Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 61(19): 5559-5566, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255782

RESUMEN

As the COVID-19 pandemic was overtaking the world in the spring of 2020, the National Institute of Standards and Technology (NIST) began collaborating with the National Biodefense Analysis and Countermeasures Center to study the inactivation of SARS-CoV-2 after exposure to different ultraviolet (UV) and blue light wavelengths. This paper describes a 1 kHz pulsed laser and projection system used to study the doses required to inactive SARS-CoV-2 over the wavelength range of 222 to 488 nm. This paper builds on NIST's previous work for water pathogen inactivation using UV laser irradiation. The design of the laser and projection system and its performance in a Biosafety Level 3 (BSL-3) laboratory are given. The SARS-CoV-2 inactivation results (published elsewhere by Schuit, M.A., et al., expected 2022) demonstrate that a tunable laser projection system is an invaluable tool for this research.


Asunto(s)
COVID-19 , Desinfección , Humanos , Desinfección/métodos , SARS-CoV-2 , Pandemias , Rayos Ultravioleta , Rayos Láser , Agua
2.
J Photochem Photobiol B ; 233: 112503, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35779426

RESUMEN

Numerous studies have demonstrated that SARS-CoV-2 can be inactivated by ultraviolet (UV) radiation. However, there are few data available on the relative efficacy of different wavelengths of UV radiation and visible light, which complicates assessments of UV decontamination interventions. The present study evaluated the effects of monochromatic radiation at 16 wavelengths from 222 nm through 488 nm on SARS-CoV-2 in liquid aliquots and dried droplets of water and simulated saliva. The data were used to generate a set of action spectra which quantify the susceptibility of SARS-CoV-2 to genome damage and inactivation across the tested wavelengths. UVC wavelengths (≤280 nm) were most effective for inactivating SARS-CoV-2, although inactivation rates were dependent on sample type. Results from this study suggest that UV radiation can effectively inactivate SARS-CoV-2 in liquids and dried droplets, and provide a foundation for understanding the factors which affect the efficacy of different wavelengths in real-world settings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Desinfección/métodos , Humanos , Luz , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación
3.
J Res Natl Inst Stand Technol ; 126: 126013, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38469441

RESUMEN

This paper describes advances in measuring the characteristic spatial distribution of surface temperature and emissivity during laser-metal interaction under conditions relevant for laser powder bed fusion (LPBF) additive manufacturing processes. Detailed descriptions of the measurement process, results, and approaches to determining uncertainties are provided. Measurement uncertainties have complex dependencies on multiple process parameters, so the methodology is demonstrated on one set of process parameters and one material. Well-established literature values for high-purity nickel solidification temperature and emissivity at the solidification temperature were used to evaluate the predicted uncertainty of the measurements. The standard temperature measurement uncertainty is found to be approximately 0.9% of the absolute temperature (16 AC), and the standard relative emissivity measurement uncertainty is found to be approximately 8% at the solidification point of high-purity nickel, both of which are satisfactory. This paper also outlines several potential sources of test uncertainties, which may require additional experimental evaluation. The largest of these are the metal vapor and ejecta that are produced as process by-products, which can potentially affect the imaging quality, reflectometry results, and thermal signature of the process, while also affecting the process of laser power delivery. Furthermore, the current paper focuses strictly on the uncertainties of the emissivity and temperature measurement approach and therefore does not detail a variety of uncertainties associated with experimental controls that must be evaluated for future generation of reference data.

4.
Manuf Lett ; 232020.
Artículo en Inglés | MEDLINE | ID: mdl-32855904

RESUMEN

High-speed thermography is useful tool for researching the laser powder bed fusion process by providing thermal information in heat affected zone. However, it is not directly possible to ascertain the position of the laser spot with respect to the melt pool, which could provide key information regarding how laser energy is distributed and absorbed. In this paper, we demonstrate a procedure for registering the laser spot position with the melt pool using a bright illumination source co-axially aligned with the laser to project a sharp spot on the build plane. This spot is fixed to the laser position and used as a reference frame for registering the laser spot with the melt pool radiance temperature distribution. Measurement results demonstrate the effect of varying process parameters (laser power and scan speed) on the melt pool thermal field and respective position of the laser spot.

5.
Addit Manuf ; 362020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34141601

RESUMEN

Melt pool monitoring (MPM) is a technique used in laser powder bed fusion (LPBF) to extract features from insitu sensor signals that correlate to defect formation or general part fabrication quality. Various melt pool phenomena have been shown to relate to measured transient absorption of the laser energy, which in turn, can be relatable to the melt pool emission measured in MPM systems. This paper describes use of a reflectometer-based instrument to measure the dynamic laser energy absorption during single-line laser scans. Scans are conducted on bare metal and single powder layer of nickel alloy 625 (IN625) at a range of laser powers. In addition, a photodetector aligned co-axially with the laser, often found in commercial LPBF monitoring systems, synchronously measured of the incandescent emission from the melt pool with the dynamic laser absorption. Relationships between the dynamic laser absorption, co-axial MPM, and surface features on the tracks are observed, providing illustration of the melt pool dynamics that formed these features. Time-integrated measurements of laser absorption are shown to correlate well with MPM signal, as well as indicate the transition between conduction and keyhole mode. This transition is corroborated by metallographic cross-section measurement, as well as topographic measurements of the solidified tracks. Ultimately, this paper exemplifies the utility of dynamic laser absorption measurements to inform both the physical nature of the melt pool dynamics, as well as interpretation of process monitoring signals.

6.
Artículo en Inglés | MEDLINE | ID: mdl-28579666

RESUMEN

The National Institute of Standards and Technology's (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system's operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described.

7.
Rev Sci Instrum ; 81(10): 10E507, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21034035

RESUMEN

A free standing transmission grating based imaging spectrometer in the extreme ultraviolet range has been developed for the National Spherical Torus Experiment (NSTX). The spectrometer operates in a survey mode covering the approximate spectral range from 30 to 700 Å and has a resolving capability of δλ/λ on the order of 3%. Initial results from space resolved impurity measurements from NSTX are described in this paper.

8.
J Res Natl Inst Stand Technol ; 113(6): 335-40, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-27096132

RESUMEN

To detect the growth in lesions, it is necessary to ensure that the apparent changes in size are above the noise floor of the system. By introducing a fiducial reference, it may be possible to detect smaller changes in lesion size more reliably. We suspend three precision spheres with a precision structure built from pieces from a popular children's building toy. We measure the distances between the centroids of the structures three ways; namely, with a high-precision mechanical method, micro computerized tomography, and medical computerized tomography. The three methods are in agreement, and also agree with the design values for the structure. It is also possible to pick a threshold so that the three spheres have their nominal volumes in the medical computerized tomography images. The use of volumetric measures allows the determination of lengths to much less than the voxel size using materials which have x-ray properties within the range of the human body. A suitable structure may be built with a very small parts cost.

9.
Appl Opt ; 42(28): 5750-8, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-14528939

RESUMEN

Multilayer lifetime has emerged as one of the major issues for the commercialization of extreme-ultraviolet lithography (EUVL). We describe the performance of an oxidation-resistant capping layer of Ru atop multilayers that results in a reflectivity above 69% at 13.2 nm, which is suitable for EUVL projection optics and has been tested with accelerated electron-beam and extreme-ultraviolet (EUV) light in a water-vapor environment. Based on accelerated exposure results, we calculated multilayer lifetimes for all reflective mirrors in a typical commercial EUVL tool and concluded that Ru-capped multilayers have approximately 40x longer lifetimes than Si-capped multilayers, which translates to 3 months to many years, depending on the mirror dose.

10.
Appl Opt ; 42(25): 5054-63, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12962381

RESUMEN

Both the integrated-charge and the peak-voltage responsivity of a 1-cm2 Si photodiode optimized for the extreme ultraviolet have been measured with 532-nm-wavelength pulsed radiation. The peak power of the optical pulse is varied from 35 mW to 24 kW with a pulse width of 8.25 ns. A decrease in responsivity is observed with increasing pulse energy, and a model is presented that accounts for the observed loss of responsivity. The integrated-charge responsivity decreases because the presence of photogenerated majority carriers increases the direct recombination rate. The peak-voltage responsivity is reduced because the electric susceptibility of the electrons and holes in the depletion region increases the capacitance of the device. The influence of an applied reverse bias on both responsivities is investigated. The integrated-charge responsivity is found to be identical, with a 1% uncertainty, to the cw responsivity of the device if the energy dependence is considered.

11.
J Res Natl Inst Stand Technol ; 108(1): 1-10, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-27413590

RESUMEN

The mass absorption coefficients of tungsten and tantalum were measured with soft x-ray photons from 1450 eV to 2350 eV using an undulator source. This region includes the M3, M4, and M5 absorption edges. X-ray absorption fine structure was calculated within a real-space multiple scattering formalism; the predicted structure was observed for tungsten and to a lesser degree tantalum as well. Separately, the effects of dynamic screening were observed as shown by an atomic calculation within the relativistic time-dependent local-density approximation. Dynamic screening effects influence the spectra at the 25 % level and are observed for both tungsten and tantalum. We applied these results to characterize spatially-resolved spectra of a tungsten integrated circuit interconnect obtained using a scanning transmission x-ray microscope. The results indicate tungsten fiducial markers were deposited into silica trenches with a depths of 50 % and 60 % of the markers' heights.

12.
J Res Natl Inst Stand Technol ; 108(4): 267-73, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-27413610

RESUMEN

Currently the most demanding application of extreme ultraviolet optics is connected with the development of extreme ultraviolet lithography. Not only does each of the Mo/Si multilayer extreme-ultraviolet stepper mirrors require the highest attainable reflectivity at 13 nm (nearly 70 %), but the central wavelength of the reflectivity of these mirrors must be measured with a wavelength repeatability of 0.001 nm and the peak reflectivity of the reflective masks with a repeatability of 0.12 %. We report on two upgrades of our NIST/DARPA Reflectometry Facility that have given us the ability to achieve 0.1 % repeatability and 0.3 % absolute uncertainty in our reflectivity measurements. A third upgrade, a monochromator with thermal and mechanical stability for improved wavelength repeatability, is currently in the design phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...