Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 36(3): 709-726, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38000892

RESUMEN

Fruit softening, an irreversible process that occurs during fruit ripening, can lead to losses and waste during postharvest transportation and storage. Cell wall disassembly is the main factor leading to loss of fruit firmness, and several ripening-associated cell wall genes have been targeted for genetic modification, particularly pectin modifiers. However, individual knockdown of most cell wall-related genes has had minimal influence on cell wall integrity and fruit firmness, with the notable exception of pectate lyase. Compared to pectin disassembly, studies of the cell wall matrix, the xyloglucan-cellulose framework, and underlying mechanisms during fruit softening are limited. Here, a tomato (Solanum lycopersicum) fruit ripening-associated α-expansin (SlExpansin1/SlExp1) and an endoglucanase (SlCellulase2/SlCel2), which function in the cell wall matrix, were knocked out individually and together using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9-mediated genome editing. Simultaneous knockout of SlExp1 and SlCel2 enhanced fruit firmness, reduced depolymerization of homogalacturonan-type pectin and xyloglucan, and increased cell adhesion. In contrast, single knockouts of either SlExp1 or SlCel2 did not substantially change fruit firmness, while simultaneous overexpression of SlExp1 and SlCel2 promoted early fruit softening. Collectively, our results demonstrate that SlExp1 and SlCel2 synergistically regulate cell wall disassembly and fruit softening in tomato.


Asunto(s)
Celulasa , Solanum lycopersicum , Frutas/metabolismo , Solanum lycopersicum/genética , Celulasa/genética , Celulasa/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pectinas/metabolismo , Pared Celular/metabolismo
2.
Plant Biotechnol J ; 22(3): 774-784, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37942846

RESUMEN

Flowering time is of great agricultural importance and the timing and extent of flowering usually determines yield and availability of flowers, fruits and seeds. Identification of genes determining flowering has important practical applications for tomato breeding. Here we demonstrate the roles of the FANTASTIC FOUR (FAF) gene family in regulating tomato flowering time. In this plant-specific gene family, SlFAF1/2a shows a constitutive expression pattern during the transition of the shoot apical meristem (SAM) from vegetative to reproductive growth and significantly influences flowering time. Overexpressing SlFAF1/2a causes earlier flowering compared with the transformations of other genes in the FAF family. SlFAF1/2c also positively regulates tomato flowering, although to a lesser extent. The other members of the SlFAF gene family, SlFAF1/2b, SlFAF3/4a and SlFAF3/4b, are negative regulators of tomato flowering and faf1/2b, faf3/4a and faf3/4b single mutants all display early flowering. We generated a series of early flowering mutants using the CRISPR/Cas9 editing system, and the faf1/2b faf3/4a faf3/4b triple mutant flowering earliest compared with other mutants. More importantly, these mutants show no adverse effect on yield. Our results have uncovered the role of the FAF gene family in regulating tomato flowering time and generated early flowering germplasms for molecular breeding.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas/genética , Fitomejoramiento , Mutación/genética , Flores , Regulación de la Expresión Génica de las Plantas/genética
3.
J Exp Bot ; 75(7): 1903-1918, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37856192

RESUMEN

The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.


Asunto(s)
Solanum lycopersicum , Factores de Transcripción , Factores de Transcripción/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Ceras/metabolismo
4.
Plant Physiol ; 194(4): 2049-2068, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37992120

RESUMEN

Fruit ripening is accompanied by dramatic changes in color, texture, and flavor and is regulated by transcription factors (TFs) and epigenetic factors. However, the detailed regulatory mechanism remains unclear. Gene expression patterns suggest that PpNAC1 (NAM/ATAF1/2/CUC) TF plays a major role in peach (Prunus persica) fruit ripening. DNA affinity purification (DAP)-seq combined with transactivation tests demonstrated that PpNAC1 can directly activate the expression of multiple ripening-related genes, including ACC synthase1 (PpACS1) and ACC oxidase1 (PpACO1) involved in ethylene biosynthesis, pectinesterase1 (PpPME1), pectate lyase1 (PpPL1), and polygalacturonase1 (PpPG1) related to cell wall modification, and lipase1 (PpLIP1), fatty acid desaturase (PpFAD3-1), and alcohol acyltransferase1 (PpAAT1) involved in volatiles synthesis. Overexpression of PpNAC1 in the tomato (Solanum lycopersicum) nor (nonripening) mutant restored fruit ripening, and its transient overexpression in peach fruit induced target gene expression, supporting a positive role of PpNAC1 in fruit ripening. The enhanced transcript levels of PpNAC1 and its target genes were associated with decreases in their promoter mCG methylation during ripening. Declining DNA methylation was negatively associated with increased transcripts of DNA demethylase1 (PpDML1), whose promoter is recognized and activated by PpNAC1. We propose that decreased methylation of the promoter region of PpNAC1 leads to a subsequent decrease in DNA methylation levels and enhanced transcription of ripening-related genes. These results indicate that positive feedback between PpNAC1 and PpDML1 plays an important role in directly regulating expression of multiple genes required for peach ripening and quality formation.


Asunto(s)
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frutas/genética , Frutas/metabolismo , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , ADN/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo
5.
Hortic Res ; 10(8): uhad131, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560014

RESUMEN

Recently, increasing evidence suggests that DNA methylation plays a crucial role in fruit ripening. However, the role of DNA methylation in regulating specific traits, such as flavor, remains unclear. Here, we report a role of DNA methylation in affecting furanone biosynthesis in strawberry. Strawberry quinone oxidoreductase (FaQR) is a key enzyme in furanone biosynthesis. There are four FaQR homologs in strawberry cultivar 'Yuexin', and one of them, FaQR3, contributes ~50% of FaQR transcripts, indicating a major role of FaQR3 in furanone biosynthesis. Through characterization of levels of DNA methylation and FaQR3 transcript and furanone contents during fruit ripening and after the application of DNA methylation inhibitor, we found that the DNA methylation level of the FaQR3 promoter was negatively correlated with FaQR3 expression and furanone accumulation, suggesting that DNA methylation may be involved in furanone biosynthesis through adjusting FaQR3 expression, and responded to different temperatures consistently. In addition, transient expression of a gene in the RNA-directed DNA methylation (RdDM) pathway, FaAGO4, and enrichment analysis of the 24-nucleotide siRNAs suggested that DNA methylation in the FaQR3 promoter is mediated by the RdDM pathway. Transient RNA interference (RNAi) of FaDML indicated that the demethylation pathway may be involved in regulating furanone accumulation. These findings provide new insights into the role of DNA methylation and demethylation in affecting flavor quality in strawberry during fruit ripening.

6.
Genome Biol ; 24(1): 95, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101232

RESUMEN

BACKGROUND: Apple is an economically important fruit crop. Changes in metabolism accompanying human-guided evolution can be revealed using a multiomics approach. We perform genome-wide metabolic analysis of apple fruits collected from 292 wild and cultivated accessions representing various consumption types. RESULTS: We find decreased amounts of certain metabolites, including tannins, organic acids, phenolic acids, and flavonoids as the wild accessions transition to cultivated apples, while lysolipids increase in the "Golden Delicious" to "Ralls Janet" pedigree, suggesting better storage. We identify a total of 222,877 significant single-nucleotide polymorphisms that are associated with 2205 apple metabolites. Investigation of a region from 2.84 to 5.01 Mb on chromosome 16 containing co-mapping regions for tannins, organic acids, phenolic acids, and flavonoids indicates the importance of these metabolites for fruit quality and nutrition during breeding. The tannin and acidity-related genes Myb9-like and PH4 are mapped closely to fruit weight locus fw1 from 3.41 to 3.76 Mb on chromosome 15, a region under selection during domestication. Lysophosphatidylethanolamine (LPE) 18:1, which is suppressed by fatty acid desaturase-2 (FAD2), is positively correlated to fruit firmness. We find the fruit weight is negatively correlated with salicylic acid and abscisic acid levels. Further functional assays demonstrate regulation of these hormone levels by NAC-like activated by Apetala3/Pistillata (NAP) and ATP binding cassette G25 (ABCG25), respectively. CONCLUSIONS: This study provides a metabolic perspective for selection on fruit quality during domestication and improvement, which is a valuable resource for investigating mechanisms controlling apple metabolite content and quality.


Asunto(s)
Malus , Humanos , Malus/genética , Malus/química , Frutas/genética , Domesticación , Fitomejoramiento
7.
Plant J ; 115(2): 577-594, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37058123

RESUMEN

Flavonols are health-promoting bioactive compounds important for human nutrition, health, and plant defense. The transcriptional regulation of kaempferol and quercetin biosynthesis has been studied extensively, while little is known about the regulatory mechanisms underlying myricetin biosynthesis, which has strong antioxidant, anticancer, antidiabetic, and anti-inflammatory activities. In this study, the flavonol-specific MrMYB12 in Morella rubra preferred activating the promoter of flavonol synthase 2 (MrFLS2) (6.4-fold) rather than MrFLS1 (1.4-fold) and upregulated quercetin biosynthesis. Furthermore, two SG44 R2R3-MYB members, MrMYB5 and MrMYB5L, were identified by yeast one-hybrid library screening using the promoter of flavonoid 3',5'-hydroxylase (MrF3'5'H), and transcript levels of these R2R3-MYBs were correlated with accumulation of myricetin derivatives during leaf development. Dual-luciferase and electrophoretic mobility shift assays demonstrated that both MrMYB5 and MrMYB5L could bind directly to MYB recognition sequence elements in promoters of MrF3'5'H or MrFLS1 and activate their expression. Protein-protein interactions of MrMYB5 or MrMYB5L with MrbHLH2 were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. MrMYB5L-MrbHLH2 showed much higher synergistic activation of MrF3'5'H or MrFLS1 promoters than MrMYB5-MrbHLH2. Studies with Arabidopsis thaliana homologs AtMYB5 and AtTT8 indicated that similar synergistic regulatory effects occur with promoters of MrF3'5'H or MrFLS1. Transient overexpression of MrMYB5L-MrbHLH2 in Nicotiana benthamiana induced a higher accumulation of myricetin derivatives (57.70 µg g-1 FW) than MrMYB5-MrbHLH2 (7.43 µg g-1 FW) when MrMYB12 was coexpressed with them. This study reveals a novel transcriptional mechanism regulating myricetin biosynthesis with the potential use for future metabolic engineering of health-promoting flavonols.


Asunto(s)
Arabidopsis , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Quercetina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flavonoles/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Hortic Res ; 10(3): uhad009, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36960428

RESUMEN

Domestication and improvement are important processes that generate the variation in genome and phonotypes underlying crop improvement. Unfortunately, during selection for certain attributes, other valuable traits may be inadvertently discarded. One example is the decline in fruit soluble solids content (SSC) during tomato breeding. Several genetic loci for SSC have been identified, but few reports on the underlying mechanisms are available. In this study we performed a genome-wide association study (GWAS) for SSC of the red-ripe fruits in a population consisting of 481 tomato accessions with large natural variations and found a new quantitative trait locus, STP1, encoding a sugar transporter protein. The causal variation of STP1, a 21-bp InDel located in the promoter region 1124 bp upstream of the start codon, alters its expression. STP1 Insertion accessions with an 21-bp insertion have higher SSC than STP1 Deletion accessions with the 21-bp deletion. Knockout of STP1 in TS-23 with high SSC using CRISPR/Cas9 greatly decreased SSC in fruits. In vivo and in vitro assays demonstrated that ZAT10-LIKE, a zinc finger protein transcription factor (ZFP TF), can specifically bind to the promoter of STP1 Insertion to enhance STP1 expression, but not to the promoter of STP1 Deletion , leading to lower fruit SSC in modern tomatoes. Diversity analysis revealed that STP1 was selected during tomato improvement. Taking these results together, we identified a naturally occurring causal variation underlying SSC in tomato, and a new role for ZFP TFs in regulating sugar transporters. The findings enrich our understanding of tomato evolution and domestication, and provide a genetic basis for genome design for improving fruit taste.

9.
Plant Physiol ; 192(3): 1858-1876, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36911987

RESUMEN

Sugars are fundamental to plant developmental processes. For fruits, the accumulation and proportion of sugars play crucial roles in the development of quality and attractiveness. In citrus (Citrus reticulata Blanco.), we found that the difference in sweetness between mature fruits of "Gongchuan" and its bud sport "Youliang" is related to hexose contents. Expression of a SuS (sucrose synthase) gene CitSUS5 and a SWEET (sugars will eventually be exported transporter) gene CitSWEET6, characterized by transcriptome analysis at different developmental stages of these 2 varieties, revealed higher expression levels in "Youliang" fruit. The roles of CitSUS5 and CitSWEET6 were investigated by enzyme activity and transient assays. CitSUS5 promoted the cleavage of sucrose to hexoses, and CitSWEET6 was identified as a fructose transporter. Further investigation identified the transcription factor CitZAT5 (ZINC FINGER OF ARABIDOPSIS THALIANA) that contributes to sucrose metabolism and fructose transportation by positively regulating CitSUS5 and CitSWEET6. The role of CitZAT5 in fruit sugar accumulation and hexose proportion was investigated by homologous transient CitZAT5 overexpression, -VIGS, and -RNAi. CitZAT5 modulates the hexose proportion in citrus by mediating CitSUS5 and CitSWEET6 expression, and the molecular mechanism explained the differences in sugar composition of "Youliang" and "Gongchuan" fruit.


Asunto(s)
Citrus , Hexosas , Citrus/genética , Citrus/metabolismo , Fructosa , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hexosas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Plant Physiol ; 192(2): 1638-1655, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36943294

RESUMEN

Auxin can inhibit or promote fruit ripening, depending on the species. Melting flesh (MF) peach fruit (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high concentrations of indole-3-acetic acid (IAA), which leads to rapid fruit softening at the late stage of development. In contrast, due to the low concentrations of IAA, the fruit of stony hard (SH) peach cultivars does not soften and produces little ethylene. Auxin seems necessary to trigger the biosynthesis of ethylene in peach fruit; however, the mechanism is not well understood. In this study, we identified miRNA gene family members ppe-miR393a and ppe-miR393b that are differentially expressed in SH and MF fruits. RNA ligase-mediated 5' rapid amplification of cDNA ends and transient transformation of Nicotiana benthamiana revealed TRANSPORT INHIBITOR RESPONSE 1 (PpTIR1), part of the auxin perception and response system, as a target of ppe-miR393a and b. Yeast 2-hybrid assay and bimolecular fluorescence complementation assay revealed that PpTIR1 physically interacts with an Aux/IAA protein PpIAA13. The results of yeast 1-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay indicated that PpIAA13 could directly bind to and trans-activate the promoter of 1-aminocyclopropane-1-carboxylic acid synthase 1 (PpACS1), required for ethylene biosynthesis. Transient overexpression and suppression of ppe-miR393a and PpIAA13 in peach fruit induced and repressed the expression of PpACS1, confirming their regulatory role in ethylene synthesis. Gene expression analysis in developing MF and SH fruits, combined with postharvest α-naphthalene acetic acid (NAA) treatment, supports a role for a ppe-miR393-PpTIR1-PpIAA13-PpACS1 module in regulating auxin-related differences in ethylene production and softening extent in different types of peach.


Asunto(s)
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Frutas , Saccharomyces cerevisiae/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
Plant Physiol ; 192(3): 1671-1683, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36823689

RESUMEN

Excessive softening during fleshy fruit ripening leads to physical damage and infection that reduce quality and cause massive supply chain losses. Changes in cell wall (CW) metabolism, involving loosening and disassembly of the constituent macromolecules, are the main cause of softening. Several genes encoding CW metabolizing enzymes have been targeted for genetic modification to attenuate softening. At least 9 genes encoding CW-modifying proteins have increased expression during ripening. Any alteration of these genes could modify CW structure and properties and contribute to softening, but evidence for their relative importance is sparse. The results of studies with transgenic tomato (Solanum lycopersicum), the model for fleshy fruit ripening, investigations with strawberry (Fragaria spp.) and apple (Malus domestica), and results from naturally occurring textural mutants provide direct evidence of gene function and the contribution of CW biochemical modifications to fruit softening. Here we review the revised CW structure model and biochemical and structural changes in CW components during fruit softening and then focus on and integrate the results of changes in CW characteristics derived from studies on transgenic fruits and mutants. Potential strategies and future research directions to understand and control the rate of fruit softening are also discussed.


Asunto(s)
Frutas , Malus , Frutas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malus/genética , Malus/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Hortic Res ; 10(1): uhac228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643758

RESUMEN

Momordica charantia L. var. abbreviata Ser. (Mca), known as bitter gourd or bitter melon, is a Momordica variety with medicinal value and belongs to the Cucurbitaceae family. In view of the lack of genomic information on bitter gourd and other Momordica species and to promote Mca genomic research, we assembled a 295.6-Mb telomere-to-telomere (T2T) high-quality Mca genome with six gap-free chromosomes after Hi-C correction. This genome is anchored to 11 chromosomes, which is consistent with the karyotype information, and comprises 98 contigs (N50 of 25.4 Mb) and 95 scaffolds (N50 of 25.4 Mb). The Mca genome harbors 19 895 protein-coding genes, of which 45.59% constitute predicted repeat sequences. Synteny analysis revealed variations involved in fruit quality during the divergence of bitter gourd. In addition, assay for transposase-accessible chromatin by high-throughput sequencing and metabolic analysis showed that momordicosides and other substances are characteristic of Mca fruit pulp. A combined transcriptomic and metabolomic analysis revealed the mechanisms of pigment accumulation and cucurbitacin biosynthesis in Mca fruit peels, providing fundamental molecular information for further research on Mca fruit ripening. This report provides a new genetic resource for Momordica genomic studies and contributes additional insights into Cucurbitaceae phylogeny.

13.
J Adv Res ; 49: 47-62, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36198382

RESUMEN

INTRODUCTION: Postharvest textural changes in fruit are mainly divided into softening and lignification. Loquat fruit could have severe lignification with increased firmness during postharvest storage. Pectin is mainly associated with the postharvest softening of fruit, but some studies also found that pectin could be involved in strengthening the mechanical properties of the plant. OBJECTIVES: This study focused on characterizing the dynamics of pectin and its complexation in the cell wall of lignified loquat fruit during postharvest storage, and how these changes could influence fruit firmness. METHODS: The homogalacturonan (HG) pectin in the cell wall of loquat fruit was identified using monoclonal antibodies. An oligogalacturonide (OG) probe was used to label the egg-box structure formed by Ca2+ cross-linking with low-methylesterified HG. An exogenous injection was used to verify the role of egg-box structures in the firmness increase in loquat fruit. RESULTS: The JIM5 antibody revealed that low-methylesterified HG accumulated in the tricellular junctions and middle lamella of loquat fruit that had severe lignification symptoms. The pectin methylesterase (PME) activity increased during the early stages of storage at 0 °C, and the calcium-pectate content and flesh firmness constantly increased during storage. The OG probe demonstrated the accumulation of egg-box structures at the cellular level. The exogenous injection of PME and Ca2+ into the loquat flesh led to an increase in firmness with more low-methylesterified HG and egg-box structure signals. CONCLUSION: PME-mediated demethylesterification generated large amounts of low-methylesterified HG in the cell wall. This low-methylesterified HG further cross-linked with Ca2+ to form egg-box structures. The pectin-involved complexations then contributed to the increased firmness in loquat fruit. Overall, besides being involved in fruit softening, pectin could also be involved in strengthening the mechanical properties of postharvest fruit. This study provides new ideas for obtaining a better texture of postharvest loquat fruits based on pectin regulation.


Asunto(s)
Eriobotrya , Pectinas , Pectinas/química , Calcio de la Dieta , Pared Celular
14.
Nat Commun ; 13(1): 7632, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494366

RESUMEN

Non-coding cis-regulatory variants in animal genomes are an important driving force in the evolution of transcription regulation and phenotype diversity. However, cistrome dynamics in plants remain largely underexplored. Here, we compare the binding of GOLDEN2-LIKE (GLK) transcription factors in tomato, tobacco, Arabidopsis, maize and rice. Although the function of GLKs is conserved, most of their binding sites are species-specific. Conserved binding sites are often found near photosynthetic genes dependent on GLK for expression, but sites near non-differentially expressed genes in the glk mutant are nevertheless under purifying selection. The binding sites' regulatory potential can be predicted by machine learning model using quantitative genome features and TF co-binding information. Our study show that genome cis-variation caused wide-spread TF binding divergence, and most of the TF binding sites are genetically redundant. This poses a major challenge for interpreting the effect of individual sites and highlights the importance of quantitatively measuring TF occupancy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Fotosíntesis/fisiología , Sitios de Unión/genética
15.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36099178

RESUMEN

Compounds that confer a bitter taste on fruits and vegetables (FAVs) play crucial roles in both plant defense and health promotion. This review details the current knowledge of the distribution, properties (toxicity, pharmacological effects and receptors) and environmental plant responses relating to the biosynthesis, catabolism and transcriptional regulation of 53 bitter plant metabolites in diverse species of FAVs. Some bitter compounds, such as flavonoids, are common in all plant species and make a minor contribution to bitter flavor, but many are synthesized only in specific taxa. They make major contributions to the bitter taste of the corresponding species and some also have significant pharmacological effects. Levels of bitter metabolites are genetically determined, but various environmental cues can affect their final concentration during preharvest development and postharvest storage processes. Molecular approaches are helping to unravel the mechanisms of biosynthesis and regulation of bitter compounds in diverse crop species. This review not only discusses the theoretical basis for utilizing breeding programs and other agricultural technologies to produce FAVs with improved safety, favorable taste and healthier profiles, but also suggests new directions for the utilization of bitter compounds in FAVs for the development of natural pesticides and health-promoting medicines.

16.
Hortic Res ; 9: uhac138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072838

RESUMEN

Flavonol glycosides are health-promoting phytochemicals important for human nutrition and plant defense against environmental stresses. Glycosylation modification greatly enriches the diversity of flavonols. Morella rubra, a member of the Myricaceae, contains high amounts of myricetin 3-O-rhamnoside (M3Rha), quercetin 3-O-rhamnoside (Q3Rha), and quercetin 3-O-galactoside (Q3Gal). In the present study, MrUGT78R1 and MrUGT78R2 were identified as two functional UDP-rhamnosyltransferases, while MrUGT78W1 was identified as a UDP-galactosyltransferase. Site-directed mutagenesis identified Pro143 and Asn386 as important residues for rhamnosyl transfer activity of MrUGT78R1, while the two corresponding positions in MrUGT78W1 (i.e. Ser147 and Asn370) also play important roles in galactosyl transfer activity. Transient expression data for these three MrUGTs in Nicotiana benthamiana tested the function of MrUGT78R1 and MrUGT78R2 as rhamnosyltransferases and MrUGT78W1 as a galactosyltransferase in glycosylation of flavonols. This work enriches knowledge of the diversity of UDP-rhamnosyltransferase in planta and identifies two amino acid positions important for both rhamnosyltransferase and galactosyltransferase.

17.
Plant J ; 112(4): 982-997, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36164829

RESUMEN

Chloroplasts play a crucial role in plant growth and fruit quality. However, the molecular mechanisms of chloroplast development are still poorly understood in fruits. In this study, we investigated the role of the transcription factor SlBEL2 (BEL1-LIKE HOMEODOMAIN 2) in fruit of Solanum lycopersicum (tomato). Phenotypic analysis of SlBEL2 overexpression (OE-SlBEL2) and SlBEL2 knockout (KO-SlBEL2) plants revealed that SlBEL2 has the function of inhibiting green shoulder formation in tomato fruits by affecting the development of fruit chloroplasts. Transcriptome profiling revealed that the expression of chloroplast-related genes such as SlGLK2 and SlLHCB1 changed significantly in the fruit of OE-SlBEL2 and KO-SlBEL2 plants. Further analysis showed that SlBEL2 could not only bind to the promoter of SlGLK2 to inhibit its transcription, but also interacted with the SlGLK2 protein to inhibit the transcriptional activity of SlGLK2 and its downstream target genes. SlGLK2 knockout (KO-SlGLK2) plants exhibited a complete absence of the green shoulder, which was consistent with the fruit phenotype of OE-SlBEL2 plants. SlBEL2 showed an expression gradient in fruits, in contrast with that reported for SlGLK2. In conclusion, our study reveals that SlBEL2 affects the formation of green shoulder in tomato fruits by negatively regulating the gradient expression of SlGLK2, thus providing new insights into the molecular mechanism of fruit green shoulder formation.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo , Hombro , Regulación de la Expresión Génica de las Plantas
18.
Cells ; 11(16)2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-36010560

RESUMEN

Fleshy fruits are generally hard and unpalatable when unripe; however, as they mature, their quality is transformed by the complex and dynamic genetic and biochemical process of ripening, which affects all cell compartments. Ripening fruits are enriched with nutrients such as acids, sugars, vitamins, attractive volatiles and pigments and develop a pleasant taste and texture and become attractive to eat. Ripening also increases sensitivity to pathogens, and this presents a crucial problem for fruit postharvest transport and storage: how to enhance pathogen resistance while maintaining ripening quality. Fruit development and ripening involve many changes in gene expression regulated by transcription factors (TFs), some of which respond to hormones such as auxin, abscisic acid (ABA) and ethylene. Ethylene response factor (ERF) TFs regulate both fruit ripening and resistance to pathogen stresses. Different ERFs regulate fruit ripening and/or pathogen responses in both fleshy climacteric and non-climacteric fruits and function cooperatively or independently of other TFs. In this review, we summarize the current status of studies on ERFs that regulate fruit ripening and responses to infection by several fungal pathogens, including a systematic ERF transcriptome analysis of fungal grey mould infection of tomato caused by Botrytis cinerea. This deepening understanding of the function of ERFs in fruit ripening and pathogen responses may identify novel approaches for engineering transcriptional regulation to improve fruit quality and pathogen resistance.


Asunto(s)
Frutas , Solanum lycopersicum , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Etilenos/metabolismo , Frutas/genética , Solanum lycopersicum/genética , Factores de Transcripción/metabolismo
19.
Plant Sci ; 322: 111366, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35779674

RESUMEN

In flowering plants, sepals play important roles in the development of flowers and fruit, and both processes are regulated by MADS-box (MADS) transcription factors (TFs). SlMADS1 was previously reported to act as a negative regulator of fruit ripening. In this study, expression analysis shown that its transcripts were very highly expressed during the development of sepals. To test the role of SlMADS1, we generated KO-SlMADS1 (knock-out) tomato mutants by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) technology and over-expression of SlMADS1 (OE-SlMADS1). The sepals and individual cells of KO-SlMADS1 mutants were significantly elongated, compared with the wild type (WT), whereas the sepals of OE-SlMADS1 tomatoes were significantly shorter and their cells were wider. RNA-seq (RNA-sequencing) of sepal samples showed that ethylene-, gibberellin-, auxin-, cytokinin- and cell wall metabolism-related genes were significantly affected in both KO-SlMADS1 and OE-SlMADS1 plants with altered sepal size. Since SlMACROCALYX (MC) is known to regulate the development of tomato sepals, we also studied the relationship between SlMC and SlMADS1 and the result showed that SlMADS1 interacts directly with SlMC. In addition, we also found that manipulating SlMADS1 expression alters the development of tomato plant leaves, roots and plant height. These results enrich our understanding of sepal development and the function of SlMADS1 throughout the plant.


Asunto(s)
Solanum lycopersicum , Flores/metabolismo , Frutas , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Hortic Res ; 9: uhac089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795383

RESUMEN

Abscisic acid (ABA) is a dominant regulator of ripening and quality in non-climacteric fruits. Strawberry is regarded as a model non-climacteric fruit due to its extensive genetic studies and proven suitability for transgenic approaches to understanding gene function. Strawberry research has contributed to studies on color, flavor development, and fruit softening, and in recent years ABA has been established as a core regulator of strawberry fruit ripening, whereas ethylene plays this role in climacteric fruits. Despite this major difference, several components of the interacting genetic regulatory network in strawberry, such as MADS-box and NAC transcription factors, are similar to those that operate in climacteric fruit. In this review, we summarize recent advances in understanding the role of ABA biosynthesis and signaling and the regulatory network of transcription factors and other phytohormones in strawberry fruit ripening. In addition to providing an update on its ripening, we discuss how strawberry research has helped generate a broader and more comprehensive understanding of the mechanism of non-climacteric fruit ripening and focus attention on the use of strawberry as a model platform for ripening studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...