Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37895382

RESUMEN

Several methods used for the quantification of DNA are based on UV absorbance or the fluorescence of complexes with intercalator dyes. Most of these intercalators are used in gels to visualize DNA and its structural integrity. Due to many extraterrestrial samples, such as meteorites or comets, which are likely to contain very small amounts of biological material, and because the ability to detect this material is crucial for understanding the origin and evolution of life in the universe, the development of assays that can detect DNA at low limits and withstand the rigors of space exploration is a pressing need in the field of astrobiology. In this study, we present a comparison of optimized protocols used for the fast and accurate quantification of DNA using common intercalator dyes. The sensitivity of assays exceeded that generated by any commercial kit and allowed for the accurate quantification of minimum concentrations of DNA. The methods were successful when applied to the detection and measurement of DNA spiked on soil samples. Furthermore, the impact of UV radiation as a harsh condition on the surface of Mars was assessed by DNA degradation and this was also confirmed by gel electrophoresis. Overall, the methods described provide economical, simple-step, and efficient approaches for the detection of DNA and can be used in future planetary exploration missions as tests used for the extraction of nucleic acid biosignatures.

2.
J Hazard Mater ; 458: 132023, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37441864

RESUMEN

Plastic waste is considered a major threat for terrestrial, marine and freshwater ecosystems. Ingestion of primary or secondary microparticles resulting from plastic degradation can lead to their trophic transfer raising serious health concerns. In this study, the effect of amine and carboxy functionalized polystyrene microparticles on the physiology of daphnids was investigated with a combination of phenotypic and metabolic endpoints. Carboxy functionalized microparticles showed higher toxicity in acute exposures compared to their amine counterparts. Accumulation of both microparticles in animal gut was confirmed by stereo-microscopy as well as fluorescent microscopy which showed no presence of particles in the rest of the animal. Fluorescence based quantification of microparticles extracted from animal lysates validated their concentration-dependent uptake. Additionally, exposure of daphnids to amine and carboxy functionalized microparticles resulted in increased activities of key enzymes related to metabolism and detoxification. Finally, significant metabolic perturbations were discovered following exposure to microplastics. These findings suggest that polystyrene microparticles can hinder organism performance of the freshwater species and highlight the importance of seeking for holistic and physiological endpoints for pollution assessment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Poliestirenos/toxicidad , Ecosistema , Contaminantes Químicos del Agua/análisis , Daphnia
3.
J Microbiol Methods ; 210: 106751, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37271376

RESUMEN

The possibility of microbial life beyond Earth presents a fundamental question in astrobiology. Given the likelihood that any extra-terrestrial life will be microbial in nature, the development of sensitive and specific confirmatory tests is crucial for the identification of potential habitats for life. Here, we describe a novel methodology for the detection of microorganisms in Martian soil simulants through spiking and recovery experiments. Our approach employs miniaturised techniques that enable the rapid and sensitive assessment of microbial presence in soil samples. The results of our study suggest that this methodology could be a valuable tool for the identification of potential habitats for microbial life on Mars and other extraterrestrial bodies.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Suelo , Escherichia coli , Prueba de Estudio Conceptual , Bacterias
4.
Life (Basel) ; 13(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37240795

RESUMEN

The search for life on other planets relies on the detection of biosignatures of life. Many macromolecules have been suggested as potential targets, among which are proteins that are considered vital components of life due to their essential roles in forming cellular structures, facilitating cellular communication and signaling, and catalyzing metabolic reactions. In this context, accurate quantification of protein signatures in soil would be advantageous, and while several proposed methods exist, which are limited by their sensitivity and specificity, their applicability needs further testing and validation. To this aim, we optimized a Bradford-based assay with high sensitivity and reproducibility and a simple protocol to quantify protein extracted from a Martian soil simulant. Methods for protein spiking, extraction, and recovery were optimized, using protein standards and bacterial proteins as representative models. The proposed method achieved high sensitivity and reproducibility. Taking into account that life remains could exist on the surface of Mars, which is subjected to UV radiation, a simulation of UV exposure was performed on a spiked soil simulant. UV radiation degraded the protein spike, thus highlighting the importance of searching for the remaining signal from degraded proteins. Finally, the applicability of the method was explored in relation to the storage of the reagent which was stable even up to 12 months, thus making its application possible for future planetary exploration missions.

5.
Environ Toxicol Pharmacol ; 100: 104157, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225008

RESUMEN

Pharmaceuticals have been classified as emerging contaminants in the aquatic ecosystem, mainly due to their increased use and improper disposal. A significant range of pharmaceutical compounds and their metabolites have been globally detected in surface waters and pose detrimental effects to non-target organisms. Monitoring pharmaceutical water pollution relies on the analytical approaches for their detection, however, such approaches are limited by their sensitivity limit and coverage of the wide range pharmaceutical compounds. This lack of realism in risk assessment is bypassed with effect-based methods, which are complemented by chemical screening and impact modelling, and are able to provide mechanistic insight for pollution. Focusing on the freshwater ecosystem, in this study we evaluated the acute effects on daphnids for three distinct groups of pharmaceuticals; antibiotics, estrogens, and a range of commonly encountered environmentally relevant pharmaceutical pollutants. Combining several endpoints such as mortality, biochemical (enzyme activities) and holistic (metabolomics) we discovered distinct patterns in biological responses. In this study, changes in enzymes of metabolism e.g. phosphatases and lipase, as well as the detoxification enzyme, glutathione-S-transferase, were recorded following acute exposure to the selected pharmaceuticals. A targeted analysis of the hydrophilic profile of daphnids revealed mainly the up-regulation of metabolites following metformin, gabapentin, amoxicillin, trimethoprim and ß-estradiol. Whereas gemfibrozil, sulfamethoxazole and oestrone exposure resulted in the down-regulation of majority of metabolites.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Contaminantes Ambientales/metabolismo , Contaminantes Químicos del Agua/metabolismo , Ecosistema , Metabolómica , Preparaciones Farmacéuticas , Daphnia
6.
Methods Protoc ; 6(2)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37104022

RESUMEN

Medicinal and herbal plants are abundant sources of phytochemicals, which are biologically active compounds with potential health benefits. The characterisation of phytochemicals has been the subject of many studies, but there is a lack of comprehensive assays to accurately assess the main phytochemical categories and their antioxidant properties. To address this, the present study has developed a multiparametric protocol comprising eight biochemical assays, which quantify the major categories of phytochemicals, including polyphenols, tannins and flavonoids, as well as their antioxidant and scavenging potential. The presented protocol offers several advantages over other methods, including higher sensitivity and significantly lower cost, making it a simpler and more affordable approach compared to commercial kits. The protocol was tested on two datasets with seventeen distinct herbal and medicinal plants, and the results demonstrated its effectiveness in accurately characterising the phytochemical composition of plant samples. The modular design of the protocol allows its adaptation to any spectrophotometric instrumentation, while all assays are simple to follow and require a minimum number of analytical steps.

7.
Toxics ; 11(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37112547

RESUMEN

Pharmaceuticals pose a great threat to organisms inhabiting the aquatic environment. Non-steroidal anti-inflammatory drugs (NSAIDs) are major pharmaceutical pollutants with a significant presence in freshwater ecosystems. In this study, the impact of indomethacin and ibuprofen, two of the most commonly prescribed NSAIDs, was assessed on Daphnia magna. Toxicity was assessed as the immobilization of animals and used to determine non-lethal exposure concentrations. Feeding was assessed as a phenotypic endpoint and key enzymes were used as molecular endpoints of physiology. Feeding was decreased in mixture exposures for five-day-old daphnids and neonates. Furthermore, animals were exposed to NSAIDs and their mixture in chronic and transgenerational scenarios revealing changes in key enzyme activities. Alkaline and acid phosphatases, lipase, peptidase, ß-galactosidase, and glutathione-S-transferase were shown to have significant changes in the first generation at the first and third week of exposure, and these were enhanced in the second generation. On the other hand, the third recovery generation did not exhibit these changes, and animals were able to recover from the induced changes and revert back to the control levels. Overall, our study points towards transgenerational exposures as more impactful laboratory studies to understand pharmaceutical stressors with a combination of molecular and phenotypic markers of physiology.

8.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982412

RESUMEN

Food spoilage is an ongoing global issue that contributes to rising carbon dioxide emissions and increased demand for food processing. This work developed anti-bacterial coatings utilising inkjet printing of silver nano-inks onto food-grade polymer packaging, with the potential to enhance food safety and reduce food spoilage. Silver nano-inks were synthesised via laser ablation synthesis in solution (LaSiS) and ultrasound pyrolysis (USP). The silver nanoparticles (AgNPs) produced using LaSiS and USP were characterised using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-Vis spectrophotometry and dynamic light scattering (DLS) analysis. The laser ablation technique, operated under recirculation mode, produced nanoparticles with a small size distribution with an average diameter ranging from 7-30 nm. Silver nano-ink was synthesised by blending isopropanol with nanoparticles dispersed in deionised water. The silver nano-inks were printed on plasma-cleaned cyclo-olefin polymer. Irrespective of the production methods, all silver nanoparticles exhibited strong antibacterial activity against E. coli with a zone of inhibition exceeding 6 mm. Furthermore, silver nano-inks printed cyclo-olefin polymer reduced the bacterial cell population from 1235 (±45) × 106 cell/mL to 960 (±110) × 106 cell/mL. The bactericidal performance of silver-coated polymer was comparable to that of the penicillin-coated polymer, wherein a reduction in bacterial population from 1235 (±45) × 106 cell/mL to 830 (±70) × 106 cell/mL was observed. Finally, the ecotoxicity of the silver nano-ink printed cyclo-olefin polymer was tested with daphniids, a species of water flea, to simulate the release of coated packaging into a freshwater environment.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Embalaje de Alimentos , Nanopartículas del Metal/química , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química
9.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835510

RESUMEN

Pharmaceutical compounds are among several classes of contaminants of emerging concern, such as pesticides, heavy metals and personal care products, all of which are a major concern for aquatic ecosystems. The hazards posed by the presence of pharmaceutical is one which affects both freshwater organisms and human health-via non-target effects and by the contamination of drinking water sources. The molecular and phenotypic alterations of five pharmaceuticals which are commonly present in the aquatic environment were explored in daphnids under chronic exposures. Markers of physiology such as enzyme activities were combined with metabolic perturbations to assess the impact of metformin, diclofenac, gabapentin, carbamazepine and gemfibrozil on daphnids. Enzyme activity of markers of physiology included phosphatases, lipase, peptidase, ß-galactosidase, lactate dehydrogenase, glutathione-S-transferase and glutathione reductase activities. Furthermore, targeted LC-MS/MS analysis focusing on glycolysis, the pentose phosphate pathway and the TCA cycle intermediates was performed to assess metabolic alterations. Exposure to pharmaceuticals resulted in the changes in activity for several enzymes of metabolism and the detoxification enzyme glutathione-S-transferase. Metabolic perturbations on key pathways revealed distinct groups and metabolic fingerprints for the different exposures and their mixtures. Chronic exposure to pharmaceuticals at low concentrations revealed significant alterations of metabolic and physiological endpoints.


Asunto(s)
Daphnia , Ecosistema , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Cromatografía Liquida , Daphnia/efectos de los fármacos , Glutatión/metabolismo , Preparaciones Farmacéuticas/metabolismo , Espectrometría de Masas en Tándem , Transferasas/metabolismo , Contaminantes Químicos del Agua/metabolismo
10.
Toxics ; 10(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36287884

RESUMEN

The continuous global increase in population and consumption of resources due to human activities has had a significant impact on the environment. Therefore, assessment of environmental exposure to toxic chemicals as well as their impact on biological systems is of significant importance. Freshwater systems are currently under threat and monitored; however, current methods for pollution assessment can neither provide mechanistic insight nor predict adverse effects from complex pollution. Using daphnids as a bioindicator, we assessed the impact in acute exposures of eight individual chemicals and specifically two metals, four pharmaceuticals, a pesticide and a stimulant, and their composite mixture combining phenotypic, biochemical and metabolic markers of physiology. Toxicity levels were in the same order of magnitude and significantly enhanced in the composite mixture. Results from individual chemicals showed distinct biochemical responses for key enzyme activities such as phosphatases, lipase, peptidase, ß-galactosidase and glutathione-S-transferase. Following this, a more realistic mixture scenario was assessed with the aforementioned enzyme markers and a metabolomic approach. A clear dose-dependent effect for the composite mixture was validated with enzyme markers of physiology, and the metabolomic analysis verified the effects observed, thus providing a sensitive metrics in metabolite perturbations. Our study highlights that sensitive enzyme markers can be used in advance on the design of metabolic and holistic assays to guide the selection of chemicals and the trajectory of the study, while providing mechanistic insight. In the future this could prove to become a useful tool for understanding and predicting freshwater pollution.

11.
Artículo en Inglés | MEDLINE | ID: mdl-33920188

RESUMEN

Epilepsy is a neurological disorder mainly characterised by recurrent seizures that affect the entire population diagnosed with the condition. Currently, there is no cure for the disease and a significant proportion of patients have been deemed to have treatment-resistant epilepsy (TRE). A patient is deemed to have TRE if two or more antiepileptic drugs (AEDs) fail to bring about seizure remission. This inefficacy of traditional AEDs, coupled with their undesirable side effect profile, has led to researchers considering alternative forms of treatment. Phytocannabinoids have long served as therapeutics with delta-9-THC (Δ9-THC) receiving extensive focus to determine its therapeutic potential. This focus on Δ9-THC has been to the detriment of analysing the plethora of other phytocannabinoids found in the cannabis plant. The overall aim of this review is to explore other novel phytocannabinoids and their place in epilepsy treatment. The current review intends to achieve this aim via an exploration of the molecular targets underlying the anticonvulsant capabilities of cannabidiol (CBD), cannabidavarin (CBDV), delta-9-tetrahydrocannabivarin (Δ9-THCV) and cannabigerol (CBG). Further, this review will provide an exploration of current pre-clinical and clinical data as it relates to the aforementioned phytocannabinoids and the treatment of epilepsy symptoms. With specific reference to epilepsy in young adult and adolescent populations, the exploration of CBD, CBDV, Δ9-THCV and CBG in both preclinical and clinical environments can guide future research and aid in the further understanding of the role of phytocannabinoids in epilepsy treatment. Currently, much more research is warranted in this area to be conclusive.


Asunto(s)
Cannabidiol , Cannabis , Epilepsia , Adolescente , Anticonvulsivantes/uso terapéutico , Cannabidiol/uso terapéutico , Epilepsia/tratamiento farmacológico , Humanos , Convulsiones
12.
Nanotoxicology ; 13(6): 783-794, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31094641

RESUMEN

Protein coronas on nanoparticles (NPs) affect their physicochemical properties, cellular uptake, and toxicity, and have been described extensively. To date, studies of the occurrence of small molecule (metabolite) coronas are limited. We sought to determine whether a metabolite corona forms on NPs, using high-sensitivity metabolomics combined with a model system for freshwater ecotoxicology (Daphnia magna feeding on Chlorella vulgaris). Using amino-functionalized polystyrene NPs (NH2-pNPs), we showed the impact of this material on Daphnia feeding to provide a rationale for the detailed molecular investigations. We then employed a targeted LC-MS/MS approach for sodium dodecyl sulfate (SDS) as an analog to signaling molecules known to occur in our freshwater model system and optimized a corona extraction method for this representative metabolite. Next, we performed an untargeted discovery-based metabolomics study - using high-sensitivity nanoelectrospray direct infusion mass spectrometry (DIMS) - to enable an unbiased assessment of the metabolite corona of NH2-pNPs in the freshwater model system. Our results demonstrate that SDS was successfully recovered from NH2-pNPs, confirming that the extraction protocol was fit-for-purpose. Untargeted DIMS metabolomics reproducibly detected 100 s of small molecule peaks extracted from NH2-pNPs exposed to conditioned media from the D. magna-C. vulgaris model system. Attempts to annotate these extracted metabolites, including by using van Krevelen and Kendrick Mass Defect plots, indicate a diverse range of metabolites that were not clustered into any particular class. Overall we demonstrate the existence of an ecologically relevant metabolite corona on the surface of NPs through application of a high-sensitivity, untargeted mass spectrometry metabolomics workflow.


Asunto(s)
Aminas/química , Chlorella vulgaris/efectos de los fármacos , Daphnia/efectos de los fármacos , Nanopartículas/toxicidad , Poliestirenos/toxicidad , Corona de Proteínas/metabolismo , Animales , Chlorella vulgaris/metabolismo , Cromatografía Liquida , Daphnia/metabolismo , Metabolómica/métodos , Nanopartículas/química , Poliestirenos/química , Espectrometría de Masas en Tándem
13.
J Pharm Biomed Anal ; 150: 347-354, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29287261

RESUMEN

Consumption of ethanol may have severe effects on human organs and tissues and lead to acute and chronic inflammation of internal organs. The present study aims at investigating the potential protective effects of three different extracts prepared from the leaves, root, and stem of the sumac, Rhus tripartita, against ethanol-induced toxicity and inflammation using intestinal cells as a cell culture system, in vitro model of the intestinal mucosa. The results showed an induction of cytotoxicity by ethanol, which was partially reversed by co-administration of the plant extracts. As part of investigating the cellular response and the mechanism of toxicity, the role of reduced thiols and glutathione-S-transferases were assessed. In addition, intestinal cells were artificially imposed to an inflammation state and the anti-inflammatory effect of the extracts was estimated by determination of interleukin-8. Finally, a detailed characterization of the contents of the three plant extracts by high resolution Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry revealed significant differences in their chemical compositions.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cromatografía Liquida , Enteritis/prevención & control , Etanol/toxicidad , Intestinos/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Extractos Vegetales/farmacología , Rhus , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Células CACO-2 , Citoprotección , Relación Dosis-Respuesta a Droga , Enteritis/metabolismo , Enteritis/patología , Glutatión Transferasa/metabolismo , Humanos , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patología , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta , Raíces de Plantas , Tallos de la Planta , Plantas Medicinales , Rhus/química , Compuestos de Sulfhidrilo/metabolismo
14.
Ecotoxicol Environ Saf ; 139: 352-357, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28189099

RESUMEN

Phenotypic markers of animal health form an essential component of regulatory toxicology. Immobilisation of neonate water fleas - Daphnia magna - as a surrogate measure of their mortality following exposure to a chemical for 24-48h forms the basis of the internationally utilised OECD acute toxicity test 202. A second important marker of animal physiology and health is feeding rate, which in Daphnia is determined by measuring the algae feeding rate. Given the widespread use of OECD test 202 for acute toxicity as well as the quantification of feeding rate in toxicological studies of daphniids, significant benefits could result from miniaturising this assay. In particular, miniaturisation would use fewer animals, less media and chemicals, less laboratory space and make the tests more compatible with automation, and therefore could result in considerable time savings. Furthermore, miniaturising phenotypic markers to the ultimate level of a single animal per well would facilitate multiple measurements of other phenotypic markers, such as behavioural responses, which could be integrated at the individual level. In this study we used a wide range of exposure vessels to evaluate the impacts of systematically varying total media volume, surface to volume ratio and animal density for the acute toxicity testing of cadmium. We demonstrate that Daphnia acute toxicity tests using single animals within 24- or 48-well plates produce equivalent results as for traditional test configurations, for different chemicals. Considering algae feeding rates by Daphnia, we studied the impacts of varying algae concentration, total volume and animal density. After having demonstrated that multiwell plates can again yield equivalent test results as traditional experimental setups, we used miniaturised test vessels to show the impact of metals on the feeding activity on daphniids for both neonates and adult animals. Overall we confirm the feasibility of a multiwell approach for Daphnia toxicity testing that requires less time and materials than a traditional assay and can provide phenotypic characterisation at a single animal level.


Asunto(s)
Daphnia/efectos de los fármacos , Conducta Alimentaria , Pruebas de Toxicidad Aguda/métodos , Contaminantes Químicos del Agua/toxicidad , Animales , Cadmio/toxicidad , Fenotipo
15.
Toxicol Lett ; 253: 36-45, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27113704

RESUMEN

Interaction of nanoparticles with food matrix components may cause unpredictable health complications. Using an improved Caco-2 cell-based in vitro (co-)culture model the potential of quercetin as one of the major food flavonoids to alter the effect of silver nanoparticles (Ag-NPs) <20 nm in the human intestinal mucosa at real life concentrations was investigated. Ag-NPs (15-90 µg/ml) decreased cell viability and reduced thiol groups, induced oxidative/nitrosative stress and lipid peroxidation and led to activity changes of various antioxidant enzymes after 3h exposure. The contribution of Ag(+) ions within the concentrations released from nanoparticles was shown to be less important, compared to Ag-NPs. While leading to inflammatory response in the intestines, Ag-NPs, paradoxically, also showed a potential anti-infammatory effect manifested in down-regulated IL-8 levels. Quercetin, co-administered with Ag-NPs, led to a reduction of cytotoxicity, oxidative stress, and recovered metabolic activity of Caco-2 cells, suggesting the protective effects of this flavonoid against the harmful effect of Ag-NPs. Quercetin not only alleviated the effect of Ag-NPs on the gastrointestinal cells, but also demonstrated a potential to serve as a tool for reversible modulation of intestinal permeability.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/prevención & control , Mucosa Intestinal/efectos de los fármacos , Nanopartículas del Metal , Quercetina/farmacología , Compuestos de Plata/toxicidad , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Citoprotección , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Medición de Riesgo
16.
Astrobiology ; 16(2): 126-42, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26881470

RESUMEN

This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2 and their quantification by an O2 electrode based on the stoichiometry of the involved reactions. The intermediate product O2˙⁻ from the hydrolysis of metal superoxides is converted by cytochrome c to O2 and by superoxide dismutase (SOD) to ½ mol O2 and ½ mol H2O2, which is then converted by catalase (CAT) to ½ mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to ½ mol O2 by CAT. The assay method was validated in a sealed sample chamber by using a liquid-phase Clark-type O2 electrode with known concentrations of O2˙⁻ and H2O2, and commercial metal superoxide and peroxide mixed with Mars analog Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, when using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(-3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by γ radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, which demonstrates the suitability of these enzymes for planetary missions, for example, on Mars or Europa.


Asunto(s)
Pruebas de Enzimas/métodos , Marte , Oxígeno/análisis , Peróxidos/análisis , Superóxidos/análisis , Catalasa/metabolismo , Simulación por Computador , Complejo IV de Transporte de Electrones/metabolismo , Rayos gamma , Concentración de Iones de Hidrógeno , Hidrólisis , Suelo , Superóxido Dismutasa/metabolismo
17.
Nat Commun ; 6: 7100, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25960012

RESUMEN

The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars.


Asunto(s)
Procesos Fotoquímicos , Especies Reactivas de Oxígeno/química , Suelo/química , Clima Desértico , Metales/química , Oxidación-Reducción , Peróxidos
18.
Anal Biochem ; 480: 28-30, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25837770

RESUMEN

In this protocol we present a rapid and sensitive assay for the accurate determination of protein concentration. The assay is a modification of a previous method, and measures minimum 0.2 µg protein.


Asunto(s)
Proteínas/análisis , Colorantes de Rosanilina/química
19.
Free Radic Biol Med ; 74: 85-98, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24996203

RESUMEN

Thiol redox state (TRS) evaluation is mostly restricted to the estimation of GSH and GSSG. However, these TRS parameters can estimate the GSSG/GSH potential, which might be useful for indicating abnormalities in redox metabolism. Nonetheless, evaluation of the multiparameric nature of TRS is required for a more accurate assessment of its physiological role. The present protocol extends the partial assessment of TRS by current methodologies. It measures 15 key parameters of TRS by two modular subprotocols: one for the glutathione (GSH)- and cysteine (CSH)-based nonprotein (NP) thiols/mixed disulfides (i.e., GSH, GSSG, GSSNP, CSH, CSSNP, NPSH, NPSSNP, NP(x)SH(NPSSNP), NP(x)SH(NPSH)), and the other for their protein (P) thiols/mixed disulfides (i.e., PSH, PSSG, PSSC, PSSNP, PSSP, NP(x)SH(PSSNP)). The protocol eliminates autoxidation of GSH and CSH (and thus overestimation of GSSG and CSSNP). Its modularity allows the determination GSH and GSSG also by other published specific assays. The protocol uses three assays; two are based on the photometric reagents 4,4'-dithiopyridine (DTP) and ninhydrin (NHD), and the third on the fluorometric reagent o-phthaldialdehyde (OPT). The initial assays employing these reagents have been extensively modified and redesigned for increased specificity, sensitivity, and simplicity. TRS parameter values and their standard errors are estimated automatically by sets of Excel-adapted algebraic equations. Protocol sensitivity for NPSH, PSH, NPSSNP, PSSP, PSSNP, CSH, CSSNP, PSSC, NP(x)SH(NPSSNP), and NP(x)SH(NPSH) is 1 nmol -SH/CSH, for GSSNP 0.2 nmol, for GSH and GSSG 0.4 nmol, and for PSSG 0.6 nmol. The protocol was applied on human plasma, a sample of high clinical value, and can be also applied in any organism.


Asunto(s)
Disulfuro de Glutatión/análisis , Glutatión/análisis , Fotometría/métodos , Plasma/química , Compuestos de Sulfhidrilo/metabolismo , Cisteína/metabolismo , Humanos , Peroxidación de Lípido , Ninhidrina/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Appl Environ Microbiol ; 80(18): 5561-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25002424

RESUMEN

We show here that oxidative stress is involved in both sclerotial differentiation (SD) and aflatoxin B1 biosynthesis in Aspergillus flavus. Specifically, we observed that (i) oxidative stress regulates SD, as implied by its inhibition by antioxidant modulators of reactive oxygen species and thiol redox state, and that (ii) aflatoxin B1 biosynthesis and SD are comodulated by oxidative stress. However, aflatoxin B1 biosynthesis is inhibited by lower stress levels compared to SD, as shown by comparison to undifferentiated A. flavus. These same oxidative stress levels also characterize a mutant A. flavus strain, lacking the global regulatory gene veA. This mutant is unable to produce sclerotia and aflatoxin B1. (iii) Further, we show that hydrogen peroxide is the main modulator of A. flavus SD, as shown by its inhibition by both an irreversible inhibitor of catalase activity and a mimetic of superoxide dismutase activity. On the other hand, aflatoxin B1 biosynthesis is controlled by a wider array of oxidative stress factors, such as lipid hydroperoxide, superoxide, and hydroxyl and thiyl radicals.


Asunto(s)
Aflatoxina B1/biosíntesis , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/fisiología , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo , Aspergillus flavus/citología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...