Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 23: 370-389, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34761052

RESUMEN

Delivery of adeno-associated viral vectors (AAVs) to cerebrospinal fluid (CSF) has emerged as a promising approach to achieve widespread transduction of the central nervous system (CNS) and peripheral nervous system (PNS), with direct applicability to the treatment of a wide range of neurological diseases, particularly lysosomal storage diseases. Although studies in small animal models have provided proof of concept and experiments in large animals demonstrated feasibility in bigger brains, there is not much information on long-term safety or durability of the effect. Here, we report a 7-year study in healthy beagle dogs after intra-CSF delivery of a single, clinically relevant dose (2 × 1013 vg/dog) of AAV9 vectors carrying the canine sulfamidase, the enzyme deficient in mucopolysaccharidosis type IIIA. Periodic monitoring of CSF and blood, clinical and neurological evaluations, and magnetic resonance and ultrasound imaging of target organs demonstrated no toxicity related to treatment. AAV9-mediated gene transfer resulted in detection of sulfamidase activity in CSF throughout the study. Analysis at tissue level showed widespread sulfamidase expression and activity in the absence of histological findings in any region of encephalon, spinal cord, or dorsal root ganglia. Altogether, these results provide proof of durability of expression and long-term safety for intra-CSF delivery of AAV-based gene transfer vectors encoding therapeutic proteins to the CNS.

2.
Hum Gene Ther ; 30(10): 1211-1221, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31482754

RESUMEN

For most lysosomal storage diseases (LSDs), there is no cure. Gene therapy is an attractive tool for treatment of LSDs caused by deficiencies in secretable lysosomal enzymes, in which neither full restoration of normal enzymatic activity nor transduction of all cells of the affected organ is necessary. However, some LSDs, such as mucopolysaccharidosis type III (MPSIII) diseases or Sanfilippo syndrome, represent a difficult challenge because patients suffer severe neurodegeneration with mild somatic alterations. The disease's main target is the central nervous system (CNS) and enzymes do not efficiently cross the blood-brain barrier (BBB) even if present at very high concentration in circulation. No specific treatment has been approved for MPSIII. In this study, we discuss the adeno-associated virus (AAV) vector-mediated gene transfer strategies currently being developed for MPSIII disease. These strategies rely on local delivery of AAV vectors to the CNS either through direct intraparenchymal injection at several sites or through delivery to the cerebrospinal fluid (CSF), which bathes the whole CNS, or exploit the properties of certain AAV serotypes capable of crossing the BBB upon systemic administration. Although studies in small and large animal models of MPSIII diseases have provided evidence supporting the efficacy and safety of all these strategies, there are considerable differences between the different routes of administration in terms of procedure-associated risks, vector dose requirements, sensitivity to the effect of circulating neutralizing antibodies that block AAV transduction, and potential toxicity. Ongoing clinical studies should shed light on which gene transfer strategy leads to highest clinical benefits while minimizing risks. The development of all these strategies opens a new horizon for treatment of not only MPSIII and other LSDs but also of a wide range of neurological diseases.


Asunto(s)
Encéfalo/metabolismo , Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Mucopolisacaridosis III/terapia , Animales , Anticuerpos Neutralizantes/biosíntesis , Barrera Hematoencefálica/metabolismo , Encéfalo/patología , Ensayos Clínicos como Asunto , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Inyecciones Intralesiones , Inyecciones Intravenosas , Lentivirus/genética , Lentivirus/metabolismo , Mucopolisacaridosis III/líquido cefalorraquídeo , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/patología
3.
EMBO Mol Med ; 10(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29987000

RESUMEN

Prevalence of type 2 diabetes (T2D) and obesity is increasing worldwide. Currently available therapies are not suited for all patients in the heterogeneous obese/T2D population, hence the need for novel treatments. Fibroblast growth factor 21 (FGF21) is considered a promising therapeutic agent for T2D/obesity. Native FGF21 has, however, poor pharmacokinetic properties, making gene therapy an attractive strategy to achieve sustained circulating levels of this protein. Here, adeno-associated viral vectors (AAV) were used to genetically engineer liver, adipose tissue, or skeletal muscle to secrete FGF21. Treatment of animals under long-term high-fat diet feeding or of ob/ob mice resulted in marked reductions in body weight, adipose tissue hypertrophy and inflammation, hepatic steatosis, inflammation and fibrosis, and insulin resistance for > 1 year. This therapeutic effect was achieved in the absence of side effects despite continuously elevated serum FGF21. Furthermore, FGF21 overproduction in healthy animals fed a standard diet prevented the increase in weight and insulin resistance associated with aging. Our study underscores the potential of FGF21 gene therapy to treat obesity, insulin resistance, and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Factores de Crecimiento de Fibroblastos/genética , Terapia Genética , Resistencia a la Insulina , Obesidad/terapia , Adipocitos/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa , Metabolismo Energético , Hígado Graso/terapia , Factores de Crecimiento de Fibroblastos/metabolismo , Fibrosis/terapia , Técnicas de Transferencia de Gen , Hiperplasia/terapia , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Músculo Esquelético/metabolismo , Obesidad/genética , Pancreatitis/terapia
4.
Mol Metab ; 6(7): 664-680, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28702323

RESUMEN

OBJECTIVE: Type 1 diabetes is characterized by autoimmune destruction of ß-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding ß-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for ß-cells with immunomodulatory properties. METHODS: Transgenic NOD mice overexpressing IGF1 specifically in ß-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. RESULTS: In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of ß-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved ß-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. CONCLUSIONS: Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a therapeutic strategy for autoimmune diabetes in humans.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Factor I del Crecimiento Similar a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Animales , Células Cultivadas , Dependovirus/genética , Diabetes Mellitus Tipo 1/terapia , Femenino , Terapia Genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos ICR , Ratones Endogámicos NOD
5.
Mol Ther Methods Clin Dev ; 6: 1-7, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28626777

RESUMEN

Diabetes is a complex metabolic disease that exposes patients to the deleterious effects of hyperglycemia on various organs. Achievement of normoglycemia with exogenous insulin treatment requires the use of high doses of hormone, which increases the risk of life-threatening hypoglycemic episodes. We developed a gene therapy approach to control diabetic hyperglycemia based on co-expression of the insulin and glucokinase genes in skeletal muscle. Previous studies proved the feasibility of gene delivery to large diabetic animals with adeno-associated viral (AAV) vectors. Here, we report the long-term (∼8 years) follow-up after a single administration of therapeutic vectors to diabetic dogs. Successful, multi-year control of glycemia was achieved without the need of supplementation with exogenous insulin. Metabolic correction was demonstrated through normalization of serum levels of fructosamine, triglycerides, and cholesterol and remarkable improvement in the response to an oral glucose challenge. The persistence of vector genomes and therapeutic transgene expression years after vector delivery was documented in multiple samples from treated muscles, which showed normal morphology. Thus, this study demonstrates the long-term efficacy and safety of insulin and glucokinase gene transfer in large animals and especially the ability of the system to respond to the changes in metabolic needs as animals grow older.

6.
Hum Mol Genet ; 26(8): 1535-1551, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28334745

RESUMEN

Gene therapy is a promising therapeutic alternative for Lysosomal Storage Disorders (LSD), as it is not necessary to correct the genetic defect in all cells of an organ to achieve therapeutically significant levels of enzyme in body fluids, from which non-transduced cells can uptake the protein correcting their enzymatic deficiency. Animal models are instrumental in the development of new treatments for LSD. Here we report the generation of the first mouse model of the LSD Muccopolysaccharidosis Type IIID (MPSIIID), also known as Sanfilippo syndrome type D. This autosomic recessive, heparan sulphate storage disease is caused by deficiency in N-acetylglucosamine 6-sulfatase (GNS). Mice deficient in GNS showed lysosomal storage pathology and loss of lysosomal homeostasis in the CNS and peripheral tissues, chronic widespread neuroinflammation, reduced locomotor and exploratory activity and shortened lifespan, a phenotype that closely resembled human MPSIIID. Moreover, treatment of the GNS-deficient animals with GNS-encoding adeno-associated viral (AAV) vectors of serotype 9 delivered to the cerebrospinal fluid completely corrected pathological storage, improved lysosomal functionality in the CNS and somatic tissues, resolved neuroinflammation, restored normal behaviour and extended lifespan of treated mice. Hence, this work represents the first step towards the development of a treatment for MPSIIID.


Asunto(s)
Terapia Genética , Enfermedades por Almacenamiento Lisosomal/terapia , Mucopolisacaridosis III/terapia , Sulfatasas/genética , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Ratones , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/patología , Fenotipo , Sulfatasas/administración & dosificación
7.
JCI Insight ; 1(9): e86696, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27699273

RESUMEN

Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-Ids) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9-Ids-treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment.


Asunto(s)
Terapia Genética , Iduronato Sulfatasa/genética , Mucopolisacaridosis II/terapia , Animales , Dependovirus , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL
8.
Dis Model Mech ; 9(9): 999-1013, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27491071

RESUMEN

Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe lysosomal storage disease caused by deficiency in activity of the transmembrane enzyme heparan-α-glucosaminide N-acetyltransferase (HGSNAT) that catalyses the N-acetylation of α-glucosamine residues of heparan sulfate. Enzyme deficiency causes abnormal substrate accumulation in lysosomes, leading to progressive and severe neurodegeneration, somatic pathology and early death. There is no cure for MPSIIIC, and development of new therapies is challenging because of the unfeasibility of cross-correction. In this study, we generated a new mouse model of MPSIIIC by targeted disruption of the Hgsnat gene. Successful targeting left LacZ expression under control of the Hgsnat promoter, allowing investigation into sites of endogenous expression, which was particularly prominent in the CNS, but was also detectable in peripheral organs. Signs of CNS storage pathology, including glycosaminoglycan accumulation, lysosomal distension, lysosomal dysfunction and neuroinflammation were detected in 2-month-old animals and progressed with age. Glycosaminoglycan accumulation and ultrastructural changes were also observed in most somatic organs, but lysosomal pathology seemed most severe in liver. Furthermore, HGSNAT-deficient mice had altered locomotor and exploratory activity and shortened lifespan. Hence, this animal model recapitulates human MPSIIIC and provides a useful tool for the study of disease physiopathology and the development of new therapeutic approaches.


Asunto(s)
Progresión de la Enfermedad , Mucopolisacaridosis III/patología , Acetiltransferasas/deficiencia , Acetiltransferasas/metabolismo , Animales , Conducta Animal , Encéfalo/enzimología , Encéfalo/patología , Modelos Animales de Enfermedad , Glicosaminoglicanos/metabolismo , Homeostasis , Humanos , Inflamación/patología , Longevidad , Lisosomas/metabolismo , Lisosomas/patología , Lisosomas/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Mucopolisacaridosis III/enzimología , Especificidad de Órganos , Análisis de Supervivencia
9.
J Biol Chem ; 290(27): 16772-85, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25971976

RESUMEN

The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in ß-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on ß-cell functionality. Overexpression of IGF2 led to ß-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on ß-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to ß-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on ß-cells function.


Asunto(s)
Diabetes Mellitus/genética , Factor II del Crecimiento Similar a la Insulina/genética , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Animales , Desdiferenciación Celular , Línea Celular Tumoral , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Humanos , Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas
10.
Curr Neurovasc Res ; 12(2): 189-98, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25760215

RESUMEN

Proliferative retinopathies are the leading causes of blindness in Western societies. The development of new, more efficacious treatments that take advantage of recent advances in the fields of gene and cell therapy requires further investigations on the mechanisms underlying disease onset and progression, and adequate animal models that recapitulate the pathogenesis of human proliferative retinopathy and allow evaluation of the long-term therapeutic benefits that these therapies can offer. Unfortunately, most models of retinal neovascularization have short-term evolution and diabetic rodents show a very mild retinal phenotype, limited to non-proliferative changes, and do not develop proliferative retinopathy at all. Transgenic mice overexpressing Insulin-like Growth Factor-I (IGF-I) in the retina (TgIGF-I) constitute the only rodent model currently available that develops most of the retinal alterations observed in diabetic eyes, with a temporal evolution that resembles that of the human disease. TgIGF-I have retinal vascular alterations that progress as animals age from non-proliferative to proliferative disease, making these mice an excellent model of proliferative retinopathy that, due to its slow progression, allows long-term evaluation of novel antiangiogenic therapies. At the molecular level, transgenic retinas recapitulate a variety of changes that are also observed in diabetic retinas, which reinforces the validity of this model. In addition to vascular and glial alterations, Tg-IGF-I mice show progressive neurodegeneration that leads to blindness in old animals. Thus, TgIGF-I are a useful model for testing the long-term efficacy and safety of innovative antiangiogenic, glial-modulating and neuroprotective therapies for the treatment of diabetic retinopathy and other retinal proliferative disorders.


Asunto(s)
Modelos Animales de Enfermedad , Neovascularización Retiniana , Animales , Humanos
11.
Hum Mol Genet ; 24(7): 2078-95, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25524704

RESUMEN

Gene therapy is an attractive tool for the treatment of monogenic disorders, in particular for lysosomal storage diseases (LSD) caused by deficiencies in secretable lysosomal enzymes in which neither full restoration of normal enzymatic activity nor transduction of all affected cells are necessary. However, some LSD such as Mucopolysaccharidosis Type IIIB (MPSIIIB) are challenging because the disease's main target organ is the brain and enzymes do not efficiently cross the blood-brain barrier even if present at very high concentration in circulation. To overcome these limitations, we delivered AAV9 vectors encoding for α-N-acetylglucosaminidase (NAGLU) to the Cerebrospinal Fluid (CSF) of MPSIIIB mice with the disease already detectable at biochemical, histological and functional level. Restoration of enzymatic activity in Central Nervous System (CNS) resulted in normalization of glycosaminoglycan content and lysosomal physiology, resolved neuroinflammation and restored the pattern of gene expression in brain similar to that of healthy animals. Additionally, transduction of the liver due to passage of vectors to the circulation led to whole-body disease correction. Treated animals also showed reversal of behavioural deficits and extended lifespan. Importantly, when the levels of enzymatic activity were monitored in the CSF of dogs following administration of canine NAGLU-coding vectors to animals that were either naïve or had pre-existing immunity against AAV9, similar levels of activity were achieved, suggesting that CNS efficacy would not be compromised in patients seropositive for AAV9. Our studies provide a strong rationale for the clinical development of this novel therapeutic approach as the treatment for MPSIIIB.


Asunto(s)
Acetilglucosaminidasa/genética , Terapia Genética/métodos , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/terapia , Acetilglucosaminidasa/líquido cefalorraquídeo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Dependovirus/genética , Dependovirus/metabolismo , Femenino , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mucopolisacaridosis III/líquido cefalorraquídeo , Mucopolisacaridosis III/enzimología
12.
Blood ; 122(19): 3283-7, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24085764

RESUMEN

Monogenic diseases, including hemophilia, represent ideal targets for genome-editing approaches aimed at correcting a defective gene. Here we report that systemic adeno-associated virus (AAV) vector delivery of zinc finger nucleases (ZFNs) and corrective donor template to the predominantly quiescent livers of adult mice enables production of high levels of human factor IX in a murine model of hemophilia B. Further, we show that off-target cleavage can be substantially reduced while maintaining robust editing by using obligate heterodimeric ZFNs engineered to minimize unwanted cleavage attributable to homodimerization of the ZFNs. These results broaden the therapeutic potential of AAV/ZFN-mediated genome editing in the liver and could expand this strategy to other nonreplicating cell types.


Asunto(s)
Endonucleasas/genética , Factor IX/biosíntesis , Terapia Genética/métodos , Vectores Genéticos , Genoma , Hemofilia B/terapia , Dedos de Zinc/genética , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Endonucleasas/metabolismo , Factor IX/genética , Factor IX/metabolismo , Hemofilia B/genética , Hemofilia B/patología , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos , Multimerización de Proteína
13.
J Clin Invest ; 123(8): 3254-3271, 2013 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-23863627

RESUMEN

For most lysosomal storage diseases (LSDs) affecting the CNS, there is currently no cure. The BBB, which limits the bioavailability of drugs administered systemically, and the short half-life of lysosomal enzymes, hamper the development of effective therapies. Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomic recessive LSD caused by a deficiency in sulfamidase, a sulfatase involved in the stepwise degradation of glycosaminoglycan (GAG) heparan sulfate. Here, we demonstrate that intracerebrospinal fluid (intra-CSF) administration of serotype 9 adenoassociated viral vectors (AAV9s) encoding sulfamidase corrects both CNS and somatic pathology in MPS IIIA mice. Following vector administration, enzymatic activity increased throughout the brain and in serum, leading to whole body correction of GAG accumulation and lysosomal pathology, normalization of behavioral deficits, and prolonged survival. To test this strategy in a larger animal, we treated beagle dogs using intracisternal or intracerebroventricular delivery. Administration of sulfamidase-encoding AAV9 resulted in transgenic expression throughout the CNS and liver and increased sulfamidase activity in CSF. High-titer serum antibodies against AAV9 only partially blocked CSF-mediated gene transfer to the brains of dogs. Consistently, anti-AAV antibody titers were lower in CSF than in serum collected from healthy and MPS IIIA-affected children. These results support the clinical translation of this approach for the treatment of MPS IIIA and other LSDs with CNS involvement.

14.
Mol Ther ; 21(9): 1727-37, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23857231

RESUMEN

Immune responses directed against viral capsid proteins constitute a main safety concern in the use of adeno-associated virus (AAV) as gene transfer vectors in humans. Pharmacological immunosuppression has been proposed as a solution to the problem; however, the approach suffers from several potential limitations. Using MHC class II epitopes initially identified within human IgG, named Tregitopes, we showed that it is possible to modulate CD8+ T cell responses to several viral antigens in vitro. We showed that incubation of peripheral blood mononuclear cells with these epitopes triggers proliferation of CD4+CD25+FoxP3+ T cells that suppress killing of target cells loaded with MHC class I antigens in an antigen-specific fashion, through a mechanism that seems to require cell-to-cell contact. Expression of a construct encoding for the AAV capsid structural protein fused to Tregitopes resulted in reduction of CD8+ T cell reactivity against the AAV capsid following immunization with an adenoviral vector expressing capsid. This was accompanied by an increase in frequency of CD4+CD25+FoxP3+ T cells in spleens and lower levels of inflammatory infiltrates in injected tissues. This proof-of-concept study demonstrates modulation of CD8+ T cell reactivity to an antigen using regulatory T cell epitopes is possible.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Proteínas de la Cápside/inmunología , Dependovirus/inmunología , Epítopos de Linfocito T/inmunología , Vectores Genéticos , Inmunoglobulina G/inmunología , Animales , Antígenos Virales/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Cápside/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Células Cultivadas , Dependovirus/genética , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/metabolismo , Terapia Genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Inmunoglobulina G/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología , Linfocitos T Reguladores/inmunología
15.
J Biol Chem ; 288(24): 17631-42, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23620587

RESUMEN

Insulin-like growth factor I (IGF-I) exerts multiple effects on different retinal cell types in both physiological and pathological conditions. Despite the growth factor's extensively described neuroprotective actions, transgenic mice with increased intraocular levels of IGF-I showed progressive impairment of electroretinographic amplitudes up to complete loss of response, with loss of photoreceptors and bipolar, ganglion, and amacrine neurons. Neurodegeneration was preceded by the overexpression of genes related to retinal stress, acute-phase response, and gliosis, suggesting that IGF-I altered normal retinal homeostasis. Indeed, gliosis and microgliosis were present from an early age in transgenic mice, before other alterations occurred, and were accompanied by signs of oxidative stress and impaired glutamate recycling. Older mice also showed overproduction of pro-inflammatory cytokines. Our results suggest that, when chronically increased, intraocular IGF-I is responsible for the induction of deleterious cellular processes that can lead to neurodegeneration, and they highlight the importance that this growth factor may have in the pathogenesis of conditions such as ischemic or diabetic retinopathy.


Asunto(s)
Gliosis/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Enfermedades de la Retina/metabolismo , Células Amacrinas/metabolismo , Células Amacrinas/patología , Animales , Apoptosis , Citocinas/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Ácido Glutámico/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Enfermedades Neurodegenerativas/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Células Fotorreceptoras de Vertebrados/patología , Retina/metabolismo , Retina/patología , Retina/fisiopatología , Transducción de Señal , Técnicas de Cultivo de Tejidos , Transcriptoma
16.
Diabetes ; 62(5): 1718-29, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23378612

RESUMEN

Diabetes is associated with severe secondary complications, largely caused by poor glycemic control. Treatment with exogenous insulin fails to prevent these complications completely, leading to significant morbidity and mortality. We previously demonstrated that it is possible to generate a "glucose sensor" in skeletal muscle through coexpression of glucokinase and insulin, increasing glucose uptake and correcting hyperglycemia in diabetic mice. Here, we demonstrate long-term efficacy of this approach in a large animal model of diabetes. A one-time intramuscular administration of adeno-associated viral vectors of serotype 1 encoding for glucokinase and insulin in diabetic dogs resulted in normalization of fasting glycemia, accelerated disposal of glucose after oral challenge, and no episodes of hypoglycemia during exercise for >4 years after gene transfer. This was associated with recovery of body weight, reduced glycosylated plasma proteins levels, and long-term survival without secondary complications. Conversely, exogenous insulin or gene transfer for insulin or glucokinase alone failed to achieve complete correction of diabetes, indicating that the synergistic action of insulin and glucokinase is needed for full therapeutic effect. This study provides the first proof-of-concept in a large animal model for a gene transfer approach to treat diabetes.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Terapia Genética , Glucoquinasa/genética , Insulina/genética , Transgenes , Animales , Terapia Combinada , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Perros , Técnicas de Transferencia de Gen , Glucoquinasa/metabolismo , Humanos , Hiperglucemia/prevención & control , Hipoglucemia/prevención & control , Hipoglucemiantes/uso terapéutico , Inyecciones Intramusculares , Insulina/sangre , Insulina/metabolismo , Insulina/uso terapéutico , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos , Actividad Motora , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratas , Organismos Libres de Patógenos Específicos
17.
Rare Dis ; 1: e27209, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25003015

RESUMEN

Mucopolysaccharidosis Type IIIA (MPSIIIA) represents an unmet medical need. MPSIIIA shares with many other lysosomal storage disorders (LSD) the characteristic of being a severe neurodegenerative disease accompanied by mild somatic involvement. Thus, the main target organ for the development of new treatments is the central nervous system (CNS), but overall clinical efficacy would be greatly enhanced by simultaneous correction of peripheral disease. We have recently developed a novel treatment for MPSIIIA based on the delivery to the cerebrospinal fluid of serotype 9 adeno-associated virus (AAV9)-derived vectors. This gene therapy strategy corrected both CNS and somatic pathology in animal models through widespread transduction of CNS, peripheral nervous system (PNS), and liver. The work set the grounds for the clinical translation of the approach to treat MPSIIIA in humans. Here we discuss some important considerations that further support the applicability of this treatment to MPSIIIA and other LSD with CNS and somatic involvement.

18.
PLoS One ; 7(7): e41511, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22911805

RESUMEN

Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders.


Asunto(s)
Envejecimiento/patología , Retinopatía Diabética/patología , Retinopatía Diabética/prevención & control , Proteínas del Ojo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Retina/metabolismo , Neovascularización Retiniana/patología , Neovascularización Retiniana/prevención & control , Serpinas/metabolismo , Animales , Hipoxia de la Célula , Dependovirus/genética , Retinopatía Diabética/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Inyecciones Intravítreas , Ratones , Ratones Transgénicos , Retina/patología , Desprendimiento de Retina/metabolismo , Desprendimiento de Retina/patología , Neovascularización Retiniana/metabolismo , Factores de Tiempo , Transducción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Hum Gene Ther ; 23(12): 1237-46, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22909060

RESUMEN

Mucopolysaccharidosis type IIIA (MPSIIIA) is a rare lysosomal storage disorder caused by mutations in the sulfamidase gene. Accumulation of glycosaminoglycan (GAG) inside the lysosomes is associated with severe neurodegeneration as well as peripheral organ pathological changes leading to death of affected individuals during adolescence. There is no cure for MPSIIIA. Due to the limitation of the blood-brain barrier, enzyme replacement therapy and gene therapy strategies attempted thus far have not achieved whole-body correction of the disease. After the systemic administration of an adeno-associated virus 9 (AAV9) vector encoding for sulfamidase under the control of a ubiquitous promoter, we were able to obtain widespread expression of the therapeutic transgene in brain and in peripheral organs, and sulfamidase activity in serum of both male and female MPSIIIA mice. This was accompanied by the normalization of GAG storage levels in most peripheral organs. In brain, decrease in GAG tissue content following AAV9 gene transfer of sulfamidase was associated with the resolution of neuroinflammation. Finally, correction of disease phenotype resulted in a remarkable prolongation of survival of both male and female AAV-treated MPSIIIA mice. This proof-of-concept study will be relevant to the future development of therapies for MPSIIIA.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/farmacología , Glicosaminoglicanos/metabolismo , Hidrolasas/genética , Mucopolisacaridosis III/terapia , Animales , Sistema Nervioso Central/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Vectores Genéticos/administración & dosificación , Hígado/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/patología , Transgenes
20.
Mol Ther ; 20(2): 254-66, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22008915

RESUMEN

Mucopolysaccharidosis type IIIA (MPSIIIA) is an inherited lysosomal storage disease caused by deficiency of sulfamidase, resulting in accumulation of the glycosaminoglycan (GAG) heparan sulfate. It is characterized by severe progressive neurodegeneration, together with somatic alterations, which lead to death during adolescence. Here, we tested the ability of adeno-associated virus (AAV) vector-mediated genetic modification of either skeletal muscle or liver to revert the already established disease phenotype of 2-month-old MPSIIIA males and females. Intramuscular administration of AAV-Sulfamidase failed to achieve significant therapeutic benefit in either gender. In contrast, AAV8-mediated liver-directed gene transfer achieved high and sustained levels of circulating active sulfamidase, which reached normal levels in females and was fourfold higher in males, and completely corrected lysosomal GAG accumulation in most somatic tissues. Remarkably, a 50% reduction of GAG accumulation was achieved throughout the entire brain of males, which correlated with a partial improvement of the pathology of cerebellum and cortex. Liver-directed gene transfer expanded the lifespan of MPSIIIA males, underscoring the importance of reaching supraphysiological plasma levels of enzyme for maximal therapeutic benefit. These results show how liver-directed gene transfer can reverse somatic and ameliorate neurological pathology in MPSIIIA.


Asunto(s)
Sistema Nervioso Central/patología , Terapia Genética , Hidrolasas/genética , Hígado/metabolismo , Mucopolisacaridosis III/terapia , Animales , Cerebelo/ultraestructura , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Orden Génico , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Vectores Genéticos/farmacocinética , Hidrolasas/metabolismo , Inyecciones Intramusculares , Inyecciones Intravenosas , Hígado/ultraestructura , Lisosomas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/mortalidad , Músculo Esquelético/metabolismo , Análisis de Supervivencia , Transducción Genética , Corteza Visual/patología , Corteza Visual/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...