Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(23): e2305958, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38169107

RESUMEN

Simultaneous electroreduction of CO2 and H2O to syngas can provide a sustainable feed for established processes used to synthesize carbon-based chemicals. The synthesis of MOx/M-N-Cs (M = Ni, Fe) electrocatalysts reported via one-step pyrolysis that shows increased performance during syngas electrosynthesis at high current densities with adaptable H2/CO ratios, e.g., for the Fischer-Tropsch process. When embedded in gas diffusion electrodes (GDEs) with optimized hydrophobicity, the NiOx/Ni-N-C catalyst produces syngas (H2/CO = 0.67) at -200 mA cm-2 while for the FeOx/Fe-N-C syngas production occurs at ≈-150 mA cm-2. By tuning the electrocatalyst's microenvironment, stable operation for >3 h at -200 mA cm-2 is achieved with the NiOx/Ni-N-C GDE. Post-electrolysis characterization revealed that the restructuring of the catalyst via reduction of NiOx to metallic Ni NPs still enables stable operation of the electrode at -200 mA cm-2, when embedded in an optimized microenvironment. The ionomer and additives used in the catalyst layer are important for the observed stable operation. Operando Raman measurements confirm the presence of NiOx during CO formation and indicate weak adsorption of CO on the catalyst surface.

2.
Nanomaterials (Basel) ; 14(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38251105

RESUMEN

Oxometalates of vanadium(V), chromium(VI), and manganese(VII) have negative impacts on water resources due to their toxicity. To remove them, the kinetics of 0.04 mM oxometalates in natural and synthetic water were studied using graphene nanoplatelets (GNP). The GNP were dispersible in water and formed aggregates >15 µm that could be easily separated. Within 30 min, the GNP were covered with ~0.4 mg/g vanadium and ~1.0 mg/g chromium as Cr(OH)3. The reaction of 0.04 mM permanganate with 50 mg of GNP resulted in a coverage of 10 mg/g in 5 min, while the maximum value was 300 mg/g manganese as Mn2O3/MnO. TEM showed a random metal distribution on the surfaces; no clusters or nanoparticles were detected. The rate of disappearance in aerated water followed a pseudo second-order adsorption kinetics (PSO) for V(V), a pseudo second-order reaction for Cr(VI), and a pseudo first-order reaction for Mn(VII). For Cr(VI) and Mn(VII), the rate constants were found to depend on the GNP mass. Oxygen sorption occurred with PSO kinetics as a parallel slow process upon contact of GNP with air-saturated water. For thermally regenerated GNP, the rate constant decreased for V(V) but increased for Cr(VI), while no effect was observed for Mn(VII). GNP capacity was enhanced through regeneration for V(V) and Cr(VI); no effect was observed for Mn(VII). The reactions are well-suited for use in water purification processes and the reaction products, GNP, decorated with single metal atoms, are of great interest for the construction of sensors, electronic devices, and for application in single-atom catalysis (SAC).

3.
RSC Adv ; 13(33): 22777-22788, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37520102

RESUMEN

Nitrogen-containing porous carbons prepared by the pyrolysis of adequate biopolymer-based precursors have shown potential in several electrochemical energy-related applications. However, it is still of crucial interest to find the optimal precursors and process conditions which would allow the preparation of carbons with adequate porous structure as well as suitable nitrogen content and distribution of functional groups. In the present work we suggested a straightforward approach to prepare N-doped porous carbons by direct pyrolysis under nitrogen of chitosan : coffee blends of different compositions and using KOH for simultaneous surface activation. The synthetized carbon materials were tested for the electrochemical oxygen reduction to hydrogen peroxide (H2O2). A higher fraction of chitosan in the precursor led to a decrease in meso- and nano-porosity of the formed porous carbons, while their activity towards H2O2 generation increased. The nitrogen species derived from chitosan seem to play a very important role. Out of the synthesized catalysts the one with the largest content of pyridinic nitrogen sites exhibited the highest faradaic efficiency. The faradaic efficiencies and current densities of the synthesized materials were comparable with the ones of other commercially available carbons obtained from less renewable precursors.

4.
Angew Chem Int Ed Engl ; 62(28): e202305982, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37178313

RESUMEN

The role of ß-CoOOH crystallographic orientations in catalytic activity for the oxygen evolution reaction (OER) remains elusive. We combine correlative electron backscatter diffraction/scanning electrochemical cell microscopy with X-ray photoelectron spectroscopy, transmission electron microscopy, and atom probe tomography to establish the structure-activity relationships of various faceted ß-CoOOH formed on a Co microelectrode under OER conditions. We reveal that ≈6 nm ß-CoOOH(01 1 ‾ ${\bar{1}}$ 0), grown on [ 1 ‾ 2 1 ‾ ${\bar{1}2\bar{1}}$ 0]-oriented Co, exhibits higher OER activity than ≈3 nm ß-CoOOH(10 1 ‾ ${\bar{1}}$ 3) or ≈6 nm ß-CoOOH(0006) formed on [02 2 ‾ 1 ] ${\bar{2}1]}$ - and [0001]-oriented Co, respectively. This arises from higher amounts of incorporated hydroxyl ions and more easily reducible CoIII -O sites present in ß-CoOOH(01 1 ‾ ${\bar{1}}$ 0) than those in the latter two oxyhydroxide facets. Our correlative multimodal approach shows great promise in linking local activity with atomic-scale details of structure, thickness and composition of active species, which opens opportunities to design pre-catalysts with preferred defects that promote the formation of the most active OER species.

5.
Adv Mater ; 35(9): e2207635, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36542651

RESUMEN

Polyelemental material systems, specifically high-entropy alloys, promise unprecedented properties. Due to almost unlimited combinatorial possibilities, their exploration and exploitation is hard. This challenge is addressed by co-sputtering combined with shadow masking to produce a multitude of microscale combinatorial libraries in one deposition process. These thin-film composition spreads on the microscale cover unprecedented compositional ranges of high-entropy alloy systems and enable high-throughput characterization of thousands of compositions for electrocatalytic energy conversion reactions using nanoscale scanning electrochemical cell microscopy. The exemplary exploration of the composition space of two high-entropy alloy systems provides electrocatalytic activity maps for hydrogen evolution and oxygen evolution as well as oxygen reduction reactions. Activity optima in the system Ru-Rh-Pd-Ir-Pt are identified, and active noble-metal lean compositions in the system Co-Ni-Mo-Pd-Pt are discovered. This illustrates that the proposed microlibraries are a holistic discovery platform to master the multidimensionality challenge of polyelemental systems.

6.
Nat Commun ; 13(1): 179, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013310

RESUMEN

The three-dimensional (3D) distribution of individual atoms on the surface of catalyst nanoparticles plays a vital role in their activity and stability. Optimising the performance of electrocatalysts requires atomic-scale information, but it is difficult to obtain. Here, we use atom probe tomography to elucidate the 3D structure of 10 nm sized Co2FeO4 and CoFe2O4 nanoparticles during oxygen evolution reaction (OER). We reveal nanoscale spinodal decomposition in pristine Co2FeO4. The interfaces of Co-rich and Fe-rich nanodomains of Co2FeO4 become trapping sites for hydroxyl groups, contributing to a higher OER activity compared to that of CoFe2O4. However, the activity of Co2FeO4 drops considerably due to concurrent irreversible transformation towards CoIVO2 and pronounced Fe dissolution. In contrast, there is negligible elemental redistribution for CoFe2O4 after OER, except for surface structural transformation towards (FeIII, CoIII)2O3. Overall, our study provides a unique 3D compositional distribution of mixed Co-Fe spinel oxides, which gives atomic-scale insights into active sites and the deactivation of electrocatalysts during OER.

7.
Chemistry ; 27(68): 17038-17048, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34596277

RESUMEN

By using the crystalline precursor decomposition approach and direct co-precipitation the composition and mesostructure of cobalt-based spinels can be controlled. A systematic substitution of cobalt with redox-active iron and redox-inactive magnesium and aluminum in a cobalt spinel with anisotropic particle morphology with a preferred 111 surface termination is presented, resulting in a substitution series including Co3 O4 , MgCo2 O4 , Co2 FeO4 , Co2 AlO4 and CoFe2 O4 . The role of redox pairs in the spinels is investigated in chemical water oxidation by using ceric ammonium nitrate (CAN test), electrochemical oxygen evolution reaction (OER) and H2 O2 decomposition. Studying the effect of dominant surface termination, isotropic Co3 O4 and CoFe2 O4 catalysts with more or less spherical particles are compared to their anisotropic analogues. For CAN-test and OER, Co3+ plays the major role for high activity. In H2 O2 decomposition, Co2+ reveals itself to be of major importance. Redox active cations in the structure enhance the catalytic activity in all reactions. A benefit of a predominant 111 surface termination depends on the cobalt oxidation state in the as-prepared catalysts and the investigated reaction.

8.
Chemistry ; 27(68): 17127-17144, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34633707

RESUMEN

Perovskites are interesting oxidation catalysts due to their chemical flexibility enabling the tuning of several properties. In this work, we synthesized LaFe1-x Cox O3 catalysts by co-precipitation and thermal decomposition, characterized them thoroughly and studied their 2-propanol oxidation activity under dry and wet conditions to bridge the knowledge gap between gas and liquid phase reactions. Transient tests showed a highly active, unstable low-temperature (LT) reaction channel in conversion profiles and a stable, less-active high-temperature (HT) channel. Cobalt incorporation had a positive effect on the activity. The effect of water was negative on the LT channel, whereas the HT channel activity was boosted for x>0.15. The boost may originate from a slower deactivation rate of the Co3+ sites under wet conditions and a higher amount of hydroxide species on the surface comparing wet to dry feeds. Water addition resulted in a slower deactivation for Co-rich catalysts and higher activity in the HT channel state.

9.
Angew Chem Int Ed Engl ; 60(39): 21396-21403, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34343398

RESUMEN

The effect of surface orientations on the formation of iridium oxide species during the oxygen evolution reaction (OER) remains yet unknown. Herein, we use a needle-shaped iridium atom probe specimen as a nanosized working electrode to ascertain the role of the surface orientations in the formation of oxide species during OER. At the beginning of electrolysis, the top 2-3 nm of (024), (026), (113), and (115) planes are covered by IrO-OH, which activates all surfaces towards OER. A thick subsurface oxide layer consisting of sub-stoichiometric Ir-O species is formed on the open (024) planes as OER proceeds. Such metastable Ir-O species are thought to provide an additional contribution to the OER activity. Overall, this study sheds light on the importance of the morphological effects of iridium electrocatalysts for OER. It also provides an innovative approach that can directly reveal surface species on electrocatalysts at atomic scale.

10.
ACS Omega ; 6(24): 15929-15939, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34179637

RESUMEN

Two-dimensional semiconductors such as MoS2 are promising for future electrical devices. The interface to metals is a crucial and critical aspect for these devices because undesirably high resistances due to Fermi level pinning are present, resulting in unwanted energy losses. To date, experimental information on such junctions has been obtained mainly indirectly by evaluating transistor characteristics. The fact that the metal-semiconductor interface is typically embedded, further complicates the investigation of the underlying physical mechanisms at the interface. Here, we present a method to provide access to a realistic metal-semiconductor interface by large-area exfoliation of single-layer MoS2 on clean polycrystalline gold surfaces. This approach allows us to measure the relative charge neutrality level at the MoS2-gold interface and its spatial variation almost directly using Kelvin probe force microscopy even under ambient conditions. By bringing together hitherto unconnected findings about the MoS2-gold interface, we can explain the anomalous Raman signature of MoS2 in contact to metals [ACS Nano. 7, 2013, 11350] which has been the subject of intense recent discussions. In detail, we identify the unusual Raman mode as the A1g mode with a reduced Raman shift (397 cm-1) due to the weakening of the Mo-S bond. Combined with our X-ray photoelectron spectroscopy data and the measured charge neutrality level, this is in good agreement with a previously predicted mechanism for Fermi level pinning at the MoS2-gold interface [Nano Lett. 14, 2014, 1714]. As a consequence, the strength of the MoS2-gold contact can be determined from the intensity ratio between the reduced A1greduced mode and the unperturbed A1g mode.

11.
ACS Nano ; 15(4): 7421-7429, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33759515

RESUMEN

Like other 2D materials, the boron-based borophene exhibits interesting structural and electronic properties. While borophene is typically prepared by molecular beam epitaxy, we report here on an alternative way of synthesizing large single-phase borophene domains by segregation-enhanced epitaxy. X-ray photoelectron spectroscopy shows that borazine dosing at 1100 °C onto Ir(111) yields a boron-rich surface without traces of nitrogen. At high temperatures, the borazine thermally decomposes, nitrogen desorbs, and boron diffuses into the substrate. Using time-of-flight secondary ion mass spectrometry, we show that during cooldown the subsurface boron segregates back to the surface where it forms borophene. In this case, electron diffraction reveals a (6 × 2) reconstructed borophene χ6-polymorph, and scanning tunneling spectroscopy suggests a Dirac-like behavior. Studying the kinetics of borophene formation in low energy electron microscopy shows that surface steps are bunched during the borophene formation, resulting in elongated and extended borophene domains with exceptional structural order.

12.
Beilstein J Nanotechnol ; 11: 1419-1431, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014682

RESUMEN

Cost-efficiency, durability, and reliability of catalysts, as well as their operational lifetime, are the main challenges in chemical energy conversion. Here, we present a novel, one-step approach for the synthesis of Pt/C hybrid material by plasma-enhanced chemical vapor deposition (PE-CVD). The platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell applications as they show significantly improved electrochemical long-term stability compared to the industrial standard HiSPEC 4000. The PE-CVD process is furthermore expected to be extendable to the general deposition of metal-containing carbon materials from other commercially available metal acetylacetonate precursors.

13.
Phys Chem Chem Phys ; 21(43): 24239, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31657401

RESUMEN

Correction for 'Determining the role of redox-active materials during laser-induced water decomposition' by Mark-Robert Kalus et al., Phys. Chem. Chem. Phys., 2019, 21, 18636-18651.

14.
Phys Chem Chem Phys ; 21(34): 18636-18651, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31414685

RESUMEN

Laser ablation in liquids (LAL) drives the decomposition of the liquid inducing the formation of a large number of different redox equivalents and gases. This not only leads to shielding effects and a decrease of the nanoparticle (NP) productivity but also can directly affect the NP properties such as the oxidation degree. In this study, we demonstrate that liquid decomposition during laser ablation in water is triggered by the redox activity of the 7 different bulk materials used; Au, Pt, Ag, Cu, Fe, Ti and Al, as well as by the reactivity of water with the plasma. Laser ablation of less-noble metals like aluminum leads to a massive gas evolution up to 390 cm3 per hour with molar hydrogen to oxygen ratios of 17.1. For more noble metals such as gold and platinum, water splitting induced by LAL is the dominant feature leading to gas volume formation rates of 10 up to 30 cm3 per hour and molar hydrogen to oxygen ratios of 1.2. We quantify the material-dependent ablation rate, shielding effects as well as the amount of hydrogen peroxide produced, directly affecting the yield and oxidation of the nanoparticles on the long-time scale.

15.
Chemistry ; 25(47): 11048-11057, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31140211

RESUMEN

Porous particle superstructures of about 15 nm diameter, consisting of ultrasmall nanoparticles of iridium and iridium dioxide, are prepared through the reduction of sodium hexachloridoiridate(+IV) with sodium citrate/sodium borohydride in water. The water-dispersible porous particles contain about 20 wt % poly(N-vinylpyrrolidone) (PVP), which was added for colloidal stabilization. High-resolution transmission electron microscopy confirms the presence of both iridium and iridium dioxide primary particles (1-2 nm) in each porous superstructure. The internal porosity (≈58 vol%) is demonstrated by electron tomography. In situ transmission electron microscopy up to 1000 °C under oxygen, nitrogen, argon/hydrogen (all at 1 bar), and vacuum shows that the porous particles undergo sintering and subsequent compaction upon heating, a process that starts at around 250 °C and is completed at around 800 °C. Finally, well-crystalline iridium dioxide is obtained under all four environments. The catalytic activity of the as-prepared porous superstructures in electrochemical water splitting (oxygen evolution reaction; OER) is reduced considerably upon heating owing to sintering of the pores and loss of internal surface area.

16.
Langmuir ; 35(3): 767-778, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30576151

RESUMEN

Ultrasmall gold nanoparticles with a diameter of 1.8 nm were synthesized by reduction of tetrachloroauric acid with sodium borohydride in the presence of l-cysteine, with natural isotope abundance as well as 13C-labeled and 15N-labeled. The particle diameter was determined by high-resolution transmission electron microscopy and differential centrifugal sedimentation. X-ray photoelectron spectroscopy confirmed the presence of metallic gold with only a few percent of oxidized Au(+I) species. The surface structure and the coordination environment of the cysteine ligands on the ultrasmall gold nanoparticles were studied by a variety of homo- and heteronuclear NMR spectroscopic techniques including 1H-13C-heteronuclear single-quantum coherence and 13C-13C-INADEQUATE. Further information on the binding situation (including the absence of residual or detached l-cysteine in the solution) and on the nanoparticle diameter (indicating the well-dispersed state) was obtained by diffusion-ordered spectroscopy (1H-, 13C-, and 1H-13C-DOSY). Three coordination environments of l-cysteine on the gold surface were identified that were ascribed to different crystallographic sites, supported by geometric considerations of the nanoparticle ultrastructure. The particle size data and the NMR-spectroscopic analysis gave a particle composition of about Au174(cysteine)67.

17.
Sci Rep ; 7(1): 13161, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030573

RESUMEN

Highly active, structurally disordered CoFe2O4/CoO electrocatalysts are synthesized by pulsed laser fragmentation in liquid (PLFL) of a commercial CoFe2O4 powder dispersed in water. A partial transformation of the CoFe2O4 educt to CoO is observed and proposed to be a thermal decomposition process induced by the picosecond pulsed laser irradiation. The overpotential in the OER in aqueous alkaline media at 10 mA cm-2 is reduced by 23% compared to the educt down to 0.32 V with a Tafel slope of 71 mV dec-1. Importantly, the catalytic activity is systematically adjustable by the number of PLFL treatment cycles. The occurrence of thermal melting and decomposition during one PLFL cycle is verified by modelling the laser beam energy distribution within the irradiated colloid volume and comparing the by single particles absorbed part to threshold energies. Thermal decomposition leads to a massive reduction in particle size and crystal transformations towards crystalline CoO and amorphous CoFe2O4. Subsequently, thermal melting forms multi-phase spherical and network-like particles. Additionally, Fe-based layered double hydroxides at higher process cycle repetitions emerge as a byproduct. The results show that PLFL is a promising method that allows modification of the structural order in oxides and thus access to catalytically interesting materials.

18.
Dalton Trans ; 46(18): 6039-6048, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28426069

RESUMEN

Indium tin oxide (ITO) particle coatings are known for high transparency in the visible, good conductive properties and near-infrared absorption. These properties depend on ITO particle's stoichiometric composition, defects and size. Here we present a method to gradually change ITO particle's optical properties by a simple and controlled laser irradiation process. The defined irradiation process and controlled energy dose input allows one to engineer the absorption and transmission of coatings made from these particles. We investigate the role of the surrounding solvent, influence of laser fluence and the specific energy dose targeting modification of the ITO particle's morphology and chemistry by stepwise laser irradiation in a free liquid jet. TEM, SEM, EDX, XPS, XRD and Raman are used to elucidate the structural, morphological and chemical changes of the laser-induced ITO particles. On the basis of these results the observed modification of the optical properties is tentatively attributed to chemical changes, e.g. laser-induced defects or partial reduction.

19.
Drug Saf ; 40(3): 191-199, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28101815

RESUMEN

The number of pharmacovigilance professionals worldwide is increasing with a high staff turnover. There is a constant stream of new colleagues with an interest or need to learn about the discipline. Consequently, there is an increasing need for training in pharmacovigilance. An important step towards this has been made through developing and publishing the World Health Organization (WHO)-International Society of Pharmacovigilance (ISoP) Pharmacovigilance Curriculum. Using the Pharmacovigilance Curriculum effectively, it should be supplemented by providing comprehensive training material from various sources, and making the Pharmacovigilance Curriculum attractive and a high-utility product. We describe a pilot of the development and initial evaluation of a crowdsourcing tool for the provision of pharmacovigilance education material. Pharmacovigilance experts shared links to their material to sections of relevance in the hierarchy and a small group of organisations conducted an initial testing. In this pilot, we have shown the usability of such a web-based tool. The strengths of this approach include the potential for a routine 'democratic' approach to sharing educational material to a wider community and an openness for access.


Asunto(s)
Colaboración de las Masas/métodos , Curriculum , Personal de Salud/educación , Farmacovigilancia , Acceso a la Información , Humanos , Internet , Proyectos Piloto , Organización Mundial de la Salud
20.
Dalton Trans ; 46(3): 656-668, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28091643

RESUMEN

A systematic study on the microwave-assisted thermolysis of the single source precursor (Et2Sb)2Te (1) in different asymmetric 1-alkyl-3-methylimidazolium- and symmetric 1,3-dialkylimidazolium-based ionic liquids (ILs) reveals the distinctive role of both the anion and the cation in tuning the morphology and microstructure of the resulting Sb2Te3 nanoparticles as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray photoelectron spectroscopy (XPS). A comparison of the electrical and thermal conductivities as well as the Seebeck coefficient of the Sb2Te3 nanoparticles obtained from different ILs reveals the strong influence of the specific IL, from which C4mimI was identified as the best solvent, on the thermoelectric properties of as-prepared nanosized Sb2Te3. This work provides design guidelines for ILs, which allow the synthesis of nanostructured thermoelectrics with improved performances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...