Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cachexia Sarcopenia Muscle ; 14(6): 2550-2568, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37727078

RESUMEN

BACKGROUND: Causes and mechanisms underlying cancer cachexia are not fully understood, and currently, no therapeutic approaches are available to completely reverse the cachectic phenotype. Interleukin-6 (IL-6) has been extensively described as a key factor in skeletal muscle physiopathology, exerting opposite roles through different signalling pathways. METHODS: We employed a three-dimensional ex vivo muscle engineered tissue (X-MET) to model cancer-associated cachexia and to study the effectiveness of selective inhibition of IL-6 transignalling in counteracting the cachectic phenotype. Conditioned medium (CM) derived from C26 adenocarcinoma cells was used as a source of soluble factors contributing to the establishment of cancer cachexia in the X-MET model. A dose of 1.2 ng/mL of glycoprotein-130 fused chimaera (gp130Fc) was added to cachectic culture medium to neutralize IL-6 transignalling. RESULTS: C26-conditioned medium induced a cachectic-like phenotype in the X-MET, leading to a decline of muscle mass (-60%; P < 0.001), a reduction in myosin expression (-92.4%; P < 0.005) and a reduction of the contraction frequency spectrum (-94%). C26-conditioned medium contains elevated amounts of IL-6 (8.61 ± 4.09 pg/mL) and IL6R (56.85 ± 10.96 pg/mL). These released factors activated the signal transducer and activator of transcription 3 (STAT3) signalling in the C26_CM X-MET system (phosphorylated STAT3/TOTAL +54.6%; P < 0.005), which in turn promote an enhancement of Il-6 (+69.2%; P < 0.05) and Il6r (+43%; P < 0.05) gene expression, suggesting the induction of a feed-forward loop. The selective neutralization of IL-6 transignalling, by gp130Fc, in C26_CM X-MET prevented the hyperactivation of STAT3 (-55.8%; P < 0.005), countered the reduction of cross-sectional area (+28.2%; P < 0.05) and reduced the expression of proteolytic factors including muscle ring finger-1 (-88%; P < 0.005) and ATROGIN1 (-92%; P < 0.05), thus preserving the robustness and increasing the contractile force (+20%) of the three-dimensional muscle system. Interestingly, the selective inhibition of IL-6 transignalling modulated gene regulatory networks involved in myogenesis and apoptosis, normalizing the expression of pro-apoptotic miRNAs, including miR-31 (-53.2%; P < 0.05) and miR-34c (-65%; P < 0.005), and resulting in the reduction of apoptotic pathways highlighted by the sensible reduction of cleaved caspase 3 (-92.5%; P < 0.005) in gp130Fc-treated C26_CM X-MET. CONCLUSIONS: IL-6 transignalling appeared as a promising target to counter cancer cachexia-related alterations. The X-MET model has proven to be a reliable drug-screening tool to identify novel therapeutic approaches and to test them in preclinical studies, significantly reducing the use of animal models.


Asunto(s)
MicroARNs , Neoplasias , Animales , Caquexia/patología , Interleucina-6 , Medios de Cultivo Condicionados/farmacología , Neoplasias/complicaciones
2.
Sci Rep ; 13(1): 10370, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365262

RESUMEN

The adult heart displays poor reparative capacities after injury. Cell transplantation and tissue engineering approaches have emerged as possible therapeutic options. Several stem cell populations have been largely used to treat the infarcted myocardium. Nevertheless, transplanted cells displayed limited ability to establish functional connections with the host cardiomyocytes. In this study, we provide a new experimental tool, named 3D eX vivo muscle engineered tissue (X-MET), to define the contribution of mechanical stimuli in triggering functional remodeling and to rescue cardiac ischemia. We revealed that mechanical stimuli trigger a functional remodeling of the 3D skeletal muscle system toward a cardiac muscle-like structure. This was supported by molecular and functional analyses, demonstrating that remodeled X-MET expresses relevant markers of functional cardiomyocytes, compared to unstimulated and to 2D- skeletal muscle culture system. Interestingly, transplanted remodeled X-MET preserved heart function in a murine model of chronic myocardial ischemia and increased survival of transplanted injured mice. X-MET implantation resulted in repression of pro-inflammatory cytokines, induction of anti-inflammatory cytokines, and reduction in collagen deposition. Altogether, our findings indicate that biomechanical stimulation induced a cardiac functional remodeling of X-MET, which showed promising seminal results as a therapeutic product for the development of novel strategies for regenerative medicine.


Asunto(s)
Isquemia Miocárdica , Ratones , Animales , Isquemia Miocárdica/terapia , Miocardio , Miocitos Cardíacos , Ingeniería de Tejidos/métodos , Fenómenos Fisiológicos Cardiovasculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...