontinuation once a maximal response is achieved rather than maintaining long-term selective pressure with the drug.


Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , FN-kappa B , Resistencia a Antineoplásicos/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Recurrencia , Antineoplásicos/uso terapéutico
19.
Clin Transl Immunology ; 11(5): e1383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602885

RESUMEN

Objectives: Febrile neutropenia (FN) is a major cause of treatment disruption and unplanned hospitalization in childhood cancer patients. This study investigated the transcriptome of peripheral blood mononuclear cells (PBMCs) in children with cancer and FN to identify potential predictors of serious infection. Methods: Whole-genome transcriptional profiling was conducted on PBMCs collected during episodes of FN in children with cancer at presentation to the hospital (Day 1; n = 73) and within 8-24 h (Day 2; n = 28) after admission. Differentially expressed genes as well as gene pathways that correlated with clinical outcomes were defined for different infectious outcomes. Results: Global differences in gene expression associated with specific immune responses in children with FN and documented infection, compared to episodes without documented infection, were identified at admission. These differences resolved over the subsequent 8-24 h. Distinct gene signatures specific for bacteraemia were identified both at admission and on Day 2. Differences in gene signatures between episodes with bacteraemia and episodes with bacterial infection, viral infection and clinically defined infection were also observed. Only subtle differences in gene expression profiles between non-bloodstream bacterial and viral infections were identified. Conclusion: Blood transcriptome immune profiling analysis during FN episodes may inform monitoring and aid in defining adequate treatment for different infectious aetiologies in children with cancer.

20.
Cell Metab ; 34(6): 874-887.e6, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35504291

RESUMEN

The tumor microenvironment (TME) contains a rich source of nutrients that sustains cell growth and facilitate tumor development. Glucose and glutamine in the TME are essential for the development and activation of effector T cells that exert antitumor function. Immunotherapy unleashes T cell antitumor function, and although many solid tumors respond well, a significant proportion of patients do not benefit. In patients with KRAS-mutant lung adenocarcinoma, KEAP1 and STK11/Lkb1 co-mutations are associated with impaired response to immunotherapy. To investigate the metabolic and immune microenvironment of KRAS-mutant lung adenocarcinoma, we generated murine models that reflect the KEAP1 and STK11/Lkb1 mutational landscape in these patients. Here, we show increased glutamate abundance in the Lkb1-deficient TME associated with CD8 T cell activation in response to anti-PD1. Combination treatment with the glutaminase inhibitor CB-839 inhibited clonal expansion and activation of CD8 T cells. Thus, glutaminase inhibition negatively impacts CD8 T cells activated by anti-PD1 immunotherapy.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma del Pulmón , Linfocitos T CD8-positivos , Glutaminasa , Neoplasias Pulmonares , Quinasas de la Proteína-Quinasa Activada por el AMP/deficiencia , Quinasas de la Proteína-Quinasa Activada por el AMP/inmunología , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Glutaminasa/antagonistas & inhibidores , Glutaminasa/inmunología , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Activación de Linfocitos , Ratones , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...