Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 274, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174927

RESUMEN

BACKGROUND: Growing evidence suggests that distal regulatory elements are essential for cellular function and states. The sequences within these distal elements, especially motifs for transcription factor binding, provide critical information about the underlying regulatory programs. However, cooperativities between transcription factors that recognize these motifs are nonlinear and multiplexed, rendering traditional modeling methods insufficient to capture the underlying mechanisms. Recent development of attention mechanism, which exhibit superior performance in capturing dependencies across input sequences, makes them well-suited to uncover and decipher intricate dependencies between regulatory elements. RESULT: We present Transcription factors cooperativity Inference Analysis with Neural Attention (TIANA), a deep learning framework that focuses on interpretability. In this study, we demonstrated that TIANA could discover biologically relevant insights into co-occurring pairs of transcription factor motifs. Compared with existing tools, TIANA showed superior interpretability and robust performance in identifying putative transcription factor cooperativities from co-occurring motifs. CONCLUSION: Our results suggest that TIANA can be an effective tool to decipher transcription factor cooperativities from distal sequence data. TIANA can be accessed through: https://github.com/rzzli/TIANA .


Asunto(s)
Factores de Transcripción , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Aprendizaje Profundo , Biología Computacional/métodos , Humanos , Sitios de Unión
2.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895459

RESUMEN

Biological sex is an important risk factor in cancer, but the underlying cell types and mechanisms remain obscure. Since tumor development is regulated by the immune system, we hypothesize that sex-biased immune interactions underpin sex differences in cancer. The male-biased glioblastoma multiforme (GBM) is an aggressive and treatment-refractory tumor in urgent need of more innovative approaches, such as considering sex differences, to improve outcomes. GBM arises in the specialized brain immune environment dominated by microglia, so we explored sex differences in this immune cell type. We isolated adult human TAM-MGs (tumor-associated macrophages enriched for microglia) and control microglia and found sex-biased inflammatory signatures in GBM and lower-grade tumors associated with pro-tumorigenic activity in males and anti-tumorigenic activity in females. We demonstrated that genes expressed or modulated by the inactive X chromosome facilitate this bias. Together, our results implicate TAM-MGs, specifically their sex chromosomes, as drivers of male bias in GBM.

3.
Curr Opin Genet Dev ; 84: 102146, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171044

RESUMEN

Microglia are the major immune cells of the central nervous system (CNS) that perform numerous adaptive functions required for normal CNS development and homeostasis but are also linked to neurodegenerative and behavioral diseases. Microglia development and function are strongly influenced by brain environmental signals that are integrated at the level of transcriptional enhancers to drive specific programs of gene expression. Here, we describe a conceptual framework for how lineage-determining and signal-dependent transcription factors interact to select and regulate the ensembles of enhancers that determine microglia development and function. We then highlight recent findings that advance these concepts and conclude with a consideration of open questions that represent some of the major hurdles to be addressed in the future.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Humanos , Microglía/fisiología , Enfermedades Neurodegenerativas/genética , Sistema Nervioso Central , Encéfalo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA