Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys Physicobiol ; 21(Supplemental): e211017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175860

RESUMEN

Singularity biology is a scientific field that targets drastic state changes in multicellular systems, aiming to discover the key cells that induce the state change and investigate the mechanisms behind them. To achieve this goal, we developed a trans-scale optical imaging system (trans-scale scope), that is capable of capturing both macroscale changes across the entire system and the micro-scale behavior of individual cells, surpassing the cell observation capabilities of traditional microscopes. We developed two units of the trans-scale scope, named AMATERAS-1 and -2, which demonstrated the ability to observe multicellular systems consisting of over one million cells in a single field of view with sub-cellular resolution. This flagship instrument has been used to observe the dynamics of various cell species, with the advantage of being able to observe a large number of cells, allowing the detection and analysis of rare events and cells such as leader cells in multicellular pattern formation and cells that spontaneously initiate calcium waves. In this paper, we present the design concept of AMATERAS, the optical configuration, and several examples of observations, and demonstrate how the strength-in-numbers works in life sciences.

3.
J Clin Biochem Nutr ; 75(1): 24-32, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39070537

RESUMEN

The endosomal-lysosomal system represents a crucial degradation pathway for various extracellular substances, and its dysfunction is linked to cardiovascular and neurodegenerative diseases. This degradation process involves multiple steps: (1) the uptake of extracellular molecules, (2) transport of cargos to lysosomes, and (3) digestion by lysosomal enzymes. While cellular uptake and lysosomal function are reportedly regulated by the mTORC1-TFEB axis, the key regulatory signal for cargo transport remains unclear. Notably, our previous study discovered that isorhamnetin, a dietary flavonoid, enhances endosomal-lysosomal proteolysis in the J774.1 cell line independently of the mTORC1-TFEB axis. This finding suggests the involvement of another signal in the mechanism of isorhamnetin. This study analyzes the molecular mechanism of isorhamnetin using transcriptome analysis and reveals that the transcription factor GATA3 plays a critical role in enhanced endosomal-lysosomal degradation. Our data also demonstrate that mTORC2 regulates GATA3 nuclear translocation, and the mTORC2-GATA3 axis alters endosomal formation and maturation, facilitating the efficient transport of cargos to lysosomes. This study suggests that the mTORC2-GATA3 axis might be a novel target for the degradation of abnormal substances.

4.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062812

RESUMEN

Dietary intake of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid, EPA) exerts antiarrhythmic effects, although the mechanisms are poorly understood. Here, we investigated the possible beneficial actions of EPA on saturated fatty acid-induced changes in the L-type Ca2+ channel in cardiomyocytes. Cardiomyocytes were cultured with an oleic acid/palmitic acid mixture (OAPA) in the presence or absence of EPA. Beating rate reduction in cardiomyocytes caused by OAPA were reversed by EPA. EPA also retrieved a reduction in Cav1.2 L-type Ca2+ current, mRNA, and protein caused by OAPA. Immunocytochemical analysis revealed a distinct downregulation of the Cav1.2 channel caused by OAPA with a concomitant decrease in the phosphorylated component of a transcription factor adenosine-3',5'-cyclic monophosphate (cAMP) response element binding protein (CREB) in the nucleus, which were rescued by EPA. A free fatty acid receptor 4 (FFAR4) agonist TUG-891 reversed expression of Cav1.2 and CREB mRNA caused by OAPA, whereas an FFAR4 antagonist AH-7614 abolished the effects of EPA. Excessive reactive oxygen species (ROS) accumulation caused by OAPA decreased Cav1.2 and CREB mRNA expressions, which was reversed by an ROS scavenger. Our data suggest that EPA rescues cellular Cav1.2-Ca2+ channel decline caused by OAPA lipotoxicity and oxidative stresses via both free fatty acid receptor 4-dependent and -independent pathways.


Asunto(s)
Canales de Calcio Tipo L , Ácido Eicosapentaenoico , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ácido Eicosapentaenoico/farmacología , Animales , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Ratas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ácidos Grasos/metabolismo , Transducción de Señal/efectos de los fármacos , Células Cultivadas
5.
Commun Biol ; 7(1): 705, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851844

RESUMEN

Genetically encoded Ca2+ indicators (GECIs) are versatile for live imaging of cellular activities. Besides the brightness and dynamic range of signal change of GECIs, Ca2+ affinity is another critical parameter for successful Ca2+ imaging, as the concentration range of Ca2+ dynamics differs from low nanomolar to sub-millimolar depending on the celltype and organism. However, ultrahigh-affinity GECIs, particularly the single fluorescent protein (1FP)-type, are lacking. Here, we report a simple strategy that increases Ca2+ affinity through the linker length optimization in topology mutants of existing 1FP-type GECIs. The resulting ultrahigh-affinity GECIs, CaMPARI-nano, BGECO-nano, and RCaMP-nano (Kd = 17-25 nM), enable unique biological applications, including the detection of low nanomolar Ca2+ dynamics, highlighting active signaling cells, and multi-functional imaging with other second messengers. The linker length optimization in topology mutants could be applied to other 1FP-type indicators of glutamate and potassium, rendering it a widely applicable technique for modulating indicator affinity.


Asunto(s)
Calcio , Proteínas Luminiscentes , Mutación , Calcio/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/química , Células HEK293
6.
Sci Rep ; 13(1): 12566, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532878

RESUMEN

Collective migration of cells is a fundamental behavior in biology. For the quantitative understanding of collective cell migration, live-cell imaging techniques have been used using e.g., phase contrast or fluorescence images. Particle tracking velocimetry (PTV) is a common recipe to quantify cell motility with those image data. However, the precise tracking of cells is not always feasible. Particle image velocimetry (PIV) is an alternative to PTV, corresponding to Eulerian picture of fluid dynamics, which derives the average velocity vector of an aggregate of cells. However, the accuracy of PIV in capturing the underlying cell motility and what values of the parameters should be chosen is not necessarily well characterized, especially for cells that do not adhere to a viscous flow. Here, we investigate the accuracy of PIV by generating images of simulated cells by the Vicsek model using trajectory data of agents at different noise levels. It was found, using an alignment score, that the direction of the PIV vectors coincides with the direction of nearby agents with appropriate choices of PIV parameters. PIV is found to accurately measure the underlying motion of individual agents for a wide range of noise level, and its condition is addressed.


Asunto(s)
Hidrodinámica , Reología/métodos , Movimiento Celular , Velocidad del Flujo Sanguíneo
7.
Biochem Biophys Res Commun ; 601: 65-72, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35228123

RESUMEN

Taste recognition mediated by taste receptors is critical for the survival of animals in nature and is an important determinant of nutritional status and quality of life in humans. However, many factors including aging, diabetes, zinc deficiency, infection with influenza or cold viruses, and chemotherapy can trigger dysgeusia, for which a standard treatment has not been established. We here established an engineered strain of medaka (Oryzias latipes) that expresses green fluorescent protein (GFP) from the endogenous taste 1 receptor 3 (T1R3) gene locus with the use of the CRISPR-Cas9 system. This T1R3-GFP knock-in (KI) strain allows direct visualization of expression from this locus by monitoring of GFP fluorescence. The pattern of GFP expression in the T1R3-GFP KI fish thus mimicked that of endogenous T1R3 gene expression. Furthermore, exposure of T1R3-GFP KI medaka to water containing monosodium glutamate or the anticancer agent 5-fluorouracil resulted in an increase or decrease, respectively, in GFP fluorescence intensity, effects that also recapitulated those on T1R3 mRNA abundance. Finally, screening for agents that affect GFP fluorescence intensity in T1R3-GFP KI medaka identified tryptophan as an amino acid that increases T1R3 gene expression. The establishment of this screening system for taste receptor expression in medaka provides a new tool for the development of potential therapeutic agents for dysgeusia.


Asunto(s)
Oryzias , Animales , Sistemas CRISPR-Cas/genética , Disgeusia/genética , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Oryzias/genética , Calidad de Vida , Gusto
8.
Methods Mol Biol ; 2483: 231-240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35286679

RESUMEN

Bioluminescence imaging of cellular function is a promising strategy. It has advantages over fluorescence imaging such as high sensitivity, no phototoxicity or no autofluorescence, and compatibility to deep-tissue imaging or optogenetics. However, functional imaging of cellular signaling by bioluminescence is not so easy due to the limited availability of bright bioluminescent indicators.Here we describe a detailed strategy to detect cellular cAMP dynamics by using Nano-lantern (cAMP1.6), one of the brightest bioluminescent indicator for cAMP . Both induced and spontaneous cAMP signaling in social amoeba, with a large and small signal change, respectively, were imaged by this method.


Asunto(s)
Calcio , Optogenética , Proteínas Luminiscentes/genética , Imagen Óptica , Optogenética/métodos
9.
Endocrinology ; 163(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041746

RESUMEN

Longitudinal bone growth is achieved by a tightly controlled process termed endochondral bone formation. C-type natriuretic peptide (CNP) stimulates endochondral bone formation through binding to its specific receptor, guanylyl cyclase (GC)-B. However, CNP/GC-B signaling dynamics in different stages of endochondral bone formation have not been fully clarified, especially in terms of the interaction between the cyclic guanine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) pathways. Here, we demonstrated that CNP activates the cAMP/protein kinase A (PKA) pathway and that this activation contributed to the elongation of the hypertrophic zone in the growth plate. Cells of the chondrogenic line ATDC5 were transfected with Förster resonance energy transfer (FRET)-based cGMP and PKA biosensors. Dual-FRET imaging revealed that CNP increased intracellular cGMP levels and PKA activities in chondrocytes. Further, CNP-induced PKA activation was enhanced following differentiation of ATDC5 cells. Live imaging of the fetal growth plate of transgenic mice, expressing a FRET biosensor for PKA, PKAchu mice, showed that CNP predominantly activates the PKA in the hypertrophic chondrocytes. Additionally, histological analysis of the growth plate of PKAchu mice demonstrated that CNP increased the length of the growth plate, but coadministration of a PKA inhibitor, H89, inhibited the growth-promoting effect of CNP only in the hypertrophic zone. In summary, we revealed that CNP-induced cGMP elevation activated the cAMP/PKA pathway, and clarified that this PKA activation contributed to the bone growth-promoting effect of CNP in hypertrophic chondrocytes. These results provide insights regarding the cross-talk between cGMP and cAMP signaling in endochondral bone formation and in the physiological role of the CNP/GC-B system.


Asunto(s)
Condrocitos/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Péptido Natriurético Tipo-C/farmacología , Osteogénesis/fisiología , Animales , Diferenciación Celular , Línea Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , GMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Placa de Crecimiento/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
10.
Cancer Sci ; 112(12): 4853-4866, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34628702

RESUMEN

Immune checkpoint inhibitor (ICI) programmed death (PD)-1/PD-ligand 1 (PD-L1) blockade has been approved for various cancers. However, the underlying antitumor mechanisms mediated by ICIs and the predictive biomarkers remain unclear. We report the effects of anti-PD-L1/PD-1 Ab in tumor angiogenesis. In syngeneic mouse models, anti-PD-L1 Ab inhibited tumor angiogenesis and induces net-like hypoxia only in ICI-sensitive cell lines. In tumor tissue and serum of ICI-sensitive cell line-bearing mice, interferon-γ (IFN-γ) inducible angiostatic chemokines CXCL10/11 were upregulated by PD-L1 blockade. In vitro, CXCL10/11 gene upregulation by IFN-γ stimulation in tumor cell lines correlated with the sensitivity of PD-L1 blockade. The CXCL10/11 receptor CXCR3-neutralizing Ab or CXCL11 silencing in tumor cells inhibited the antiangiogenic effect of PD-L1 blockade in vivo. In pretreatment serum of lung carcinoma patients receiving anti-PD-1 Ab, the concentration of CXCL10/11 significantly correlated with the clinical outcome. Our results indicate the antiangiogenic function of PD-1/PD-L1 blockade and identify tumor-derived CXCL10/11 as a potential circulating biomarker of therapeutic sensitivity.


Asunto(s)
Antígeno B7-H1/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Neoplasias Experimentales/metabolismo , Neovascularización Patológica/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Quimiocina CXCL10/genética , Quimiocina CXCL11/genética , Células HEK293 , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interferón gamma/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Desnudos , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/tratamiento farmacológico , Neovascularización Patológica/prevención & control , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Interferencia de ARN
11.
Biophys Physicobiol ; 18: 131-144, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178564

RESUMEN

Synchronized movement of (both unicellular and multicellular) systems can be observed almost everywhere. Understanding of how organisms are regulated to synchronized behavior is one of the challenging issues in the field of collective motion. It is hypothesized that one or a few agents in a group regulate(s) the dynamics of the whole collective, known as leader(s). The identification of the leader (influential) agent(s) is very crucial. This article reviews different mathematical models that represent different types of leadership. We focus on the improvement of the leader-follower classification problem. It was found using a simulation model that the use of interaction domain information significantly improves the leader-follower classification ability using both linear schemes and information-theoretic schemes for quantifying influence. This article also reviews different schemes that can be used to identify the interaction domain using the motion data of agents.

12.
Chem Commun (Camb) ; 57(46): 5630-5633, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34018507

RESUMEN

We designed a new caging group that can be photoactivated only in the presence of a non-endogenous enzyme when exposed to 405 nm light. Because cells or tissues can be genetically tagged by an exogenously expressed enzyme, this novel method can serve as a strategy for adding targeting abilities to photocaged compounds.


Asunto(s)
Nucleótidos Cíclicos/síntesis química , Células HeLa , Humanos , Luz , Estructura Molecular , Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/genética , Procesos Fotoquímicos , Células Tumorales Cultivadas
13.
Commun Biol ; 4(1): 551, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976349

RESUMEN

Elongated tubular endosomes play essential roles in diverse cellular functions. Multiple molecules have been implicated in tubulation of recycling endosomes, but the mechanism of endosomal tubule biogenesis has remained unclear. In this study, we found that JRAB/MICAL-L2 induces endosomal tubulation via activated Rab8A. In association with Rab8A, JRAB/MICAL-L2 adopts its closed form, which functions in the tubulation of recycling endosomes. Moreover, JRAB/MICAL-L2 induces liquid-liquid phase separation, initiating the formation of tubular recycling endosomes upon overexpression. Between its N-terminal and C-terminal globular domains, JRAB/MICAL-L2 contains an intrinsically disordered region, which contributes to the formation of JRAB/MICAL-L2 condensates. Based on our findings, we propose that JRAB/MICAL-L2 plays two sequential roles in the biogenesis of tubular recycling endosomes: first, JRAB/MICAL-L2 organizes phase separation, and then the closed form of JRAB/MICAL-L2 formed by interaction with Rab8A promotes endosomal tubulation.


Asunto(s)
Endosomas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endocitosis/fisiología , Endosomas/fisiología , Células HEK293 , Células HeLa , Humanos , Proteínas de Microfilamentos/fisiología , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , Uniones Estrechas/fisiología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/fisiología
14.
Front Microbiol ; 12: 647452, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33767685

RESUMEN

HIV-1 infectivity is achieved through virion maturation. Virus particles undergo structural changes via cleavage of the Gag polyprotein mediated by the viral protease, causing the transition from an uninfectious to an infectious status. The majority of proviruses in people living with HIV-1 treated with combination antiretroviral therapy are defective with large internal deletions. Defective proviral DNA frequently preserves intact sequences capable of expressing viral structural proteins to form virus-like particles whose maturation status is an important factor for chronic antigen-mediated immune stimulation and inflammation. Thus, novel methods to study the maturation capability of defective virus particles are needed to characterize their immunogenicity. To build a quantitative tool to study virion maturation in vitro, we developed a novel single virion visualization technique based on fluorescence resonance energy transfer (FRET). We inserted an optimized intramolecular CFP-YPF FRET donor-acceptor pair bridged with an HIV-1 protease cleavage sequence between the Gag MA-CA domains. This system allowed us to microscopically distinguish mature and immature virions via their FRET signal when the FRET donor and acceptor proteins were separated by the viral protease during maturation. We found that approximately 80% of the FRET labeled virus particles were mature with equivalent infectivity to wild type. The proportion of immature virions was increased by treatment of virus producer cells with a protease inhibitor in a dose-dependent manner, which corresponded to a relative decrease in infectivity. Potential areas of application for this tool are assessing maturation efficiency in different cell type settings of intact or deficient proviral DNA integrated cells. We believe that this FRET-based single-virion imaging platform will facilitate estimating the impact on the immune system of both extracellular intact and defective viruses by quantifying the Gag maturation status.

15.
J Chem Phys ; 154(3): 034901, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33499629

RESUMEN

Transfer entropy in information theory was recently demonstrated [Basak et al., Phys. Rev. E 102, 012404 (2020)] to enable us to elucidate the interaction domain among interacting elements solely from an ensemble of trajectories. Therefore, only pairs of elements whose distances are shorter than some distance variable, termed cutoff distance, are taken into account in the computation of transfer entropies. The prediction performance in capturing the underlying interaction domain is subject to the noise level exerted on the elements and the sufficiency of statistics of the interaction events. In this paper, the dependence of the prediction performance is scrutinized systematically on noise level and the length of trajectories by using a modified Vicsek model. The larger the noise level and the shorter the time length of trajectories, the more the derivative of average transfer entropy fluctuates, which makes the identification of the interaction domain in terms of the position of global minimum of the derivative of average transfer entropy difficult. A measure to quantify the degree of strong convexity at the coarse-grained level is proposed. It is shown that the convexity score scheme can identify the interaction distance fairly well even while the position of the global minimum of the derivative of average transfer entropy does not. We also derive an analytical model to explain the relationship between the interaction domain and the change in transfer entropy that supports our cutoff distance technique to elucidate the underlying interaction domain from trajectories.

16.
Phys Rev E ; 102(1-1): 012404, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32795064

RESUMEN

An information-theoretic scheme is proposed to estimate the underlying domain of interactions and the timescale of the interactions for many-particle systems. The crux is the application of transfer entropy which measures the amount of information transferred from one variable to another, and the introduction of a "cutoff distance variable" which specifies the distance within which pairs of particles are taken into account in the estimation of transfer entropy. The Vicsek model often studied as a metaphor of collectively moving animals is employed with introducing asymmetric interactions and an interaction timescale. Based on ensemble data of trajectories of the model system, it is shown that using the interaction domain significantly improves the performance of classification of leaders and followers compared to the approach without utilizing knowledge of the domain. Given an interaction timescale estimated from an ensemble of trajectories, the first derivative of transfer entropy averaged over the ensemble with respect to the cutoff distance is presented to serve as an indicator to infer the interaction domain. It is shown that transfer entropy is superior for inferring the interaction radius compared to cross correlation, hence resulting in a higher performance for inferring the leader-follower relationship. The effects of noise size exerted from environment and the ratio of the numbers of leader and follower on the classification performance are also discussed.

17.
Phys Rev E ; 102(6-2): 069902, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33466116

RESUMEN

This corrects the article DOI: 10.1103/PhysRevE.102.012404.

18.
PLoS One ; 13(8): e0201891, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30138395

RESUMEN

RATIONALE: Diabetes causes cardiac dysfunction, and understanding of its mechanism is still incomplete. One reason could be limitations in modeling disease conditions by current in vitro cardiomyocyte culture. Emerging evidence suggests that the mechanical properties of the microenvironment affect cardiomyocyte function. Nevertheless, the impact of high glucose on cardiomyocytes cultured on substrates whose stiffness matches that of the heart (approximately 15 kPa) is untested. OBJECTIVE: To test the hypothesis that cardiomyocytes cultured in microenvironments that mimic the mechanical properties of those for cardiomyocytes in vivo may reproduce the pathophysiology characteristics of diabetic cardiomyocytes ex vivo, such as the morphological appearance, ROS accumulation, mitochondrial dysfunction, apoptosis and insulin-stimulated glucose uptake. METHODS AND RESULTS: Isolated neonatal rat cardiomyocytes were seeded on 15 kPa polyacrylamide (PAA) gels, whose stiffness mimics that of heart tissues, or on glass coverslips, which represent conventional culture devices but are unphysiologically stiff. Cells were then cultured at 5 mM glucose, corresponding to the normal blood glucose level, or at high glucose levels (10 to 25 mM). Cytoskeletal disorganization, ROS accumulation, attenuated mitochondrial membrane potential and attenuated ATP level caused by high glucose and their reversal by a ROS scavenger were prominent in cells on gels, but not in cells on coverslips. The lack of response to ROS scavenging could be attributable to enhanced apoptosis in cells on glass, shown by enhanced DNA fragmentation and higher caspase 3/7 activity in cells on glass coverslips. High-glucose treatment also downregulated GLUT4 expression and attenuated insulin-stimulated glucose uptake only in cells on 15 kPa gels. CONCLUSION: Our data suggest that a mechanically compliant microenvironment increases the susceptibility of primary cardiomyocytes to elevated glucose levels, which enables these cells to serve as an innovative model for diabetic heart research.


Asunto(s)
Medios de Cultivo , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Técnicas de Cultivo de Célula/instrumentación , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/patología , Elasticidad , Ventrículos Cardíacos , Miocitos Cardíacos/patología , Ratas Wistar
19.
Sci Rep ; 8(1): 1866, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382930

RESUMEN

cAMP is one of the most important second messengers in biological processes. Cellular dynamics of cAMP have been investigated using a series of fluorescent indicators; however, their sensitivity was sub-optimal for detecting cAMP dynamics at a low concentration range, due to a low ligand affinity and/or poor dynamic range. Seeking an indicator with improved detection sensitivity, we performed insertion screening of circularly permuted mApple, a red fluorescent protein, into the cAMP-binding motif of PKA regulatory subunit Iα and developed an improved cAMP indicator named R-FlincA (Red Fluorescent indicator for cAMP). Its increased affinity (Kd = 0.3 µM) and expanded dynamic range (860% at pH 7.2) allowed the detection of subtle changes in the cellular cAMP dynamics at sub-µM concentrations, which could not be easily observed with existing indicators. Increased detection sensitivity also strengthened the advantages of using R-FlincA as a red fluorescent indicator, as it permits a series of applications, including multi-channel/function imaging of multiple second messengers and combinatorial imaging with photo-manipulation. These results strongly suggest that R-FlincA is a promising tool that accelerates cAMP research by revealing unobserved cAMP dynamics at a low concentration range.


Asunto(s)
AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Colorantes Fluorescentes/química , Células Secretoras de Insulina/metabolismo , Proteínas Luminiscentes/metabolismo , Imagen Molecular/métodos , Calcio/metabolismo , Células Cultivadas , Humanos , Espectrometría de Fluorescencia , Proteína Fluorescente Roja
20.
Mol Biol Cell ; 27(20): 3095-3108, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27582384

RESUMEN

In fundamental biological processes, cells often move in groups, a process termed collective cell migration. Collectively migrating cells are much better organized than a random assemblage of individual cells. Many molecules have been identified as factors involved in collective cell migration, and no one molecule is adequate to explain the whole picture. Here we show that JRAB/MICAL-L2, an effector protein of Rab13 GTPase, provides the "law and order" allowing myriad cells to behave as a single unit just by changing its conformation. First, we generated a structural model of JRAB/MICAL-L2 by a combination of bioinformatic and biochemical analyses and showed how JRAB/MICAL-L2 interacts with Rab13 and how its conformational change occurs. We combined cell biology, live imaging, computational biology, and biomechanics to show that impairment of conformational plasticity in JRAB/MICAL-L2 causes excessive rigidity and loss of directionality, leading to imbalance in cell group behavior. This multidisciplinary approach supports the concept that the conformational plasticity of a single molecule provides "law and order" in collective cell migration.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/fisiología , Actinina/metabolismo , Animales , Movimiento Celular/fisiología , Biología Computacional , Perros , Células Epiteliales/metabolismo , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Imagen Óptica , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Uniones Estrechas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA