Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Acta Neuropathol ; 145(5): 651-666, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37014508

RESUMEN

Group 4 tumours (MBGrp4) represent the majority of non-WNT/non-SHH medulloblastomas. Their clinical course is poorly predicted by current risk-factors. MBGrp4 molecular substructures have been identified (e.g. subgroups/cytogenetics/mutations), however their inter-relationships and potential to improve clinical sub-classification and risk-stratification remain undefined. We comprehensively characterised the paediatric MBGrp4 molecular landscape and determined its utility to improve clinical management. A clinically-annotated discovery cohort (n = 362 MBGrp4) was assembled from UK-CCLG institutions and SIOP-UKCCSG-PNET3, HIT-SIOP-PNET4 and PNET HR + 5 clinical trials. Molecular profiling was undertaken, integrating driver mutations, second-generation non-WNT/non-SHH subgroups (1-8) and whole-chromosome aberrations (WCAs). Survival models were derived for patients ≥ 3 years of age who received contemporary multi-modal therapies (n = 323). We first independently derived and validated a favourable-risk WCA group (WCA-FR) characterised by ≥ 2 features from chromosome 7 gain, 8 loss, and 11 loss. Remaining patients were high-risk (WCA-HR). Subgroups 6 and 7 were enriched for WCA-FR (p < 0·0001) and aneuploidy. Subgroup 8 was defined by predominantly balanced genomes with isolated isochromosome 17q (p < 0·0001). While no mutations were associated with outcome and overall mutational burden was low, WCA-HR harboured recurrent chromatin remodelling mutations (p = 0·007). Integration of methylation and WCA groups improved risk-stratification models and outperformed established prognostication schemes. Our MBGrp4 risk-stratification scheme defines: favourable-risk (non-metastatic disease and (i) subgroup 7 or (ii) WCA-FR (21% of patients, 5-year PFS 97%)), very-high-risk (metastatic disease with WCA-HR (36%, 5-year PFS 49%)) and high-risk (remaining patients; 43%, 5-year PFS 67%). These findings validated in an independent MBGrp4 cohort (n = 668). Importantly, our findings demonstrate that previously established disease-wide risk-features (i.e. LCA histology and MYC(N) amplification) have little prognostic relevance in MBGrp4 disease. Novel validated survival models, integrating clinical features, methylation and WCA groups, improve outcome prediction and re-define risk-status for ~ 80% of MBGrp4. Our MBGrp4 favourable-risk group has MBWNT-like excellent outcomes, thereby doubling the proportion of medulloblastoma patients who could benefit from therapy de-escalation approaches, aimed at reducing treatment induced late-effects while sustaining survival outcomes. Novel approaches are urgently required for the very-high-risk patients.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Niño , Humanos , Meduloblastoma/patología , Factores de Riesgo , Mutación/genética , Aberraciones Cromosómicas , Neoplasias Cerebelosas/patología , Pronóstico
2.
Nat Commun ; 14(1): 1221, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869047

RESUMEN

Medulloblastoma, the most common malignant pediatric brain tumor, often harbors MYC amplifications. Compared to high-grade gliomas, MYC-amplified medulloblastomas often show increased photoreceptor activity and arise in the presence of a functional ARF/p53 suppressor pathway. Here, we generate an immunocompetent transgenic mouse model with regulatable MYC that develop clonal tumors that molecularly resemble photoreceptor-positive Group 3 medulloblastoma. Compared to MYCN-expressing brain tumors driven from the same promoter, pronounced ARF silencing is present in our MYC-expressing model and in human medulloblastoma. While partial Arf suppression causes increased malignancy in MYCN-expressing tumors, complete Arf depletion promotes photoreceptor-negative high-grade glioma formation. Computational models and clinical data further identify drugs targeting MYC-driven tumors with a suppressed but functional ARF pathway. We show that the HSP90 inhibitor, Onalespib, significantly targets MYC-driven but not MYCN-driven tumors in an ARF-dependent manner. The treatment increases cell death in synergy with cisplatin and demonstrates potential for targeting MYC-driven medulloblastoma.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioma , Meduloblastoma , Proteínas Proto-Oncogénicas c-myc , Animales , Niño , Humanos , Ratones , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc
3.
J Pediatr Hematol Oncol ; 45(3): e415-e418, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35622992

RESUMEN

Central nervous system germ cell tumors (CNS-GCTs) comprise 4% of all pediatric CNS tumors, with one third being nongerminomatous GCT (CNS-NG-GCT) type. The majority of these tumors arise in the intracranial compartment with 20% having drop metastases in the spine. We present a rare case of a 2-year-old boy with a primary intradural-extramedullary NG-GCT arising from the lumbosacral spine with a trifecta of unfavorable features, that is, young age, alpha-feto protein >1000 ng/mL, and disseminated disease within the cranium. Owing to his young age, he was treated with chemotherapy alone, avoiding radiation. His tumor marker (alpha-feto protein) declined from 8468 to 10 k-U/L over 8 weeks, and he remained in remission at the last follow-up. This atypical presentation of an intradural-extramedullary tumor with cranial dissemination in a childhood NG-GCT has yet to be described in the literature. Here we use this opportunity to highlight the treatment strategies and challenges in this unique clinical case.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Masculino , Humanos , Preescolar , Niño , Neoplasias de Células Germinales y Embrionarias/terapia , Neoplasias del Sistema Nervioso Central/terapia , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología
4.
Neuropsychol Rehabil ; : 1-21, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36580420

RESUMEN

OBJECTIVES: The growing population of survivors of childhood brain tumors present the challenge of long-term quality of survival. The domains most affected by tumor and treatment are those implicated in development of typical intellectual functions: attention, working memory, and processing speed, with consequent effects upon function and quality of life. In this paper we present service evaluation data on the 12-month effect upon processing speed, visual and auditory attentional domains in 29 patients receiving methylphenidate aged 5-16 years (Mean=10.6). METHODS: Patients received immediate-release methylphenidate and were converted to modified-release as appropriate. Mean optimal dose of immediate-release methylphenidate was 0.34 mg/kg per dose (range 0.2-0.67). RESULTS: Patients showed a significant positive impact of methylphenidate on attention in all tests of selective visual attention from the Test of Everyday Attention for Children 2. A significant improvement was also shown on response time. Significant change was not found on psychometric measures of sustained auditory or visual attention, or selective auditory attention. Ratings of Health-Related Quality of Life showed a positive benefit of methylphenidate at 12 months. Side effects were minimal and not statistically significant. CONCLUSIONS: Survivors of childhood brain tumor with attentional and processing speed deficit show clinical benefit from methylphenidate.

5.
Cancer Res ; 82(24): 4586-4603, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36219398

RESUMEN

Relapse is the leading cause of death in patients with medulloblastoma, the most common malignant pediatric brain tumor. A better understanding of the mechanisms underlying recurrence could lead to more effective therapies for targeting tumor relapses. Here, we observed that SOX9, a transcription factor and stem cell/glial fate marker, is limited to rare, quiescent cells in high-risk medulloblastoma with MYC amplification. In paired primary-recurrent patient samples, SOX9-positive cells accumulated in medulloblastoma relapses. SOX9 expression anti-correlated with MYC expression in murine and human medulloblastoma cells. However, SOX9-positive cells were plastic and could give rise to a MYC high state. To follow relapse at the single-cell level, an inducible dual Tet model of medulloblastoma was developed, in which MYC expression was redirected in vivo from treatment-sensitive bulk cells to dormant SOX9-positive cells using doxycycline treatment. SOX9 was essential for relapse initiation and depended on suppression of MYC activity to promote therapy resistance, epithelial-mesenchymal transition, and immune escape. p53 and DNA repair pathways were downregulated in recurrent tumors, whereas MGMT was upregulated. Recurrent tumor cells were found to be sensitive to treatment with an MGMT inhibitor and doxorubicin. These findings suggest that recurrence-specific targeting coupled with DNA repair inhibition comprises a potential therapeutic strategy in patients affected by medulloblastoma relapse. SIGNIFICANCE: SOX9 facilitates therapy escape and recurrence in medulloblastoma via temporal inhibition of MYC/MYCN genes, revealing a strategy to specifically target SOX9-positive cells to prevent tumor relapse.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Animales , Humanos , Ratones , Neoplasias Cerebelosas/patología , Meduloblastoma/patología , Recurrencia Local de Neoplasia/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción/metabolismo
6.
Cell Rep ; 40(5): 111162, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35926460

RESUMEN

Medulloblastoma is currently subclassified into distinct DNA methylation subgroups/subtypes with particular clinico-molecular features. Using RNA sequencing (RNA-seq) in large, well-annotated cohorts of medulloblastoma, we show that transcriptionally group 3 and group 4 medulloblastomas exist as intermediates on a bipolar continuum between archetypal group 3 and group 4 entities. Continuum position is prognostic, reflecting a propensity for specific DNA copy-number changes, and specific switches in isoform/enhancer usage and RNA editing. Examining single-cell RNA-seq (scRNA-seq) profiles, we show that intratumoral transcriptional heterogeneity along the continuum is limited in a subtype-dependent manner. By integrating with a human scRNA-seq reference atlas, we show that this continuum is mirrored by an equivalent continuum of transcriptional cell types in early fetal cerebellar development. We identify distinct developmental niches for all four major subgroups and link each to a common developmental antecedent. Our findings show a transcriptional continuum arising from oncogenic disruption of highly specific fetal cerebellar cell types, linked to almost every aspect of group 3/group 4 molecular biology and clinico-pathology.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Metilación de ADN/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patología
7.
Children (Basel) ; 9(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35884042

RESUMEN

BACKGROUND: The deleterious impact upon the cognitive development of survivors of pediatric brain tumors (PBT) is well documented. Impairment in cognitive function is associated with reduced health-related quality of life (HRQoL), such that survivors of PBT report difficulties in multiple distinct domains and an overall reduced quality of life. Studies of the use of methylphenidate in survivors of PBT to alleviate impairment in cognitive functions have shown some success. The current study aimed to explore the impact upon HRQoL in survivors of PBT of a trial of psychostimulant medication. METHOD: Data were collected from 12 pediatric neuro-oncology patients aged 7-17 years receiving methylphenidate treatment. HRQoL was measured using the PEDS QL quality of life self-report measure and a semi-structured questionnaire-based interview. RESULTS: Analyses of data demonstrates benefit to five domains associated with HRQoL: social, emotional, academic, physical, and cognition. CONCLUSION: Survivors of PBT reported favorable views as to the subjective benefit of methylphenidate on post-treatment impairment of HRQoL. This medication may offer the potential for restoration of a sense of 'normality' of function following cancer treatment in this clinical population.

8.
Acta Neuropathol ; 144(3): 565-578, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35831448

RESUMEN

We reconstructed the natural history and temporal evolution of the most common childhood brain malignancy, medulloblastoma, by single-cell whole-genome sequencing (sc-WGS) of tumours representing its major molecular sub-classes and clinical risk groups. Favourable-risk disease sub-types assessed (MBWNT and infant desmoplastic/nodular MBSHH) typically comprised a single clone with no evidence of further evolution. In contrast, highest risk sub-classes (MYC-amplified MBGroup3 and TP53-mutated MBSHH) were most clonally diverse and displayed gradual evolutionary trajectories. Clinically adopted biomarkers (e.g. chromosome 6/17 aberrations; CTNNB1/TP53 mutations) were typically early-clonal/initiating events, exploitable as targets for early-disease detection; in analyses of spatially distinct tumour regions, a single biopsy was sufficient to assess their status. Importantly, sc-WGS revealed novel events which arise later and/or sub-clonally and more commonly display spatial diversity; their clinical significance and role in disease evolution post-diagnosis now require establishment. These findings reveal diverse modes of tumour initiation and evolution in the major medulloblastoma sub-classes, with pathogenic relevance and clinical potential.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Encefálicas/genética , Neoplasias Cerebelosas/patología , Aberraciones Cromosómicas , Humanos , Lactante , Meduloblastoma/patología , Mutación , Análisis de Secuencia de ADN
9.
Neuro Oncol ; 24(1): 153-165, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34272868

RESUMEN

BACKGROUND: Less than 5% of medulloblastoma (MB) patients survive following failure of contemporary radiation-based therapies. Understanding the molecular drivers of medulloblastoma relapse (rMB) will be essential to improve outcomes. Initial genome-wide investigations have suggested significant genetic divergence of the relapsed disease. METHODS: We undertook large-scale integrated characterization of the molecular features of rMB-molecular subgroup, novel subtypes, copy number variation (CNV), and driver gene mutation. 119 rMBs were assessed in comparison with their paired diagnostic samples (n = 107), alongside an independent reference cohort sampled at diagnosis (n = 282). rMB events were investigated for association with outcome post-relapse in clinically annotated patients (n = 54). RESULTS: Significant genetic evolution occurred over disease-course; 40% of putative rMB drivers emerged at relapse and differed significantly between molecular subgroups. Non-infant MBSHH displayed significantly more chromosomal CNVs at relapse (TP53 mutation-associated). Relapsed MBGroup4 demonstrated the greatest genetic divergence, enriched for targetable (eg, CDK amplifications) and novel (eg, USH2A mutations) events. Importantly, many hallmark features of MB were stable over time; novel subtypes (>90% of tumors) and established genetic drivers (eg, SHH/WNT/P53 mutations; 60% of rMB events) were maintained from diagnosis. Critically, acquired and maintained rMB events converged on targetable pathways which were significantly enriched at relapse (eg, DNA damage signaling) and specific events (eg, 3p loss) predicted survival post-relapse. CONCLUSIONS: rMB is characterised by the emergence of novel events and pathways, in concert with selective maintenance of established genetic drivers. Together, these define the actionable genetic landscape of rMB and provide a basis for improved clinical management and development of stratified therapeutics, across disease-course.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/genética , Variaciones en el Número de Copia de ADN , Humanos , Meduloblastoma/genética , Mutación , Recurrencia Local de Neoplasia/genética
11.
Cancers (Basel) ; 14(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008290

RESUMEN

Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug-target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches.

12.
Lancet Child Adolesc Health ; 4(12): 865-874, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33222802

RESUMEN

BACKGROUND: Disease relapse occurs in around 30% of children with medulloblastoma, and is almost universally fatal. We aimed to establish whether the clinical and molecular characteristics of the disease at diagnosis are associated with the nature of relapse and subsequent disease course, and whether these associations could inform clinical management. METHODS: In this multicentre cohort study we comprehensively surveyed the clinical features of medulloblastoma relapse (time to relapse, pattern of relapse, time from relapse to death, and overall outcome) in centrally reviewed patients who relapsed following standard upfront therapies, from 16 UK Children's Cancer and Leukaemia Group institutions and four collaborating centres. We compared these relapse-associated features with clinical and molecular features at diagnosis, including established and recently described molecular features, prognostic factors, and treatment at diagnosis and relapse. FINDINGS: 247 patients (175 [71%] boys and 72 [29%] girls) with medulloblastoma relapse (median year of diagnosis 2000 [IQR 1995-2006]) were included in this study. 17 patients were later excluded from further analyses because they did not meet the age and treatment criteria for inclusion. Patients who received upfront craniospinal irradiation (irradiated group; 178 [72%] patients) had a more prolonged time to relapse compared with patients who did not receive upfront craniospinal irradiation (non-irradiated group; 52 [21%] patients; p<0·0001). In the non-irradiated group, craniospinal irradiation at relapse (hazard ratio [HR] 0·27, 95% CI 0·11-0·68) and desmoplastic/nodular histology (0·23, 0·07-0·77) were associated with prolonged time to death after relapse, MYC amplification was associated with a reduced overall survival (23·52, 4·85-114·05), and re-resection at relapse was associated with longer overall survival (0·17, 0·05-0·57). In the irradiated group, patients with MBGroup3 tumours relapsed significantly more quickly than did patients with MBGroup4 tumours (median 1·34 [0·99-1·89] years vs 2·04 [1·39-3·42 years; p=0·0043). Distant disease was prevalent in patients with MBGroup3 (23 [92%] of 25 patients) and MBGroup4 (56 [90%] of 62 patients) tumour relapses. Patients with distantly-relapsed MBGroup3 and MBGroup4 displayed both nodular and diffuse patterns of disease whereas isolated nodular relapses were rare in distantly-relapsed MBSHH (1 [8%] of 12 distantly-relapsed MBSHH were nodular alone compared with 26 [34%] of 77 distantly-relapsed MBGroup3 and MBGroup4). In MBGroup3 and MBGroup4, nodular disease was associated with a prolonged survival after relapse (HR 0·42, 0·21-0·81). Investigation of second-generation MBGroup3 and MBGroup4 molecular subtypes refined our understanding of heterogeneous relapse characteristics. Subtype VIII had prolonged time to relapse and subtype II had a rapid time from relapse to death. Subtypes II, III, and VIII developed a significantly higher incidence of distant disease at relapse whereas subtypes V and VII did not (equivalent rates to diagnosis). INTERPRETATION: This study suggests that the nature and outcome of medulloblastoma relapse are biology and therapy-dependent, providing translational opportunities for improved disease management through biology-directed disease surveillance, post-relapse prognostication, and risk-stratified selection of second-line treatment strategies. FUNDING: Cancer Research UK, Action Medical Research, The Tom Grahame Trust, The JGW Patterson Foundation, Star for Harris, The Institute of Child Health - Newcastle University - Institute of Child Health High-Risk Childhood Brain Tumour Network (co-funded by The Brain Tumour Charity, Great Ormond Street Children's Charity, and Children with Cancer UK).


Asunto(s)
Neoplasias Cerebelosas/terapia , Meduloblastoma/terapia , Recurrencia Local de Neoplasia/terapia , Adolescente , Estudios de Casos y Controles , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Niño , Preescolar , Irradiación Craneoespinal/estadística & datos numéricos , Supervivencia sin Enfermedad , Femenino , Humanos , Lactante , Masculino , Meduloblastoma/clasificación , Meduloblastoma/mortalidad , Meduloblastoma/patología , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos , Factores de Tiempo
13.
Lancet Child Adolesc Health ; 4(2): 121-130, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31786093

RESUMEN

BACKGROUND: Marked variation exists in the use of genomic data in tumour diagnosis, and optimal integration with conventional diagnostic technology remains uncertain despite several studies reporting improved diagnostic accuracy, selection for targeted treatments, and stratification for trials. Our aim was to assess the added value of molecular profiling in routine clinical practice and the impact on conventional and experimental treatments. METHODS: This population-based study assessed the diagnostic and clinical use of DNA methylation-based profiling in childhood CNS tumours using two large national cohorts in the UK. In the diagnostic cohort-which included routinely diagnosed CNS tumours between Sept 1, 2016, and Sept 1, 2018-we assessed how the methylation profile altered or refined diagnosis in routine clinical practice and estimated how this would affect standard patient management. For the archival cohort of diagnostically difficult cases, we established how many cases could be solved using modern standard pathology, how many could only be solved using the methylation profile, and how many remained unsolvable. FINDINGS: Of 484 patients younger than 20 years with CNS tumours, 306 had DNA methylation arrays requested by the neuropathologist and were included in the diagnostic cohort. Molecular profiling added a unique contribution to clinical diagnosis in 107 (35%; 95% CI 30-40) of 306 cases in routine diagnostic practice-providing additional molecular subtyping data in 99 cases, amended the final diagnosis in five cases, and making potentially significant predictions in three cases. We estimated that it could change conventional management in 11 (4%; 95% CI 2-6) of 306 patients. Among 195 historically difficult-to-diagnose tumours in the archival cohort, 99 (51%) could be diagnosed using standard methods, with the addition of methylation profiling solving a further 34 (17%) cases. The remaining 62 (32%) cases were unresolved despite specialist pathology and methylation profiling. INTERPRETATION: Together, these data provide estimates of the impact that could be expected from routine implementation of genomic profiling into clinical practice, and indicate limitations where additional techniques will be required. We conclude that DNA methylation arrays are a useful diagnostic adjunct for childhood CNS tumours. FUNDING: The Brain Tumour Charity, Children with Cancer UK, Great Ormond Street Hospital Children's Charity, Olivia Hodson Cancer Fund, Cancer Research UK, and the National Institute of Health Research.


Asunto(s)
Neoplasias del Sistema Nervioso Central/diagnóstico , Metilación de ADN/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Terapia Molecular Dirigida , Biomarcadores de Tumor/genética , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/terapia , Niño , Humanos , Estudios Retrospectivos , Telomerasa
14.
Acta Neuropathol ; 138(2): 309-326, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31076851

RESUMEN

In 2012, an international consensus paper reported that medulloblastoma comprises four molecular subgroups (WNT, SHH, Group 3, and Group 4), each associated with distinct genomic features and clinical behavior. Independently, multiple recent reports have defined further intra-subgroup heterogeneity in the form of biologically and clinically relevant subtypes. However, owing to differences in patient cohorts and analytical methods, estimates of subtype number and definition have been inconsistent, especially within Group 3 and Group 4. Herein, we aimed to reconcile the definition of Group 3/Group 4 MB subtypes through the analysis of a series of 1501 medulloblastomas with DNA-methylation profiling data, including 852 with matched transcriptome data. Using multiple complementary bioinformatic approaches, we compared the concordance of subtype calls between published cohorts and analytical methods, including assessments of class-definition confidence and reproducibility. While the lowest complexity solutions continued to support the original consensus subgroups of Group 3 and Group 4, our analysis most strongly supported a definition comprising eight robust Group 3/Group 4 subtypes (types I-VIII). Subtype II was consistently identified across all component studies, while all others were supported by multiple class-definition methods. Regardless of analytical technique, increasing cohort size did not further increase the number of identified Group 3/Group 4 subtypes. Summarizing the molecular and clinico-pathological features of these eight subtypes indicated enrichment of specific driver gene alterations and cytogenetic events amongst subtypes, and identified highly disparate survival outcomes, further supporting their biological and clinical relevance. Collectively, this study provides continued support for consensus Groups 3 and 4 while enabling robust derivation of, and categorical accounting for, the extensive intertumoral heterogeneity within Groups 3 and 4, revealed by recent high-resolution subclassification approaches. Furthermore, these findings provide a basis for application of emerging methods (e.g., proteomics/single-cell approaches) which may additionally inform medulloblastoma subclassification. Outputs from this study will help shape definition of the next generation of medulloblastoma clinical protocols and facilitate the application of enhanced molecularly guided risk stratification to improve outcomes and quality of life for patients and their families.


Asunto(s)
Neoplasias Cerebelosas/clasificación , Meduloblastoma/clasificación , Adolescente , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Niño , Preescolar , Metilación de ADN , ADN de Neoplasias/genética , Femenino , Perfilación de la Expresión Génica , Genes myc , Humanos , Lactante , Estimación de Kaplan-Meier , Masculino , Meduloblastoma/genética , Meduloblastoma/mortalidad , Meduloblastoma/patología , Transcriptoma
15.
J Agric Food Chem ; 66(12): 3086-3092, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29432005

RESUMEN

Herbicides are pesticides used to eradicate unwanted plants in both crop and non-crop environments. These chemistries are toxic to weeds due to inhibition of key enzymes or disruption of essential biochemical processes required for weedy plants to survive. Crops can survive systemic herbicidal applications through various forms of detoxification, including metabolism that can be enhanced by safeners. Field studies were conducted near Louisville, Tennessee and Painter, Virginia to determine how the herbicides mesotrione, topramezone, nicosulfuron, and atrazine applied with or without the safener isoxadifen-ethyl would impact the nutritional quality of "Incredible" sweet corn ( Zea mays L. var. rugosa). Several herbicide treatments increased the uptake of the mineral elements phosphorus, magnesium, and manganese by 8-75%. All herbicide treatments increased protein content by 4-12%. Applied alone, nicosulfuron produced similar levels of saturated, monounsaturated, and polyunsaturated fatty acids when compared to the nontreated check, but when applied with isoxadifen-ethyl, fatty acids increased 8 to 44% relative to the check or control. Nicosulfuron plus isoxadifen-ethyl or topramezone or the combination of all three actives increased the concentrations of fructose and glucose (40-68%), whereas reducing levels of maltose or sucrose when compared to the nontreated check (-15 to -21%). Disruptions in biochemical pathways in plants due to the application of herbicides, safeners, or other pesticides have the potential to alter the nutrient quality, taste, and overall plant health associated with edible crops.


Asunto(s)
Herbicidas/farmacología , Zea mays/química , Zea mays/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Ciclohexanonas/farmacología , Ácidos Grasos/metabolismo , Contaminación de Alimentos/análisis , Magnesio/metabolismo , Manganeso/metabolismo , Valor Nutritivo/efectos de los fármacos , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Compuestos de Sulfonilurea/farmacología , Zea mays/metabolismo
16.
Lancet Oncol ; 18(7): 958-971, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28545823

RESUMEN

BACKGROUND: International consensus recognises four medulloblastoma molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGrp3), and group 4 (MBGrp4), each defined by their characteristic genome-wide transcriptomic and DNA methylomic profiles. These subgroups have distinct clinicopathological and molecular features, and underpin current disease subclassification and initial subgroup-directed therapies that are underway in clinical trials. However, substantial biological heterogeneity and differences in survival are apparent within each subgroup, which remain to be resolved. We aimed to investigate whether additional molecular subgroups exist within childhood medulloblastoma and whether these could be used to improve disease subclassification and prognosis predictions. METHODS: In this retrospective cohort study, we assessed 428 primary medulloblastoma samples collected from UK Children's Cancer and Leukaemia Group (CCLG) treatment centres (UK), collaborating European institutions, and the UKCCSG-SIOP-PNET3 European clinical trial. An independent validation cohort (n=276) of archival tumour samples was also analysed. We analysed samples from patients with childhood medulloblastoma who were aged 0-16 years at diagnosis, and had central review of pathology and comprehensive clinical data. We did comprehensive molecular profiling, including DNA methylation microarray analysis, and did unsupervised class discovery of test and validation cohorts to identify consensus primary molecular subgroups and characterise their clinical and biological significance. We modelled survival of patients aged 3-16 years in patients (n=215) who had craniospinal irradiation and had been treated with a curative intent. FINDINGS: Seven robust and reproducible primary molecular subgroups of childhood medulloblastoma were identified. MBWNT remained unchanged and each remaining consensus subgroup was split in two. MBSHH was split into age-dependent subgroups corresponding to infant (<4·3 years; MBSHH-Infant; n=65) and childhood patients (≥4·3 years; MBSHH-Child; n=38). MBGrp3 and MBGrp4 were each split into high-risk (MBGrp3-HR [n=65] and MBGrp4-HR [n=85]) and low-risk (MBGrp3-LR [n=50] and MBGrp4-LR [n=73]) subgroups. These biological subgroups were validated in the independent cohort. We identified features of the seven subgroups that were predictive of outcome. Cross-validated subgroup-dependent survival models, incorporating these novel subgroups along with secondary clinicopathological and molecular features and established disease risk-factors, outperformed existing disease risk-stratification schemes. These subgroup-dependent models stratified patients into four clinical risk groups for 5-year progression-free survival: favourable risk (54 [25%] of 215 patients; 91% survival [95% CI 82-100]); standard risk (50 [23%] patients; 81% survival [70-94]); high-risk (82 [38%] patients; 42% survival [31-56]); and very high-risk (29 [13%] patients; 28% survival [14-56]). INTERPRETATION: The discovery of seven novel, clinically significant subgroups improves disease risk-stratification and could inform treatment decisions. These data provide a new foundation for future research and clinical investigations. FUNDING: Cancer Research UK, The Tom Grahame Trust, Star for Harris, Action Medical Research, SPARKS, The JGW Patterson Foundation, The INSTINCT network (co-funded by The Brain Tumour Charity, Great Ormond Street Children's Charity, and Children with Cancer UK).


Asunto(s)
Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/genética , Metilación de ADN , Meduloblastoma/clasificación , Meduloblastoma/genética , Transcriptoma , Adolescente , Factores de Edad , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/radioterapia , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Amplificación de Genes , Humanos , Lactante , Recién Nacido , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Meduloblastoma/patología , Meduloblastoma/radioterapia , Mutación , Proteína Proto-Oncogénica N-Myc/genética , Proteínas Nucleares/genética , Receptor Patched-1/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/genética , Estudios Retrospectivos , Medición de Riesgo/métodos , Factores de Riesgo , Receptor Smoothened/genética , Tasa de Supervivencia , Telomerasa/genética , Proteína p53 Supresora de Tumor/genética , Proteína Gli2 con Dedos de Zinc , beta Catenina/genética
17.
Oncotarget ; 8(67): 112036-112050, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29340109

RESUMEN

The implementation of personalised medicine in childhood cancers has been limited by a lack of clinically validated multi-target sequencing approaches specific for paediatric solid tumours. In order to support innovative clinical trials in high-risk patients with unmet need, we have developed a clinically relevant targeted sequencing panel spanning 311 kb and comprising 78 genes involved in childhood cancers. A total of 132 samples were used for the validation of the panel, including Horizon Discovery cell blends (n=4), cell lines (n=15), formalin-fixed paraffin embedded (FFPE, n=83) and fresh frozen tissue (FF, n=30) patient samples. Cell blends containing known single nucleotide variants (SNVs, n=528) and small insertion-deletions (indels n=108) were used to define panel sensitivities of ≥98% for SNVs and ≥83% for indels [95% CI] and panel specificity of ≥98% [95% CI] for SNVs. FFPE samples performed comparably to FF samples (n=15 paired). Of 95 well-characterised genetic abnormalities in 33 clinical specimens and 13 cell lines (including SNVs, indels, amplifications, rearrangements and chromosome losses), 94 (98.9%) were detected by our approach. We have validated a robust and practical methodology to guide clinical management of children with solid tumours based on their molecular profiles. Our work demonstrates the value of targeted gene sequencing in the development of precision medicine strategies in paediatric oncology.

18.
Cancer Cell ; 27(1): 72-84, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25533335

RESUMEN

We undertook a comprehensive clinical and biological investigation of serial medulloblastoma biopsies obtained at diagnosis and relapse. Combined MYC family amplifications and P53 pathway defects commonly emerged at relapse, and all patients in this group died of rapidly progressive disease postrelapse. To study this interaction, we investigated a transgenic model of MYCN-driven medulloblastoma and found spontaneous development of Trp53 inactivating mutations. Abrogation of p53 function in this model produced aggressive tumors that mimicked characteristics of relapsed human tumors with combined P53-MYC dysfunction. Restoration of p53 activity and genetic and therapeutic suppression of MYCN all reduced tumor growth and prolonged survival. Our findings identify P53-MYC interactions at medulloblastoma relapse as biomarkers of clinically aggressive disease that may be targeted therapeutically.


Asunto(s)
Neoplasias Cerebelosas/genética , Meduloblastoma/genética , Recurrencia Local de Neoplasia/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteína p53 Supresora de Tumor/genética , Adolescente , Adulto , Animales , Antineoplásicos/uso terapéutico , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/patología , Niño , Preescolar , Femenino , Amplificación de Genes , Humanos , Lactante , Masculino , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/patología , Ratones , Datos de Secuencia Molecular , Mutación , Proteína Proto-Oncogénica N-Myc , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Experimentales , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Adulto Joven
20.
J Clin Oncol ; 31(23): 2927-35, 2013 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-23835706

RESUMEN

PURPOSE: Reports detailing the prognostic impact of TP53 mutations in medulloblastoma offer conflicting conclusions. We resolve this issue through the inclusion of molecular subgroup profiles. PATIENTS AND METHODS: We determined subgroup affiliation, TP53 mutation status, and clinical outcome in a discovery cohort of 397 medulloblastomas. We subsequently validated our results on an independent cohort of 156 medulloblastomas. RESULTS: TP53 mutations are enriched in wingless (WNT; 16%) and sonic hedgehog (SHH; 21%) medulloblastomas and are virtually absent in subgroups 3 and 4 tumors (P < .001). Patients with SHH/TP53 mutant tumors are almost exclusively between ages 5 and 18 years, dramatically different from the general SHH distribution (P < .001). Children with SHH/TP53 mutant tumors harbor 56% germline TP53 mutations, which are not observed in children with WNT/TP53 mutant tumors. Five-year overall survival (OS; ± SE) was 41% ± 9% and 81% ± 5% for patients with SHH medulloblastomas with and without TP53 mutations, respectively (P < .001). Furthermore, TP53 mutations accounted for 72% of deaths in children older than 5 years with SHH medulloblastomas. In contrast, 5-year OS rates were 90% ± 9% and 97% ± 3% for patients with WNT tumors with and without TP53 mutations (P = .21). Multivariate analysis revealed that TP53 status was the most important risk factor for SHH medulloblastoma. Survival rates in the validation cohort mimicked the discovery results, revealing that poor survival of TP53 mutations is restricted to patients with SHH medulloblastomas (P = .012) and not WNT tumors. CONCLUSION: Subgroup-specific analysis reconciles prior conflicting publications and confirms that TP53 mutations are enriched among SHH medulloblastomas, in which they portend poor outcome and account for a large proportion of treatment failures in these patients.


Asunto(s)
Neoplasias Cerebelosas/genética , Genes p53 , Meduloblastoma/genética , Mutación , Adolescente , Adulto , Neoplasias Cerebelosas/patología , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Masculino , Meduloblastoma/patología , Persona de Mediana Edad , Pronóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...