Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Rep ; 14(1): 13772, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877099

RESUMEN

The Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear. To date, expansion has only been studied in a limited number of REDs. Here we report the first studies of the expansion mechanism in induced pluripotent stem cells derived from a patient with a form of the glutaminase deficiency disorder known as Global Developmental Delay, Progressive Ataxia, And Elevated Glutamine (GDPAG; OMIM# 618412) caused by the expansion of a CAG-STR in the 5' UTR of the glutaminase (GLS) gene. We show that alleles with as few as ~ 120 repeats show detectable expansions in culture despite relatively low levels of R-loops formed at this locus. Additionally, using a CRISPR-Cas9 knockout approach we show that PMS2 and MLH3, the constituents of MutLα and MutLγ, the 2 mammalian MutL complexes known to be involved in mismatch repair (MMR), are essential for expansion. Furthermore, PMS1, a component of a less well understood MutL complex, MutLß, is also important, if not essential, for repeat expansion in these cells. Our results provide insights into the factors important for expansion and lend weight to the idea that, despite some differences, the same mechanism is responsible for expansion in many, if not all, REDs.


Asunto(s)
Glutaminasa , Células Madre Pluripotentes Inducidas , Expansión de Repetición de Trinucleótido , Humanos , Glutaminasa/genética , Glutaminasa/metabolismo , Expansión de Repetición de Trinucleótido/genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Sistemas CRISPR-Cas
2.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260514

RESUMEN

The Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear. To date, expansion has only been studied in a limited number of REDs. Here we report the first studies of the expansion mechanism in induced pluripotent stem cells derived from a patient with a form of the glutaminase deficiency disorder known as Global Developmental Delay, Progressive Ataxia, And Elevated Glutamine (GDPAG; OMIM# 618412) caused by the expansion of a CAG-STR in the 5' UTR of the glutaminase (GLS) gene. We show that alleles with as few as ~120 repeats show detectable expansions in culture despite relatively low levels of R-loops formed at this locus. Additionally, using a CRISPR-Cas9 knockout approach we show that PMS2 and MLH3, the constituents of MutLα and MutLγ, the 2 mammalian MutL complexes known to be involved in mismatch repair (MMR), are essential for expansion. Furthermore, PMS1, a component of a less well understood MutL complex, MutLß, is also important, if not essential, for repeat expansion in these cells. Our results provide insights into the factors important for expansion and lend weight to the idea that, despite some differences, the same mechanism is responsible for expansion in many, if not all, REDs.

3.
Cells ; 12(13)2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37443745

RESUMEN

Carriers of the FMR1 premutation (PM) allele are at risk of one or more clinical conditions referred to as FX premutation-associated conditions (FXPAC). Since the FMR1 gene is on the X chromosome, the activation ratio (AR) may impact the risk, age of onset, progression, and severity of these conditions. The aim of this study was to evaluate the reliability of AR measured using different approaches and to investigate potential correlations with clinical outcomes. Molecular and clinical assessments were obtained for 30 PM female participants, and AR was assessed using both Southern blot analysis (AR-Sb) and methylation PCR (AR-mPCR). Higher ARs were associated with lower FMR1 transcript levels for any given repeat length. The higher AR-Sb was significantly associated with performance, verbal, and full-scale IQ scores, confirming previous reports. However, the AR-mPCR was not significantly associated (p > 0.05) with these measures. Similarly, the odds of depression and the number of medical conditions were correlated with higher AR-Sb but not correlated with a higher AR-mPCR. This study suggests that AR-Sb may be a more reliable measure of the AR in female carriers of PM alleles. However, further studies are warranted in a larger sample size to fully evaluate the methylation status in these participants and how it may affect the clinical phenotype.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Femenino , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Reproducibilidad de los Resultados , Heterocigoto , Metilación , Alelos
4.
Sci Rep ; 13(1): 7050, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120588

RESUMEN

Carriers of a premutation allele (PM) in the FMR1 gene are at risk of developing a number of Fragile X premutation asssociated disorders (FXPAC), including Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-associated neuropsychiatric disorders (FXAND). We have recently reported somatic CGG allele expansion in female PM; however, its clinical significance remains unclear. The aim of this study was to examine the potential clinical association between somatic FMR1 allele instability and PM associated disorders. Participants comprised of 424 female PM carriers age 0.3- 90 years. FMR1 molecular measures and clinical information on the presence of medical conditions, were determined for all subjects for primary analysis. Two sub-groups of participants (age ≥ 25, N = 377 and age ≥ 50, N = 134) were used in the analysis related to presence of FXPOI and FXTAS, respectively. Among all participants (N = 424), the degree of instability (expansion) was significantly higher (median 2.5 vs 2.0, P = 0.026) in participants with a diagnosis of attention deficit hyperactivity disorder (ADHD) compared to those without. FMR1 mRNA expression was significantly higher in subjects with any psychiatric disorder diagnosis (P = 0.0017); specifically, in those with ADHD (P = 0.009), and with depression (P = 0.025). Somatic FMR1 expansion was associated with the presence of ADHD in female PM and FMR1 mRNA levels were associated with the presence of mental health disorders. The findings of our research are innovative as they suggest a potential role of the CGG expansion in the clinical phenotype of PM and may potentially guide clinical prognosis and management.


Asunto(s)
Síndrome del Cromosoma X Frágil , Expansión de Repetición de Trinucleótido , Femenino , Humanos , Alelos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , ARN Mensajero , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
5.
Hum Mol Genet ; 32(1): 46-54, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913761

RESUMEN

Glutaminase deficiency has recently been associated with ataxia and developmental delay due to repeat expansions in the 5'UTR of the glutaminase (GLS) gene. Patients with the described GLS repeat expansion may indeed remain undiagnosed due to the rarity of this variant, the challenge of its detection and the recency of its discovery. In this study, we combined advanced bioinformatics screening of ~3000 genomes and ~1500 exomes with optical genome mapping and long-read sequencing for confirmation studies. We identified two GLS families, previously intensely and unsuccessfully analyzed. One family carries an unusual and complex structural change involving a homozygous repeat expansion nested within a quadruplication event in the 5'UTR of GLS. Glutaminase deficiency and its metabolic consequences were validated by in-depth biochemical analysis. The identified GLS patients showed progressive early-onset ataxia, cognitive deficits, pyramidal tract damage and optic atrophy, thus demonstrating susceptibility of several specific neuron populations to glutaminase deficiency. This large-scale screening study demonstrates the ability of bioinformatics analysis-validated by latest state-of-the-art technologies (optical genome mapping and long-read sequencing)-to effectively flag complex repeat expansions using short-read datasets and thus facilitate diagnosis of ultra-rare disorders.


Asunto(s)
Glutaminasa , Humanos , Regiones no Traducidas 5' , Ataxia/diagnóstico , Ataxia/genética , Glutaminasa/genética
6.
Sci Rep ; 12(1): 10419, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729184

RESUMEN

The fragile X mental retardation (FMR1) gene contains an expansion-prone CGG repeat within its 5' UTR. Alleles with 55-200 repeats are known as premutation (PM) alleles and confer risk for one or more of the FMR1 premutation (PM) disorders that include Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-Associated Neuropsychiatric Disorders (FXAND). PM alleles expand on intergenerational transmission, with the children of PM mothers being at risk of inheriting alleles with > 200 CGG repeats (full mutation FM) alleles) and thus developing Fragile X Syndrome (FXS). PM alleles can be somatically unstable. This can lead to individuals being mosaic for multiple size alleles. Here, we describe a detailed evaluation of somatic mosaicism in a large cohort of female PM carriers and show that 94% display some evidence of somatic instability with the presence of a series of expanded alleles that differ from the next allele by a single repeat unit. Using two different metrics for instability that we have developed, we show that, as with intergenerational instability, there is a direct relationship between the extent of somatic expansion and the number of CGG repeats in the originally inherited allele and an inverse relationship with the number of AGG interruptions. Expansions are progressive as evidenced by a positive correlation with age and by examination of blood samples from the same individual taken at different time points. Our data also suggests the existence of other genetic or environmental factors that affect the extent of somatic expansion. Importantly, the analysis of candidate single nucleotide polymorphisms (SNPs) suggests that two DNA repair factors, FAN1 and MSH3, may be modifiers of somatic expansion risk in the PM population as observed in other repeat expansion disorders.


Asunto(s)
Síndrome del Cromosoma X Frágil , Discapacidad Intelectual , Regiones no Traducidas 5' , Alelos , Ataxia , Niño , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Humanos , Discapacidad Intelectual/genética , Mutación , Transactivadores/genética , Temblor , Expansión de Repetición de Trinucleótido
7.
Genes (Basel) ; 12(10)2021 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-34681027

RESUMEN

The Fragile X-related disorders (FXDs), which include the intellectual disability fragile X syndrome (FXS), are disorders caused by expansion of a CGG-repeat tract in the 5' UTR of the X-linked FMR1 gene. These disorders are named for FRAXA, the folate-sensitive fragile site that localizes with the CGG-repeat in individuals with FXS. Two pathological FMR1 allele size classes are distinguished. Premutation (PM) alleles have 54-200 repeats and confer the risk of fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). PM alleles are prone to both somatic and germline expansion, with female PM carriers being at risk of having a child with >200+ repeats. Inheritance of such full mutation (FM) alleles causes FXS. Contractions of PM and FM alleles can also occur. As a result, many carriers are mosaic for different sized alleles, with the clinical presentation depending on the proportions of these alleles in affected tissues. Furthermore, it has become apparent that the chromosomal fragility of FXS individuals reflects an underlying problem that can lead to chromosomal numerical and structural abnormalities. Thus, large numbers of CGG-repeats in the FMR1 gene predisposes individuals to multiple forms of genome instability. This review will discuss our current understanding of these processes.


Asunto(s)
Ataxia/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Insuficiencia Ovárica Primaria/genética , Temblor/genética , Aneuploidia , Ataxia/fisiopatología , Expansión de las Repeticiones de ADN/genética , Replicación del ADN/genética , Femenino , Síndrome del Cromosoma X Frágil/fisiopatología , Inestabilidad Genómica/genética , Humanos , Insuficiencia Ovárica Primaria/fisiopatología , Temblor/fisiopatología , Expansión de Repetición de Trinucleótido/genética
8.
J Huntingtons Dis ; 10(1): 149-163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33579860

RESUMEN

Huntington's disease (HD) is one of a large group of human disorders that are caused by expanded DNA repeats. These repeat expansion disorders can have repeat units of different size and sequence that can be located in any part of the gene and, while the pathological consequences of the expansion can differ widely, there is evidence to suggest that the underlying mutational mechanism may be similar. In the case of HD, the expanded repeat unit is a CAG trinucleotide located in exon 1 of the huntingtin (HTT) gene, resulting in an expanded polyglutamine tract in the huntingtin protein. Expansion results in neuronal cell death, particularly in the striatum. Emerging evidence suggests that somatic CAG expansion, specifically expansion occurring in the brain during the lifetime of an individual, contributes to an earlier disease onset and increased severity. In this review we will discuss mouse models of two non-CAG repeat expansion diseases, specifically the Fragile X-related disorders (FXDs) and Friedreich ataxia (FRDA). We will compare and contrast these models with mouse and patient-derived cell models of various other repeat expansion disorders and the relevance of these findings for somatic expansion in HD. We will also describe additional genetic factors and pathways that modify somatic expansion in the FXD mouse model for which no comparable data yet exists in HD mice or humans. These additional factors expand the potential druggable space for diseases like HD where somatic expansion is a significant contributor to disease impact.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Síndrome del Cromosoma X Frágil/genética , Ataxia de Friedreich/genética , Genes Modificadores/genética , Inestabilidad Genómica/genética , Enfermedad de Huntington/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Humanos , Ratones
9.
Nature ; 586(7828): 292-298, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999459

RESUMEN

The RecQ DNA helicase WRN is a synthetic lethal target for cancer cells with microsatellite instability (MSI), a form of genetic hypermutability that arises from impaired mismatch repair1-4. Depletion of WRN induces widespread DNA double-strand breaks in MSI cells, leading to cell cycle arrest and/or apoptosis. However, the mechanism by which WRN protects MSI-associated cancers from double-strand breaks remains unclear. Here we show that TA-dinucleotide repeats are highly unstable in MSI cells and undergo large-scale expansions, distinct from previously described insertion or deletion mutations of a few nucleotides5. Expanded TA repeats form non-B DNA secondary structures that stall replication forks, activate the ATR checkpoint kinase, and require unwinding by the WRN helicase. In the absence of WRN, the expanded TA-dinucleotide repeats are susceptible to cleavage by the MUS81 nuclease, leading to massive chromosome shattering. These findings identify a distinct biomarker that underlies the synthetic lethal dependence on WRN, and support the development of therapeutic agents that target WRN for MSI-associated cancers.


Asunto(s)
Roturas del ADN de Doble Cadena , Expansión de las Repeticiones de ADN/genética , Repeticiones de Dinucleótido/genética , Neoplasias/genética , Helicasa del Síndrome de Werner/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Cromotripsis , División del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica , Humanos , Recombinasas/metabolismo
10.
Nucleic Acids Res ; 48(14): 7856-7863, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32619224

RESUMEN

The Fragile X-related disorders (FXDs) are Repeat Expansion Diseases, genetic disorders that result from the expansion of a disease-specific microsatellite. In those Repeat Expansion Disease models where it has been examined, expansion is dependent on functional mismatch repair (MMR) factors, including MutLγ, a heterodimer of MLH1/MLH3, one of the three MutL complexes found in mammals and a minor player in MMR. In contrast, MutLα, a much more abundant MutL complex that is the major contributor to MMR, is either not required for expansion or plays a limited role in expansion in many model systems. How MutLγ acts to generate expansions is unclear given its normal role in protecting against microsatellite instability and while MLH3 does have an associated endonuclease activity, whether that contributes to repeat expansion is uncertain. We show here, using a gene-editing approach, that a point mutation that eliminates the endonuclease activity of MLH3 eliminates expansions in an FXD mouse embryonic stem cell model. This restricts the number of possible models for repeat expansion and supports the idea that MutLγ may be a useful druggable target to reduce somatic expansion in those disorders where it contributes to disease pathology.


Asunto(s)
Síndrome del Cromosoma X Frágil/genética , Proteínas MutL/genética , Expansión de Repetición de Trinucleótido , Alelos , Animales , Línea Celular , Modelos Animales de Enfermedad , Masculino , Ratones , Mutación Puntual , Dominios Proteicos/genética , Células Madre
11.
Am J Med Genet A ; 179(10): 2132-2137, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31356000

RESUMEN

Most cases of fragile X syndrome (FXS) result from aberrant methylation of the FMR1 gene. Methylation occurs when the number of tandemly arranged cytosine guanine guanine (CGG)-repeats in the 5' end of the transcriptional unit of FMR1 exceeds a certain critical threshold, thought to be between 200 and 400 repeats. Such alleles are referred to as full mutation (FM) alleles. Premutation (PM) alleles, alleles with 55-200 repeats, are generally not aberrantly methylated and in fact may have hyperexpression of the FMR1 mRNA. We describe here a male who meets the diagnostic criteria for FXS, who is highly mosaic with a mixture of multiple PM and FM alleles and 50% methylation. However, the methylated alleles are limited to two alleles in the PM range, ~165 and ~175 repeats respectively, with the FM alleles being unmethylated. This finding has implications for FXS diagnosis as well as for efforts to delete the repeat in individuals with FXS using a CRISPR-Cas9 approach.


Asunto(s)
Alelos , Metilación de ADN/genética , Síndrome del Cromosoma X Frágil/genética , Mutación/genética , Preescolar , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/psicología , Humanos , Masculino , Adulto Joven
12.
N Engl J Med ; 380(15): 1433-1441, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30970188

RESUMEN

We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5' untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Ataxia/genética , Discapacidades del Desarrollo/genética , Glutaminasa/deficiencia , Glutaminasa/genética , Glutamina/metabolismo , Repeticiones de Microsatélite , Mutación , Atrofia/genética , Cerebelo/patología , Preescolar , Femenino , Genotipo , Glutamina/análisis , Humanos , Masculino , Fenotipo , Reacción en Cadena de la Polimerasa , Secuenciación Completa del Genoma
13.
Brain Sci ; 9(3)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30832215

RESUMEN

The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.

14.
Methods Mol Biol ; 1942: 49-59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30900174

RESUMEN

Knowledge of the CGG•CCG-repeat number, AGG interruption status, and the extent of DNA methylation of the FMR1 gene are vital for both diagnosis of the fragile X-related disorders and for basic research into disease mechanisms. We describe here assays that we use in our laboratory to assess these parameters. Our assays are PCR-based and include one for repeat size that can also be used to assess the extent of methylation and a related assay that allows the AGG interruption pattern to be reliably determined even in women. A second more quantitative methylation assay is also described. We also describe our method for cloning of repeats to generate the reference standards necessary for the accurate determination of repeat number and AGG interruption status.


Asunto(s)
Metilación de ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido , Humanos
15.
DNA Repair (Amst) ; 74: 63-69, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30606610

RESUMEN

Expansion of a CGG-repeat tract in the 5' UTR of FMR1 is responsible for the Fragile X-related disorders (FXDs), FXTAS, FXPOI and FXS. Previous work in a mouse model of these disorders has implicated proteins in the base excision and the mismatch repair (MMR) pathways in the expansion mechanism. However, the precise role of these factors in this process is not well understood. The essential role of MutLγ, a complex that plays a minor role in MMR but that is essential for resolving Holliday junctions during meiosis, raises the possibility that expansions proceed via a Holliday junction-like intermediate that is processed to generate a double-strand break (DSB). We show here in an FXD mouse model that LIG4, a ligase essential for non-homologous end-joining (NHEJ), a form of DSB repair (DSBR), protects against expansions. However, a mutation in MRE11, a nuclease that is important for several other DSBR pathways including homologous recombination (HR), has no effect on the extent of expansion. Our results suggest that the expansion pathway competes with NHEJ for the processing of a DSB intermediate. Thus, expansion likely proceeds via an NHEJ-independent DSBR pathway that may also be HR-independent.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Síndrome del Cromosoma X Frágil/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Reparación del ADN por Unión de Extremidades , ADN Ligasa (ATP)/metabolismo , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Recombinación Homóloga , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Hum Genet ; 136(10): 1313-1327, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28866801

RESUMEN

The fragile X-related disorders are a group of three clinical conditions resulting from the instability of a CGG-repeat tract at the 5' end of the FMR1 transcript. Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are disorders seen in carriers of FMR1 alleles with 55-200 repeats. Female carriers of these premutation (PM) alleles are also at risk of having a child who has an FMR1 allele with >200 repeats. Most of these full mutation (FM) alleles are epigenetically silenced resulting in a deficit of the FMR1 gene product, FMRP. This results in fragile X Syndrome (FXS), the most common heritable cause of intellectual disability and autism. The diagnosis and study of these disorders is challenging, in part because the detection of alleles with large repeat numbers has, until recently, been either time-consuming or unreliable. This problem is compounded by the mosaicism for repeat length and/or DNA methylation that is frequently seen in PM and FM carriers. Furthermore, since AGG interruptions in the repeat tract affect the risk that a FM allele will be maternally transmitted, the ability to accurately detect these interruptions in female PM carriers is an additional challenge that must be met. This review will discuss some of the pros and cons of some recently described assays for these disorders, including those that detect FMRP levels directly, as well as emerging technologies that promise to improve the diagnosis of these conditions and to be useful in both basic and translational research settings.


Asunto(s)
Ataxia , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Silenciador del Gen , Insuficiencia Ovárica Primaria , Estabilidad del ARN , Temblor , Ataxia/genética , Ataxia/metabolismo , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Masculino , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/metabolismo , Temblor/genética , Temblor/metabolismo
17.
J Mol Diagn ; 19(6): 828-835, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28818679

RESUMEN

The learning disability fragile X syndrome results from the presence of >200 CGG/CCG repeats in exon 1 of the X-linked gene FMR1. Such alleles arise by expansion from maternally transmitted FMR1 premutation alleles, alleles having 55 to 200 repeats. Expansion risk is directly related to maternal repeat number. However, AGG interruptions to the repeat tract are important modifiers of expansion risk. Thus, the ability to identify such interruptions is crucial for the appropriate genetic counseling of females who are premutation carriers. First-generation triplet-primed PCR assays allow these interruptions to be detected. However, because the triplet primer used has multiple binding sites in the repeat tract, interpreting the results is not straightforward and it is not always possible to unambiguously determine the AGG-interruption status in females because of the difficulties associated with the presence of a second X chromosome. Interpretation is further complicated by any repeat size mosaicism that may be present. We have developed second-generation PCR assays that prime specifically at the interruptions. These assays are simpler to interpret and better able to evaluate this important determinant of expansion risk in females even in those with a mixture of premutation allele sizes.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Asesoramiento Genético , Expansión de Repetición de Trinucleótido/genética , Alelos , Femenino , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Heterocigoto , Humanos , Masculino , Mosaicismo , Mutación , Reacción en Cadena de la Polimerasa/métodos
18.
PLoS One ; 12(4): e0174264, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28388629

RESUMEN

Tubulin alpha 8 (Tuba8) is the most divergent member of the highly conserved alpha tubulin family, and uniquely lacks two key post-translational modification sites. It is abundantly expressed in testis and muscle, with lower levels in the brain. We previously identified homozygous hypomorphic TUBA8 mutations in human subjects with a polymicrogyria (PMG) syndrome, suggesting its involvement in development of the cerebral cortex. We have now generated and characterized a Tuba8 knockout mouse model. Homozygous mice were confirmed to lack Tuba8 protein in the testis, but did not display PMG and appeared to be neurologically normal. In response to this finding, we re-analyzed the human PMG subjects using whole exome sequencing. This resulted in identification of an additional homozygous loss-of-function mutation in SNAP29, suggesting that SNAP29 deficiency, rather than TUBA8 deficiency, may underlie most or all of the neurodevelopmental anomalies in these subjects. Nonetheless, in the mouse brain, Tuba8 specifically localised to the cerebellar Purkinje cells, suggesting that the human mutations may affect or modify motor control. In the testis, Tuba8 localisation was cell-type specific. It was restricted to spermiogenesis with a strong acrosomal localization that was gradually replaced by cytoplasmic distribution and was absent from spermatozoa. Although the knockout mice were fertile, the localisation pattern indicated that Tuba8 may have a role in spermatid development during spermatogenesis, rather than as a component of the mature microtubule-rich flagellum itself.


Asunto(s)
Encéfalo/embriología , Espermatogénesis/genética , Tubulina (Proteína)/genética , Animales , Exoma , Homocigoto , Ratones , Ratones Noqueados
19.
J Mol Diagn ; 18(5): 762-774, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27528259

RESUMEN

The diagnosis and study of the fragile X-related disorders is complicated by the difficulty of amplifying the long CGG/CCG-repeat tracts that are responsible for disease pathology, the potential presence of AGG interruptions within the repeat tract that can ameliorate expansion risk, the occurrence of variable DNA methylation that modulates disease severity, and the high frequency of mosaicism for both repeat number and methylation status. These factors complicate patient risk assessment. In addition, the variability in these parameters that is seen when patient cells are grown in culture requires their frequent monitoring to ensure reproducible results in a research setting. Many existing assays have the limited ability to amplify long alleles, particularly in a mixture of different allele sizes. Others are better at this, but are too expensive for routine use in most laboratories or for newborn screening programs and use reagents that are proprietary. We describe herein a set of assays to routinely evaluate all of these important parameters in a time- and cost-effective way.


Asunto(s)
Alelos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Pruebas Genéticas , Mutación , Línea Celular , Metilación de ADN , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Reacción en Cadena de la Polimerasa/métodos , Regiones Promotoras Genéticas , Expansión de Repetición de Trinucleótido , Repeticiones de Trinucleótidos , Flujo de Trabajo
20.
Mutat Res ; 781: 14-21, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26379101

RESUMEN

Friedreich ataxia (FRDA) is a member of the Repeat Expansion Diseases, a group of genetic conditions resulting from an increase/expansion in the size of a specific tandem array. FRDA results from expansion of a GAA/TTC-tract in the first intron of the frataxin gene (FXN). The disease-associated tandem repeats all form secondary structures that are thought to contribute to the propensity of the repeat to expand. The subset of these diseases that result from a CGG/CCG-repeat expansion, such as Fragile X syndrome, also express a folate-sensitive fragile site coincident with the repeat on the affected chromosome. This chromosome fragility involves the generation of chromosome/chromatid gaps or breaks, or the high frequency loss of one or both copies of the affected gene when cells are grown under folate stress or as we showed previously, in the presence of an inhibitor of the ATM checkpoint kinase. Whether Repeat Expansion Disease loci containing different repeats form similar fragile sites was not known. We show here that the region of chromosome 9 that contains the FXN locus is intrinsically prone to breakage in vivo even in control cells. However, like FXS alleles, FRDA alleles show significantly elevated levels of chromosome abnormalities in the presence of an ATM inhibitor, consistent with the formation of a fragile site.


Asunto(s)
Fragilidad Cromosómica/genética , Cromosomas Humanos Par 9/genética , Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/genética , Secuencia de Bases , Línea Celular , Humanos , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Expansión de Repetición de Trinucleótido , Frataxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA