Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Geophys Res Atmos ; 126(24): e2021JD035692, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35865864

RESUMEN

Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air quality and atmospheric composition. Two traditional approaches are widely used to calculate fire emissions: a satellite-based top-down approach and a fuels-based bottom-up approach. However, these methods often considerably disagree on the amount of particulate mass emitted from fires. Previously available observational datasets tended to be sparse, and lacked the statistics needed to resolve these methodological discrepancies. Here, we leverage the extensive and comprehensive airborne in situ and remote sensing measurements of smoke plumes from the recent Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign to statistically assess the skill of the two traditional approaches. We use detailed campaign observations to calculate and compare emission rates at an exceptionally high-resolution using three separate approaches: top-down, bottom-up, and a novel approach based entirely on integrated airborne in situ measurements. We then compute the daily average of these high-resolution estimates and compare with estimates from lower resolution, global top-down and bottom-up inventories. We uncover strong, linear relationships between all of the high-resolution emission rate estimates in aggregate, however no single approach is capable of capturing the emission characteristics of every fire. Global inventory emission rate estimates exhibited weaker correlations with the high-resolution approaches and displayed evidence of systematic bias. The disparity between the low-resolution global inventories and the high-resolution approaches is likely caused by high levels of uncertainty in essential variables used in bottom-up inventories and imperfect assumptions in top-down inventories.

2.
Appl Opt ; 57(21): 6061-6075, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30118035

RESUMEN

The NASA Langley airborne second-generation High Spectral Resolution Lidar (HSRL-2) uses a density-tuned field-widened Michelson interferometer to implement the HSRL technique at 355 nm. The Michelson interferometer optically separates the received backscattered light between two channels, one of which is dominated by molecular backscattering, while the other contains most of the light backscattered by particles. This interferometer achieves high and stable contrast ratio, defined as the ratio of particulate backscatter signal received by the two channels. We show that a high and stable contrast ratio is critical for precise and accurate backscatter and extinction retrievals. Here, we present retrieval equations that take into account the incomplete separation of particulate and molecular backscatter in the measurement channels. We also show how the accuracy of the contrast ratio assessment propagates to error in the optical properties. For both backscattering and extinction, larger errors are produced by underestimates of the contrast ratio (compared to overestimates), more extreme aerosol loading, and-most critically-smaller true contrast ratios. We show example results from HSRL-2 aboard the NASA ER-2 aircraft from the 2016 ORACLES field campaign in the southeast Atlantic, off the coast of Africa, during the biomass burning season. We include a case study where smoke aerosol in two adjacent altitude layers showed opposite differences in extinction- and backscatter-related Ångström exponents and a reversal of the lidar ratio spectral dependence, signatures which are shown to be consistent with a relatively modest difference in smoke particle size.

3.
Sci Total Environ ; 637-638: 1137-1149, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29801207

RESUMEN

The Rim Fire was one of the largest wildfires in California history, burning over 250,000 acres during August and September 2013 affecting air quality locally and regionally in the western U.S. Routine surface monitors, remotely sensed data, and aircraft based measurements were used to assess how well the Community Multiscale Air Quality (CMAQ) photochemical grid model applied at 4 and 12 km resolution represented regional plume transport and chemical evolution during this extreme wildland fire episode. Impacts were generally similar at both grid resolutions although notable differences were seen in some secondary pollutants (e.g., formaldehyde and peroxyacyl nitrate) near the Rim fire. The modeling system does well at capturing near-fire to regional scale smoke plume transport compared to remotely sensed aerosol optical depth (AOD) and aircraft transect measurements. Plume rise for the Rim fire was well characterized as the modeled plume top was consistent with remotely sensed data and the altitude of aircraft measurements, which were typically made at the top edge of the plume. Aircraft-based lidar suggests O3 downwind in the Rim fire plume was vertically stratified and tended to be higher at the plume top, while CMAQ estimated a more uniformly mixed column of O3. Predicted wildfire ozone (O3) was overestimated both at the plume top and at nearby rural and urban surface monitors. Photolysis rates were well characterized by the model compared with aircraft measurements meaning aerosol attenuation was reasonably estimated and unlikely contributing to O3 overestimates at the top of the plume. Organic carbon was underestimated close to the Rim fire compared to aircraft data, but was consistent with nearby surface measurements. Periods of elevated surface PM2.5 at rural monitors near the Rim fire were not usually coincident with elevated O3.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Modelos Químicos , Incendios Forestales , Contaminación del Aire/estadística & datos numéricos , Aeronaves , California , Modelos Teóricos , Ozono , Imágenes Satelitales
4.
Appl Opt ; 40(30): 5280-94, 2001 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-18364809

RESUMEN

A high-spectral-resolution lidar can measure vertical profiles of atmospheric temperature, pressure, the aerosol backscatter ratio, and the aerosol extinction coefficient simultaneously. We describe a system with these characteristics. The transmitter is a narrow-band (FWHM of the order of 74 MHz), injection-seeded, pulsed, double YAG laser at 532 nm. Iodine-vapor filters in the detection system spectrally separate the molecular and aerosol scattering and greatly reduce the latter (-41 dB). Operating at a selected frequency to take advantage of two neighboring lines in vapor filters, one can obtain a sensitivity of the measured signal-to-air temperature ratio equal to 0.42%/K. Using a relatively modest size transmitter and receiver system (laser power times telescope aperture equals 0.19 Wm(2)), our measured temperature profiles (0.5-15 km) over 11 nights are in agreement with balloon soundings to within 2.0 K over an altitude range of 2-5 km. There is good agreement in the lapse rates, tropopause altitudes, and inversions. In principle, to invert the signal requires a known density at one altitude, but in practice it is convenient to also use a known temperature at that altitude. This is a scalable system for high spatial resolution of vertical temperature profiles in the troposphere and lower stratosphere, even in the presence of aerosols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...