Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746230

RESUMEN

Humans are living longer, but this is accompanied by an increased incidence of age-related chronic diseases. Many of these diseases are influenced by age-associated metabolic dysregulation, but how metabolism changes in multiple organs during aging in males and females is not known. Answering this could reveal new mechanisms of aging and age-targeted therapeutics. In this study, we describe how metabolism changes in 12 organs in male and female mice at 5 different ages. Organs show distinct patterns of metabolic aging that are affected by sex differently. Hydroxyproline shows the most consistent change across the dataset, decreasing with age in 11 out of 12 organs investigated. We also developed a metabolic aging clock that predicts biological age and identified alpha-ketoglutarate, previously shown to extend lifespan in mice, as a key predictor of age. Our results reveal fundamental insights into the aging process and identify new therapeutic targets to maintain organ health.

2.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645203

RESUMEN

Mechanical stress is a measure of internal resistance exhibited by a body or material when external forces, such as compression, tension, bending, etc. are applied. The study of mechanical stress on health and aging is a continuously growing field, as major changes to the extracellular matrix and cell-to-cell adhesions can result in dramatic changes to tissue stiffness during aging and diseased conditions. For example, during normal aging, many tissues including the ovaries, skin, blood vessels, and heart exhibit increased stiffness, which can result in a significant reduction in function of that organ. As such, numerous model systems have recently emerged to study the impact of mechanical and physical stress on cell and tissue health, including cell-culture conditions with matrigels and other surfaces that alter substrate stiffness and ex vivo tissue models that can apply stress directly to organs like muscle or tendons. Here, we sought to develop a novel method in an in vivo, model organism setting to study the impact of mechanical stress on aging, by increasing substrate stiffness in solid agar medium of C. elegans. To our surprise, we found shockingly limited impact of growth of C. elegans on stiffer substrates, including limited effects on cellular health, gene expression, organismal health, stress resilience, and longevity. Overall, our studies reveal that altering substrate stiffness of growth medium for C. elegans have only mild impact on animal health and longevity; however, these impacts were not nominal and open up important considerations for C. elegans biologists in standardizing agar medium choice for experimental assays.

3.
Geroscience ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570396

RESUMEN

Small molecule inhibitors of the mitochondrial electron transport chain (ETC) hold significant promise to provide valuable insights to the field of mitochondrial research and aging biology. In this study, we investigated two molecules: mycothiazole (MTZ) - from the marine sponge C. mycofijiensis and its more stable semisynthetic analog 8-O-acetylmycothiazole (8-OAc) as potent and selective chemical probes based on their high efficiency to inhibit ETC complex I function. Similar to rotenone (Rote), MTZ, a newly employed ETC complex I inhibitor, exhibited higher cytotoxicity against cancer cell lines compared to certain non-cancer cell lines. Interestingly, 8-OAc demonstrated greater selectivity for cancer cells when compared to both MTZ and Rote, which has promising potential for anticancer therapeutic development. Furthermore, in vivo experiments with these small molecules utilizing a C. elegans model demonstrate their unexplored potential to investigate aging studies. We observed that both molecules have the ability to induce a mitochondria-specific unfolded protein response (UPRMT) pathway, that extends lifespan of worms when applied in their adult stage. We also found that these two molecules employ different pathways to extend lifespan in worms. Whereas MTZ utilizes the transcription factors ATFS-1 and HSF1, which are involved in the UPRMT and heat shock response (HSR) pathways respectively, 8-OAc only required HSF1 and not ATFS-1 to mediate its effects. This observation underscores the value of applying stable, potent, and selective next generation chemical probes to elucidate an important insight into the functional roles of various protein subunits of ETC complexes and their regulatory mechanisms associated with aging.

4.
bioRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38077060

RESUMEN

Small molecule inhibitors of the mitochondrial electron transport chain (ETC) hold significant promise to provide valuable insights to the field of mitochondrial research and aging biology. In this study, we investigated two molecules: mycothiazole (MTZ) - from the marine sponge C. mycofijiensis and its more stable semisynthetic analog 8-O-acetylmycothiazole (8-OAc) as potent and selective chemical probes based on their high efficiency to inhibit ETC complex I function. Similar to rotenone (Rote), a widely used ETC complex I inhibitor, these two molecules showed cytotoxicity to cancer cells but strikingly demonstrate a lack of toxicity to non-cancer cells, a highly beneficial feature in the development of anti-cancer therapeutics. Furthermore, in vivo experiments with these small molecules utilizing C.elegans model demonstrate their unexplored potential to investigate aging studies. We observed that both molecules have the ability to induce a mitochondria-specific unfolded protein response (UPRMT) pathway, that extends lifespan of worms when applied in their adult stage. Interestingly, we also found that these two molecules employ different pathways to extend lifespan in worms. Whereas MTZ utilize the transcription factors ATFS-1 and HSF-1, which are involved in the UPRMT and heat shock response (HSR) pathways respectively, 8-OAc only required HSF-1 and not ATFS-1 to mediate its effects. This observation underscores the value of applying stable, potent, and selective next generation chemical probes to elucidate an important insight into the functional roles of various protein subunits of ETC complexes and their regulatory mechanisms associated with aging.

5.
Sci Adv ; 9(41): eadi1411, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831769

RESUMEN

The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPRMT), between tissues. However, these studies largely ignored nonneuronal cells of the nervous system. Here, we found that UPRMT activation in four astrocyte-like glial cells in the nematode, Caenorhabditis elegans, can promote protein homeostasis by alleviating protein aggregation in neurons. Unexpectedly, we find that glial cells use small clear vesicles (SCVs) to signal to neurons, which then relay the signal to the periphery using dense-core vesicles (DCVs). This work underlines the importance of glia in establishing and regulating protein homeostasis within the nervous system, which can then affect neuron-mediated effects in organismal homeostasis and longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteostasis , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas/metabolismo , Caenorhabditis elegans/metabolismo , Envejecimiento , Neuroglía/metabolismo
6.
bioRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37609253

RESUMEN

The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPRMT), between tissues. However, these studies largely ignored non-neuronal cells of the nervous system. Here, we found that UPRMT activation in four, astrocyte-like glial cells in the nematode, C. elegans, can promote protein homeostasis by alleviating protein aggregation in neurons. Surprisingly, we find that glial cells utilize small clear vesicles (SCVs) to signal to neurons, which then relay the signal to the periphery using dense-core vesicles (DCVs). This work underlines the importance of glia in establishing and regulating protein homeostasis within the nervous system, which can then impact neuron-mediated effects in organismal homeostasis and longevity.

7.
Elife ; 122023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37489956

RESUMEN

Changes in lipid metabolism are associated with aging and age-related diseases, including proteopathies. The endoplasmic reticulum (ER) is uniquely a major hub for protein and lipid synthesis, making its function essential for both protein and lipid homeostasis. However, it is less clear how lipid metabolism and protein quality may impact each other. Here, we identified let-767, a putative hydroxysteroid dehydrogenase in Caenorhabditis elegans, as an essential gene for both lipid and ER protein homeostasis. Knockdown of let-767 reduces lipid stores, alters ER morphology in a lipid-dependent manner, and blocks induction of the Unfolded Protein Response of the ER (UPRER). Interestingly, a global reduction in lipogenic pathways restores UPRER induction in animals with reduced let-767. Specifically, we find that supplementation of 3-oxoacyl, the predicted metabolite directly upstream of let-767, is sufficient to block induction of the UPRER. This study highlights a novel interaction through which changes in lipid metabolism can alter a cell's response to protein-induced stress.


Asunto(s)
Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Animales , Envejecimiento , Caenorhabditis elegans , Homeostasis , Lípidos
9.
Curr Opin Neurobiol ; 78: 102673, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621224

RESUMEN

Mitochondrial fitness is critical to organismal health and its impairment is associated with aging and age-related diseases. As such, numerous quality control mechanisms exist to preserve mitochondrial stability, including the unfolded protein response of the mitochondria (UPRmt). The UPRmt is a conserved mechanism that drives the transcriptional activation of mitochondrial chaperones, proteases, autophagy (mitophagy), and metabolism to promote restoration of mitochondrial function under stress conditions. UPRmt has direct ramifications in aging, and its activation is often ascribed to improve health whereas its dysfunction tends to correlate with disease. This review pairs a description of the most recent findings within the field of UPRmt with a more poorly understood field: mitochondria-derived peptides (MDPs). Similar to UPRmt, MDPs are microproteins derived from the mitochondria that can impact organismal health and longevity. We then highlight a tantalizing interconnection between UPRmt and MDPs wherein both mechanisms may be efficiently coordinated to maintain organismal health.


Asunto(s)
Mitocondrias , Proteostasis , Mitocondrias/metabolismo , Péptidos/metabolismo , Micropéptidos
10.
Aging Cell ; 22(1): e13742, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36404134

RESUMEN

The actin cytoskeleton is a three-dimensional scaffold of proteins that is a regulatory, energyconsuming network with dynamic properties to shape the structure and function of the cell. Proper actin function is required for many cellular pathways, including cell division, autophagy, chaperone function, endocytosis, and exocytosis. Deterioration of these processes manifests during aging and exposure to stress, which is in part due to the breakdown of the actin cytoskeleton. However, the regulatory mechanisms involved in preservation of cytoskeletal form and function are not well-understood. Here, we performed a multipronged, cross-organismal screen combining a whole-genome CRISPR-Cas9 screen in human fibroblasts with in vivo Caenorhabditis elegans synthetic lethality screening. We identified the bromodomain protein, BET-1, as a key regulator of actin function and longevity. Overexpression of bet-1 preserves actin function at late age and promotes life span and healthspan in C. elegans. These beneficial effects are mediated through actin preservation by the transcriptional regulator function of BET-1. Together, our discovery assigns a key role for BET-1 in cytoskeletal health, highlighting regulatory cellular networks promoting cytoskeletal homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Longevidad , Animales , Humanos , Longevidad/genética , Actinas/genética , Actinas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo
11.
iScience ; 25(7): 104571, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35784796

RESUMEN

The deleterious potential to generate oxidative stress is a fundamental challenge to metabolism. The oxidative stress response transcription factor, SKN-1/NRF2, can sense and respond to changes in metabolic state, although the mechanism and consequences of this remain unknown. Here, we performed a genetic screen in C. elegans targeting amino acid catabolism and identified multiple metabolic pathways as regulators of SKN-1 activity. We found that knockdown of the conserved amidohydrolase T12A2.1/amdh-1 activates a unique subset of SKN-1 regulated genes. Interestingly, this transcriptional program is independent of canonical P38-MAPK signaling components but requires ELT-3, NHR-49 and MDT-15. This activation of SKN-1 is dependent on upstream histidine catabolism genes HALY-1 and Y51H4A.7/UROC-1 and may occur through accumulation of a catabolite, 4-imidazolone-5-propanoate. Activating SKN-1 results in increased oxidative stress resistance but decreased survival to heat stress. Together, our data suggest that SKN-1 acts downstream of key catabolic pathways to influence physiology and stress resistance.

12.
Front Aging ; 3: 860404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821861

RESUMEN

Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.

13.
J Vis Exp ; (183)2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35665741

RESUMEN

The discovery and development of Caenorhabditis elegans as a model organism was influential in biology, particularly in the field of aging. Many historical and contemporary studies have identified thousands of lifespan-altering paradigms, including genetic mutations, transgenic gene expression, and hormesis, a beneficial, low-grade exposure to stress. With its many advantages, including a short lifespan, easy and low-cost maintenance, and fully sequenced genome with homology to almost two-thirds of all human genes, C. elegans has quickly been adopted as an outstanding model for stress and aging biology. Here, several standardized methods are surveyed for measuring lifespan and healthspan that can be easily adapted into almost any research environment, especially those with limited equipment and funds. The incredible utility of C. elegans is featured, highlighting the capacity to perform powerful genetic analyses in aging biology without the necessity of extensive infrastructure. Finally, the limitations of each analysis and alternative approaches are discussed for consideration.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envejecimiento/genética , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Longevidad/genética , Mutación
14.
Nat Commun ; 13(1): 2706, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577788

RESUMEN

In yeast, actin cables are F-actin bundles that are essential for cell division through their function as tracks for cargo movement from mother to daughter cell. Actin cables also affect yeast lifespan by promoting transport and inheritance of higher-functioning mitochondria to daughter cells. Here, we report that actin cable stability declines with age. Our genome-wide screen for genes that affect actin cable stability identified the open reading frame YKL075C. Deletion of YKL075C results in increases in actin cable stability and abundance, mitochondrial fitness, and replicative lifespan. Transcriptome analysis revealed a role for YKL075C in regulating branched-chain amino acid (BCAA) metabolism. Consistent with this, modulation of BCAA metabolism or decreasing leucine levels promotes actin cable stability and function in mitochondrial quality control. Our studies support a role for actin stability in yeast lifespan, and demonstrate that this process is controlled by BCAA and a previously uncharacterized ORF YKL075C, which we refer to as actin, aging and nutrient modulator protein 1 (AAN1).


Asunto(s)
Citoesqueleto de Actina , Longevidad , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Longevidad/genética , Mitocondrias/metabolismo , Nutrientes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Methods Mol Biol ; 2364: 53-80, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34542848

RESUMEN

Although budding yeast, Saccharomyces cerevisiae, is widely used as a model organism in biological research, studying cell biology in yeast was hindered due to its small size, rounded morphology, and cell wall. However, with improved techniques, researchers can acquire high-resolution images and carry out rapid multidimensional analysis of a yeast cell. As a result, imaging in yeast has emerged as an important tool to study cytoskeletal organization, function, and dynamics. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in live yeast cells.


Asunto(s)
Saccharomyces cerevisiae , Citoesqueleto de Actina , Actinas , División Celular , Proteínas de Saccharomyces cerevisiae
16.
Methods Mol Biol ; 2364: 81-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34542849

RESUMEN

Budding yeast, Saccharomyces cerevisiae, is an appealing model organism to study the organization and function of the actin cytoskeleton. With the advent of techniques to perform high-resolution, multidimensional analysis of the yeast cell, imaging of yeast has emerged as an important tool for research on the cytoskeleton. This chapter describes techniques and approaches for visualizing the actin cytoskeleton in fixed yeast cells with wide-field and super-resolution fluorescence microscopy.


Asunto(s)
Saccharomyces cerevisiae , Citoesqueleto de Actina , Actinas , Citoesqueleto , Microscopía Fluorescente
17.
Methods Mol Biol ; 2364: 101-137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34542850

RESUMEN

The actin cytoskeleton plays a fundamental role in the regulation of multiple cellular pathways, including trafficking and locomotion. The functional integrity of the cytoskeleton is important during aging, as the decline of cytoskeletal integrity contributes to the physiological consequence of aging. Moreover, improving cytoskeletal form and function throughout aging is sufficient to drive life span extension and promote organismal health in multiple model systems. For these reasons, optimized protocols for visualization of the actin cytoskeleton and its downstream consequences on health span and life span are critical for understanding the aging process. In C. elegans, the actin cytoskeleton shows diverse morphologies across tissues, potentially due to the significantly different functions of each cell type. This chapter describes an imaging platform utilizing LifeAct to visualize the actin cytoskeleton in live, whole nematodes throughout the aging process and methods to perform follow-up studies on the life span and health span of these organisms.


Asunto(s)
Caenorhabditis elegans , Citoesqueleto de Actina , Actinas , Envejecimiento , Animales , Citoesqueleto
19.
Sci Adv ; 7(44): eabj6818, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34714674

RESUMEN

The dysfunction of mitochondria is associated with the physiological consequences of aging and many age-related diseases. Therefore, critical quality control mechanisms exist to protect mitochondrial functions, including the unfolded protein response of the mitochondria (UPRMT). However, it is still unclear how UPRMT is regulated in mammals with mechanistic discrepancies between previous studies. Here, we reasoned that a study of conserved mechanisms could provide a uniquely powerful way to reveal previously uncharacterized components of the mammalian UPRMT. We performed cross-species comparison of genetic requirements for survival under­and in response to­mitochondrial stress between karyotypically normal human stem cells and the nematode Caenorhabditis elegans. We identified a role for EPS-8/EPS8 (epidermal growth factor receptor pathway substrate 8), a signaling protein adaptor, in general mitochondrial homeostasis and UPRMT regulation through integrin-mediated remodeling of the actin cytoskeleton. This study also highlights the use of cross-species comparisons in genetic screens to interrogate cellular pathways.

20.
Nat Commun ; 12(1): 4969, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404787

RESUMEN

Multimeric cytoskeletal protein complexes orchestrate normal cellular function. However, protein-complex distributions in stressed, heterogeneous cell populations remain unknown. Cell staining and proximity-based methods have limited selectivity and/or sensitivity for endogenous multimeric protein-complex quantification from single cells. We introduce micro-arrayed, differential detergent fractionation to simultaneously detect protein complexes in hundreds of individual cells. Fractionation occurs by 60 s size-exclusion electrophoresis with protein complex-stabilizing buffer that minimizes depolymerization. Proteins are measured with a ~5-hour immunoassay. Co-detection of cytoskeletal protein complexes in U2OS cells treated with filamentous actin (F-actin) destabilizing Latrunculin A detects a unique subpopulation (~2%) exhibiting downregulated F-actin, but upregulated microtubules. Thus, some cells may upregulate other cytoskeletal complexes to counteract the stress of Latrunculin A treatment. We also sought to understand the effect of non-chemical stress on cellular heterogeneity of F-actin. We find heat shock may dysregulate filamentous and globular actin correlation. In this work, our assay overcomes selectivity limitations to biochemically quantify single-cell protein complexes perturbed with diverse stimuli.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Heterogeneidad Genética , Actinas/genética , Actinas/metabolismo , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Diferenciación Celular , Línea Celular , Respuesta al Choque Térmico , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Análisis de la Célula Individual/métodos , Tiazolidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...