Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Nat Immunol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871999

RESUMEN

Natural killer (NK) cells traffic through the blood and mount cytolytic and interferon-γ (IFNγ)-focused responses to intracellular pathogens and tumors. Type 1 innate lymphoid cells (ILC1s) also produce type 1 cytokines but reside in tissues and are not cytotoxic. Whether these differences reflect discrete lineages or distinct states of a common cell type is not understood. Using single-cell RNA sequencing and flow cytometry, we focused on populations of TCF7+ cells that contained precursors for NK cells and ILC1s and identified a subset of bone marrow lineage-negative NK receptor-negative cells that expressed the transcription factor Eomes, termed EomeshiNKneg cells. Transfer of EomeshiNKneg cells into Rag2-/-Il2rg-/- recipients generated functional NK cells capable of preventing metastatic disease. By contrast, transfer of PLZF+ ILC precursors generated a mixture of ILC1s, ILC2s and ILC3s that lacked cytotoxic potential. These findings identified EomeshiNKneg cells as the bone marrow precursor to classical NK cells and demonstrated that the NK and ILC1 lineages diverged early during development.

2.
Metabolites ; 14(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38668311

RESUMEN

Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, metabolite extracts from healthy (n = 11) and end-stage osteoarthritic cartilage (n = 35) were analyzed using liquid chromatography-mass spectrometry metabolomic profiling. Specific metabolites and metabolic pathways, including lipid and amino acid pathways, were differentially regulated in osteoarthritis-derived and healthy cartilage. The detected alterations in amino acids and lipids highlighted key differences in bioenergetic resources, matrix homeostasis, and mitochondrial alterations in OA-derived cartilage compared to healthy cartilage. Moreover, the metabolomic profiles of osteoarthritic cartilage separated into four distinct endotypes, highlighting the heterogenous nature of OA metabolism and the diverse landscape within the joint in patients. The results of this study demonstrate that human cartilage has distinct metabolomic profiles in healthy and end-stage OA patients. By taking a comprehensive approach to assess metabolic differences between healthy and osteoarthritic cartilage and within osteoarthritic cartilage alone, several metabolic pathways with distinct regulation patterns were detected. Additional investigation may lead to the identification of metabolites that may serve as valuable indicators of disease status or potential therapeutic targets.

3.
Cancer Chemother Pharmacol ; 93(6): 617-625, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38416167

RESUMEN

PURPOSE: The intraventricular route of chemotherapy administration, via an Ommaya Reservoir (OmR) improves drug distribution in the central nervous system (CNS) compared to the more commonly used intrathecal administration. We retrospectively reviewed our experience with intraventricular chemotherapy, focused on methotrexate, in patients with Acute Lymphoblastic Leukemia (ALL) and Non-Hodgkin Lymphoma (NHL). METHODS: Twenty-four patients (aged 7 days - 22.2 years) with 26 OmR placements were identified for a total of 25,009 OmR days between 1990 and 2019. Methotrexate cerebrospinal fluid (CSF) concentrations (n = 124) were analyzed from 59 courses of OmR therapy in 15 patients. Twenty-one courses involved methotrexate dosing on day 0 only, whereas 38 courses involved booster dosing on days 1, 2, or both. We simulated the time CSF methotrexate concentrations remained > 1 µM for 3 days given various dosing regimens. RESULTS: CSF methotrexate exposure was higher in those who concurrently received systemic methotrexate than via OmR alone (p < 10- 7). Our simulations showed that current intraventricular methotrexate boosting strategy for patients ≥ 3 years of age maintained CSF methotrexate concentrations ≥ 1 µM for 72 h 40% of the time. Alternatively, other boosting strategies were predicted to achieve CSF methotrexate concentrations ≥ 1 µM for 72 h between 46 and 72% of the time. CONCLUSIONS: OmR were able to be safely placed and administer intraventricular methotrexate with and without boost doses in patients from 7 days to 22 years old. Boosting strategies are predicted to increase CSF methotrexate concentrations ≥ 1 µM for 72 h.


Asunto(s)
Antimetabolitos Antineoplásicos , Linfoma no Hodgkin , Metotrexato , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Preescolar , Metotrexato/administración & dosificación , Lactante , Adolescente , Estudios Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Masculino , Linfoma no Hodgkin/tratamiento farmacológico , Femenino , Adulto Joven , Recién Nacido , Antimetabolitos Antineoplásicos/administración & dosificación , Hospitales Pediátricos , Inyecciones Intraventriculares
4.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328065

RESUMEN

Objective: Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, healthy and end-stage osteoarthritic cartilage were compared metabolically to uncover disease-associated profiles, classify OA-specific metabolic endotypes, and identify targets for intervention for the diverse populations of individuals affected by OA. Design: Femoral head cartilage (n=35) from osteoarthritis patients were collected post-total joint arthroplasty. Healthy cartilage (n=11) was obtained from a tissue bank. Metabolites from all cartilage samples were extracted and analyzed using liquid chromatography-mass spectrometry metabolomic profiling. Additionally, cartilage extracts were pooled and underwent fragmentation analysis for biochemical identification of metabolites. Results: Specific metabolites and metabolic pathways, including lipid- and amino acid pathways, were differentially regulated between osteoarthritis-derived and healthy cartilage. The detected alterations of amino acids and lipids highlight key differences in bioenergetic resources, matrix homeostasis, and mitochondrial alterations in osteoarthritis-derived cartilage compared to healthy. Moreover, metabolomic profiles of osteoarthritic cartilage separated into four distinct endotypes highlighting the heterogenous nature of OA metabolism and diverse landscape within the joint between patients. Conclusions: The results of this study demonstrate that human cartilage has distinct metabolomic profiles between healthy and end-stage osteoarthritis patients. By taking a comprehensive approach to assess metabolic differences between healthy and osteoarthritic cartilage, and within osteoarthritic cartilage alone, several metabolic pathways with distinct regulation patterns were detected. Additional investigation may lead to the identification of metabolites that may serve as valuable indicators of disease status or potential therapeutic targets.

5.
Biochem Biophys Res Commun ; 703: 149683, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38373382

RESUMEN

Osteoarthritis is the most common chronic joint disease, characterized by the abnormal remodeling of joint tissues including articular cartilage and subchondral bone. However, there are currently no therapeutic drug targets to slow the progression of disease because disease pathogenesis is largely unknown. Thus, the goals of this study were to identify metabolic differences between articular cartilage and subchondral bone, compare the metabolic shifts in osteoarthritic grade III and IV tissues, and spatially map metabolic shifts across regions of osteoarthritic hip joints. Articular cartilage and subchondral bone from 9 human femoral heads were obtained after total joint arthroplasty, homogenized and metabolites were extracted for liquid chromatography-mass spectrometry analysis. Metabolomic profiling revealed that distinct metabolic endotypes exist between osteoarthritic tissues, late-stage grades, and regions of the diseased joint. The pathways that contributed the most to these differences between tissues were associated with lipid and amino acid metabolism. Differences between grades were associated with nucleotide, lipid, and sugar metabolism. Specific metabolic pathways such as glycosaminoglycan degradation and amino acid metabolism, were spatially constrained to more superior regions of the femoral head. These results suggest that radiography-confirmed grades III and IV osteoarthritis are associated with distinct global metabolic and that metabolic shifts are not uniform across the joint. The results of this study enhance our understanding of osteoarthritis pathogenesis and may lead to potential drug targets to slow, halt, or reverse tissue damage in late stages of osteoarthritis.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Osteoartritis/patología , Cartílago Articular/metabolismo , Cabeza Femoral/diagnóstico por imagen , Cabeza Femoral/metabolismo , Radiografía , Aminoácidos/metabolismo , Lípidos
6.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405821

RESUMEN

Objective: The Intensive Diet and Exercise for Arthritis (IDEA) trial was conducted to evaluate the effects of diet and exercise on osteoarthritis (OA), the most prevalent form of arthritis. Various risk factors, such as obesity and sex, contribute to the debilitating nature of OA. While diet and exercise are known to improve OA symptoms, cellular and molecular mechanisms underlying these interventions, as well as effects of participant sex, remain elusive. Methods: Serum was obtained at three timepoints from IDEA participants assigned to groups of diet, exercise, or combined diet and exercise (n=10 per group). All serum metabolites were extracted and analyzed via liquid chromatography-mass spectrometry combined with metabolomic profiling. Extracted serum was pooled and fragmentation patterns were analyzed to identify metabolites that statistically differentially regulated between groups. Results: Changes in metabolism across male and female IDEA participants after 18-months of diet, exercise, and combined diet and excise intervention mapped to lipid, amino acid, carbohydrate, vitamin, and matrix metabolism. The diverse metabolic landscape detected across IDEA participants shows that intervention type impacts the serum metabolome of individuals with OA in distinct patterns. Moreover, differences in the serum metabolome corresponded with participant sex. Conclusions: These findings suggest that intensive weight loss among male and female subjects offers potential metabolic benefits for individuals with knee OA. This provides a deeper understanding of dysregulation occurring during OA development that may pave the way for improved interventions, treatments, and quality of life of those impacted by this disease.

7.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38272673

RESUMEN

Learning and adaptation during sources of threat and safety are critical mechanisms for survival. The prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) have been broadly implicated in the processing of threat and safety. However, how these regions regulate threat and safety during naturalistic conditions involving thermal challenge still remains elusive. To examine this issue, we developed a novel paradigm in which adult mice learned that a particular zone that was identified with visuospatial cues was associated with either a noxious cold temperature ("threat zone") or a pleasant warm temperature ("safety zone"). This led to the rapid development of avoidance behavior when the zone was paired with cold threat or approach behavior when the zone was paired with warm safety. During a long-term test without further thermal reinforcement, mice continued to exhibit robust avoidance or approach to the zone of interest, indicating that enduring spatial-based memories were formed to represent the thermal threat and thermal safety zones. Optogenetic experiments revealed that neural activity in PL and IL was not essential for establishing the memory for the threat zone. However, PL and IL activity bidirectionally regulated memory formation for the safety zone. While IL activity promoted safety memory during normal conditions, PL activity suppressed safety memory especially after a stress pretreatment. Therefore, a working model is proposed in which balanced activity between PL and IL is favorable for safety memory formation, whereas unbalanced activity between these brain regions is detrimental for safety memory after stress.


Asunto(s)
Señales (Psicología) , Corteza Prefrontal , Ratones , Animales , Corteza Prefrontal/fisiología , Reacción de Prevención/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-37716406

RESUMEN

OBJECTIVE: Osteoarthritis is a heterogeneous disease. The objective was to compare differences in underlying cellular mechanisms and endogenous repair pathways between synovial fluid (SF) from male and female participants with different injuries to improve the current understanding of the pathophysiology of downstream post-traumatic osteoarthritis (PTOA). DESIGN: SF from n = 33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. SF was extracted and analyzed via liquid chromatography-mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies (ligament, meniscal, and combined ligament and meniscal) and patient sex. Samples were pooled and underwent secondary fragmentation to identify metabolites. RESULTS: Different knee injuries uniquely altered SF metabolites and downstream pathways including amino acid, lipid, and inflammatory-associated metabolic pathways. Notably, sexual dimorphic metabolic phenotypes were examined between males and females and within injury pathology. Cervonyl carnitine and other identified metabolites differed in concentrations between sexes. CONCLUSIONS: These results suggest that different injuries and patient sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries, sex, and PTOA development may yield data regarding how endogenous repair pathways differ between male and female injury types. Ongoing metabolomic analysis of SF in injured male and female patients can be performed to monitor PTOA development and progression.

9.
Leukemia ; 37(9): 1782-1791, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543655

RESUMEN

Polyethylene glycol (PEG)-asparaginase (pegaspargase) is a key agent in chemotherapy for acute lymphoblastic leukemia (ALL), but recipients frequently experience allergic reactions. We hypothesized that by decreasing antibody-producing CD20-positive B cells, rituximab may reduce these reactions. Children and adolescents (aged 1-18 years) with newly diagnosed B-ALL treated on the St. Jude Total XVII study were randomized to induction therapy with or without rituximab on day 3 (cohort 1) or on days 6 and 24 (cohort 2). Patient clinical demographics, CD20 expression, minimal residual disease (MRD), rituximab reactions, pegaspargase allergy, anti-pegaspargase antibodies, and pancreatitis were evaluated. Thirty-five patients received rituximab and 37 did not. Among the 35 recipients, 16 (45.7%) experienced a grade 2 or higher reaction to rituximab. There were no differences between recipients and non-recipients in the incidence of pegaspargase reactions (P > 0.999), anti-pegaspargase antibodies (P = 0.327), or pancreatitis (P = 0.480). CD20 expression on day 8 was significantly lower in rituximab recipients (P < 0.001), but there were no differences in MRD levels on day 8, 15, or at the end of induction. Rituximab administration during induction in pediatric patients with B-ALL was associated with a high incidence of infusion reactions with no significant decrease in pegaspargase allergies, anti-pegaspargase antibodies, or MRD.


Asunto(s)
Antineoplásicos , Pancreatitis , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Niño , Humanos , Rituximab/uso terapéutico , Asparaginasa/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiología , Polietilenglicoles , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Antineoplásicos/uso terapéutico
10.
J Bone Miner Res ; 38(8): 1154-1174, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37221143

RESUMEN

The gut microbiome impacts bone mass, which implies a disruption to bone homeostasis. However, it is not yet clear how the gut microbiome affects the regulation of bone mass and bone quality. We hypothesized that germ-free (GF) mice have increased bone mass and decreased bone toughness compared with conventionally housed mice. We tested this hypothesis using adult (20- to 21-week-old) C57BL/6J GF and conventionally raised female and male mice (n = 6-10/group). Trabecular microarchitecture and cortical geometry were measured from micro-CT of the femur distal metaphysis and cortical midshaft. Whole-femur strength and estimated material properties were measured using three-point bending and notched fracture toughness. Bone matrix properties were measured for the cortical femur by quantitative back-scattered electron imaging and nanoindentation, and, for the humerus, by Raman spectroscopy and fluorescent advanced glycation end product (fAGE) assay. Shifts in cortical tissue metabolism were measured from the contralateral humerus. GF mice had reduced bone resorption, increased trabecular bone microarchitecture, increased tissue strength and decreased whole-bone strength that was not explained by differences in bone size, increased tissue mineralization and fAGEs, and altered collagen structure that did not decrease fracture toughness. We observed several sex differences in GF mice, most notably for bone tissue metabolism. Male GF mice had a greater signature of amino acid metabolism, and female GF mice had a greater signature of lipid metabolism, exceeding the metabolic sex differences of the conventional mice. Together, these data demonstrate that the GF state in C57BL/6J mice alters bone mass and matrix properties but does not decrease bone fracture resistance. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Huesos , Fracturas Óseas , Femenino , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Huesos/diagnóstico por imagen , Huesos/metabolismo , Densidad Ósea/fisiología , Matriz Ósea/metabolismo , Fracturas Óseas/metabolismo
11.
bioRxiv ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205585

RESUMEN

Safety learning is a critical function for behavioral adaptation, environmental fitness, and mental health. Animal models have implicated the prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) in safety learning. However, whether these regions differentially contribute to safety learning and how their contributions become affected by stress still remain poorly understood. In this study, we evaluated these issues using a novel semi-naturalistic mouse model for threat and safety learning. As mice navigated within a test arena, they learned that specific zones were associated with either noxious cold temperatures ("threat") or pleasant warm temperatures ("safety"). Optogenetic-mediated inhibition revealed critical roles for the IL and PL regions for selectively controlling safety learning during these naturalistic conditions. This form of safety learning was also highly susceptible to stress pre-exposure, and while IL inhibition mimicked the deficits produced by stress, PL inhibition fully rescued safety learning in stress-exposed mice. Collectively, these findings indicate that IL and PL bidirectionally regulate safety learning during naturalistic situations, with the IL region promoting this function and the PL region suppressing it, especially after stress. A model of balanced IL and PL activity is proposed as a fundamental mechanism for controlling safety learning.

12.
Cancer Chemother Pharmacol ; 92(1): 1-6, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37199744

RESUMEN

PURPOSE: The Stanford V chemotherapy regimen has been used to treat Hodgkin lymphoma (HL) patients since 2002 with excellent cure rates; however, mechlorethamine is no longer available. Bendamustine, a drug structurally similar to alkylating agents and nitrogen mustard, is being substituted for mechlorethamine in combination therapy in a frontline trial for low- and intermediate-risk pediatric HL patients, forming a new backbone of BEABOVP (bendamustine, etoposide, doxorubicin, bleomycin, vincristine, vinblastine, and prednisone). This study evaluated the pharmacokinetics and tolerability of a 180 mg/m2 dose of bendamustine every 28 days to determine factors that may explain this variability. METHODS: Bendamustine plasma concentrations were measured in 118 samples from 20 pediatric patients with low- and intermediate-risk HL who received a single-day dose of 180 mg/m2 of bendamustine. A pharmacokinetic model was fit to the data using nonlinear mixed-effects modeling. RESULTS: Bendamustine concentration vs time demonstrated a trend toward decreasing clearance with increasing age (p = 0.074) and age explained 23% of the inter-individual variability in clearance. The median (range) AUC was 12,415 (8,539, 18,642) µg hr/L and the median (range) maximum concentration was 11,708 (8034, 15,741) µg/L. Bendamustine was well tolerated with no grade 3 toxicities resulting in treatment delays of more than 7 days. CONCLUSIONS: A single-day dose of 180 mg/m2 of bendamustine every 28 days was safe and well tolerated in pediatric patients. While age accounted for 23% of inter-individual variability observed in bendamustine clearance, the differences did not affect the safety and tolerability of bendamustine in our patient population.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Niño , Enfermedad de Hodgkin/tratamiento farmacológico , Clorhidrato de Bendamustina , Mecloretamina/efectos adversos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Doxorrubicina , Protocolos de Quimioterapia Combinada Antineoplásica
13.
Am J Physiol Renal Physiol ; 324(6): F590-F602, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141147

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous fluid-filled cysts that lead to progressive loss of functional nephrons. Currently, there is an unmet need for diagnostic and prognostic indicators of early stages of the disease. Metabolites were extracted from the urine of patients with early-stage ADPKD (n = 48 study participants) and age- and sex-matched normal controls (n = 47) and analyzed by liquid chromatography-mass spectrometry. Orthogonal partial least squares-discriminant analysis was used to generate a global metabolomic profile of early ADPKD for the identification of metabolic pathway alterations and discriminatory metabolites as candidates of diagnostic and prognostic biomarkers. The global metabolomic profile exhibited alterations in steroid hormone biosynthesis and metabolism, fatty acid metabolism, pyruvate metabolism, amino acid metabolism, and the urea cycle. A panel of 46 metabolite features was identified as candidate diagnostic biomarkers. Notable putative identities of candidate diagnostic biomarkers for early detection include creatinine, cAMP, deoxycytidine monophosphate, various androgens (testosterone; 5-α-androstane-3,17,dione; trans-dehydroandrosterone), betaine aldehyde, phosphoric acid, choline, 18-hydroxycorticosterone, and cortisol. Metabolic pathways associated with variable rates of disease progression included steroid hormone biosynthesis and metabolism, vitamin D3 metabolism, fatty acid metabolism, the pentose phosphate pathway, tricarboxylic acid cycle, amino acid metabolism, sialic acid metabolism, and chondroitin sulfate and heparin sulfate degradation. A panel of 41 metabolite features was identified as candidate prognostic biomarkers. Notable putative identities of candidate prognostic biomarkers include ethanolamine, C20:4 anandamide phosphate, progesterone, various androgens (5-α-dihydrotestosterone, androsterone, etiocholanolone, and epiandrosterone), betaine aldehyde, inflammatory lipids (eicosapentaenoic acid, linoleic acid, and stearolic acid), and choline. Our exploratory data support metabolic reprogramming in early ADPKD and demonstrate the ability of liquid chromatography-mass spectrometry-based global metabolomic profiling to detect metabolic pathway alterations as new therapeutic targets and biomarkers for early diagnosis and tracking disease progression of ADPKD.NEW & NOTEWORTHY To our knowledge, this study is the first to generate urinary global metabolomic profiles from individuals with early-stage ADPKD with preserved renal function for biomarker discovery. The exploratory dataset reveals metabolic pathway alterations that may be responsible for early cystogenesis and rapid disease progression and may be potential therapeutic targets and pathway sources for candidate biomarkers. From these results, we generated a panel of candidate diagnostic and prognostic biomarkers of early-stage ADPKD for future validation.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/diagnóstico , Andrógenos , Biomarcadores/orina , Metabolómica/métodos , Progresión de la Enfermedad , Redes y Vías Metabólicas , Colina , Aminoácidos , Ácidos Grasos , Esteroides
14.
Front Pharmacol ; 14: 1142583, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113758

RESUMEN

Pathological remodeling of atrial tissue renders the atria more prone to arrhythmia upon arrival of electrical triggers. Activation of the renin-angiotensin system is an important factor that contributes to atrial remodeling, which may result in atrial hypertrophy and prolongation of P-wave duration. In addition, atrial cardiomyocytes are electrically coupled via gap junctions, and electrical remodeling of connexins may result in dysfunction of coordinated wave propagation within the atria. Currently, there is a lack of effective therapeutic strategies that target atrial remodeling. We previously proposed that cannabinoid receptors (CBR) may have cardioprotective qualities. CB13 is a dual cannabinoid receptor agonist that activates AMPK signaling in ventricular cardiomyocytes. We reported that CB13 attenuates tachypacing-induced shortening of atrial refractoriness and inhibition of AMPK signaling in the rat atria. Here, we evaluated the effects of CB13 on neonatal atrial rat cardiomyocytes (NRAM) stimulated by angiotensin II (AngII) in terms of atrial myocyte enlargement and mitochondrial function. CB13 inhibited AngII-induced enhancement of atrial myocyte surface area in an AMPK-dependent manner. CB13 also inhibited mitochondrial membrane potential deterioration in the same context. However, AngII and CB13 did not affect mitochondrial permeability transition pore opening. We further demonstrate that CB13 increased Cx43 compared to AngII-treated neonatal rat atrial myocytes. Overall, our results support the notion that CBR activation promotes atrial AMPK activation, and prevents myocyte enlargement (an indicator that suggests pathological hypertrophy), mitochondrial depolarization and Cx43 destabilization. Therefore, peripheral CBR activation should be further tested as a novel treatment strategy in the context of atrial remodeling.

15.
Peptides ; 162: 170962, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36736539

RESUMEN

Glucagon receptor (GCGR)-targeted multi-agonists are being developed for the treatment of obesity and metabolic disease. GCGR activity is utilised for its favourable weight loss and metabolic properties, including increased energy expenditure (EE) and hepatic lipid metabolism. GLP1R and GIPR activities are increasingly present in a multi-agonist strategy. Due to the compound effect of increased satiety, reduced food intake and increased energy expenditure, the striking weight loss effects of these multi-agonists has been demonstrated in pre-clinical models of obesity. The precise contribution and mechanism of GCGR activity to enhanced energy expenditure and weight loss in both rodents and humans is not fully understood. In this review, our understanding of glucagon-mediated EE is explored, and an amino acid-centric paradigm contributing to this phenomenon is presented. The current progress of GCGR-targeted multi-agonists in development is also highlighted with a focus on the implications of glucagon-stimulated hypoaminoacidemia.


Asunto(s)
Glucagón , Receptores de Glucagón , Humanos , Glucagón/metabolismo , Receptores de Glucagón/metabolismo , Obesidad/metabolismo , Pérdida de Peso , Metabolismo Energético , Aminoácidos , Receptor del Péptido 1 Similar al Glucagón/metabolismo
16.
bioRxiv ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36846378

RESUMEN

Background: Post-traumatic osteoarthritis (PTOA) is caused by knee injuries like anterior cruciate ligament (ACL) injuries. Often, ACL injuries are accompanied by damage to other tissues and structures within the knee including the meniscus. Both are known to cause PTOA but underlying cellular mechanisms driving disease remain unknown. Aside from injury, patient sex is a prevalent risk factor associated with PTOA. Hypothesis: Metabolic phenotypes of synovial fluid that differ by knee injury pathology and participant sex will be distinct from each other. Study Design: A cross-sectional study. Methods: Synovial fluid from n=33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. Synovial fluid was extracted and analyzed via liquid chromatography mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies and participant sex. Additionally, samples were pooled and underwent fragmentation to identify metabolites. Results: Metabolite profiles revealed that injury pathology phenotypes were distinct from each other where differences in endogenous repair pathways that are triggered post-injury were detected. Specifically, acute differences in metabolism mapped to amino acid metabolism, lipid-related oxidative metabolism, and inflammatory-associated pathways. Lastly, sexual dimorphic metabolic phenotypes were examined between male and female participants, and within injury pathology. Specifically, Cervonyl Carnitine and other identified metabolites differed in concentration between sexes. Conclusions: The results of this study suggest that different injuries (e.g., ligament vs. meniscus), as well as sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries and PTOA development may yield data regarding how endogenous repair pathways differ between injury types. Furthermore, ongoing metabolomic analysis of synovial fluid in injured male and female patients can be performed to monitor PTOA development and progression. Clinical Relevance: Extension of this work may potentially lead to the identification of biomarkers as well as drug targets that slow, stop, or reverse PTOA progression based on injury type and patient sex.

18.
Cancer Med ; 12(2): 1552-1555, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35837830

RESUMEN

OBJECTIVE: Allergic reactions to pegaspargase during ALL therapy are typically due to antibodies against polyethylene glycol (PEG), which is also used as a stabilizing agent in mRNA-based SARS-CoV-2 vaccines. To evaluate the safety of these vaccines in patients with anti-pegaspargase antibodies. METHODS: We retrospectively reviewed the records of patients treated for ALL who had received SARS-CoV-2 vaccinations. All patients had antibodies against pegaspargase assayed during ALL therapy prospectively and in response to clinical allergies. Symptoms of intolerance to vaccination were gathered retrospectively from chart abstraction. RESULTS: SARS-CoV-2 vaccination was well tolerated in all 78 patients with prior exposure to pegaspargase as part of their leukemia therapy. No reactions were observed in the 54 patients without a history of anti-pegaspargase antibodies or in 19 patients with antibodies who received mRNA vaccination. 1 patient who received the polysorbate containing Janssen vaccine experienced mild symptoms after vaccination not meeting the criteria of clinical allergy which spontaneously resolved within 25 minutes. CONCLUSION: SARS-CoV-2 vaccination is safe in this population.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas , Humanos , Anticuerpos , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Polietilenglicoles/efectos adversos , Estudios Retrospectivos , ARN Mensajero , SARS-CoV-2
19.
Methods Mol Biol ; 2598: 141-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36355290

RESUMEN

Metabolism has long been recognized as a critical physiological process necessary to maintain homeostasis in all types of cells including the chondrocytes of articular cartilage. Alterations in metabolism in disease and metabolic adaptation to physiological stimuli such as mechanical loading are increasingly recognized as important for understanding musculoskeletal systems such as synovial joints. Metabolomics is an emerging technique that allows quantitative measurement of thousands of small molecule metabolites that serve as both products and reactants to myriad reactions of cellular biochemistry. This protocol describes procedures to perform metabolomic profiling on chondrocytes and other tissues and fluids within the synovial joint.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Condrocitos/metabolismo , Osteoartritis/metabolismo , Cartílago Articular/metabolismo , Metabolómica , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...