Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
JAMA Neurol ; 80(9): 891-902, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399040

RESUMEN

Importance: It remains unclear why lesions in some locations cause epilepsy while others do not. Identifying the brain regions or networks associated with epilepsy by mapping these lesions could inform prognosis and guide interventions. Objective: To assess whether lesion locations associated with epilepsy map to specific brain regions and networks. Design, Setting, and Participants: This case-control study used lesion location and lesion network mapping to identify the brain regions and networks associated with epilepsy in a discovery data set of patients with poststroke epilepsy and control patients with stroke. Patients with stroke lesions and epilepsy (n = 76) or no epilepsy (n = 625) were included. Generalizability to other lesion types was assessed using 4 independent cohorts as validation data sets. The total numbers of patients across all datasets (both discovery and validation datasets) were 347 with epilepsy and 1126 without. Therapeutic relevance was assessed using deep brain stimulation sites that improve seizure control. Data were analyzed from September 2018 through December 2022. All shared patient data were analyzed and included; no patients were excluded. Main Outcomes and Measures: Epilepsy or no epilepsy. Results: Lesion locations from 76 patients with poststroke epilepsy (39 [51%] male; mean [SD] age, 61.0 [14.6] years; mean [SD] follow-up, 6.7 [2.0] years) and 625 control patients with stroke (366 [59%] male; mean [SD] age, 62.0 [14.1] years; follow-up range, 3-12 months) were included in the discovery data set. Lesions associated with epilepsy occurred in multiple heterogenous locations spanning different lobes and vascular territories. However, these same lesion locations were part of a specific brain network defined by functional connectivity to the basal ganglia and cerebellum. Findings were validated in 4 independent cohorts including 772 patients with brain lesions (271 [35%] with epilepsy; 515 [67%] male; median [IQR] age, 60 [50-70] years; follow-up range, 3-35 years). Lesion connectivity to this brain network was associated with increased risk of epilepsy after stroke (odds ratio [OR], 2.82; 95% CI, 2.02-4.10; P < .001) and across different lesion types (OR, 2.85; 95% CI, 2.23-3.69; P < .001). Deep brain stimulation site connectivity to this same network was associated with improved seizure control (r, 0.63; P < .001) in 30 patients with drug-resistant epilepsy (21 [70%] male; median [IQR] age, 39 [32-46] years; median [IQR] follow-up, 24 [16-30] months). Conclusions and Relevance: The findings in this study indicate that lesion-related epilepsy mapped to a human brain network, which could help identify patients at risk of epilepsy after a brain lesion and guide brain stimulation therapies.


Asunto(s)
Epilepsia , Accidente Cerebrovascular , Humanos , Masculino , Persona de Mediana Edad , Adulto , Femenino , Estudios de Casos y Controles , Encéfalo/patología , Epilepsia/etiología , Epilepsia/patología , Convulsiones/fisiopatología , Accidente Cerebrovascular/fisiopatología
2.
Brain ; 145(4): 1410-1421, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35037938

RESUMEN

Deep brain stimulation is an effective treatment for Parkinson's disease but can be complicated by side-effects such as cognitive decline. There is often a delay before this side-effect is apparent and the mechanism is unknown, making it difficult to identify patients at risk or select appropriate deep brain stimulation settings. Here, we test whether connectivity between the stimulation site and other brain regions is associated with cognitive decline following deep brain stimulation. First, we studied a unique patient cohort with cognitive decline following subthalamic deep brain stimulation for Parkinson's disease (n = 10) where reprogramming relieved the side-effect without loss of motor benefit. Using resting state functional connectivity data from a large normative cohort (n = 1000), we computed connectivity between each stimulation site and the subiculum, an a priori brain region functionally connected to brain lesions causing memory impairment. Connectivity between deep brain stimulation sites and this same subiculum region was significantly associated with deep brain stimulation induced cognitive decline (P < 0.02). We next performed a data-driven analysis to identify connections most associated with deep brain stimulation induced cognitive decline. Deep brain stimulation sites causing cognitive decline (versus those that did not) were more connected to the anterior cingulate, caudate nucleus, hippocampus, and cognitive regions of the cerebellum (PFWE < 0.05). The spatial topography of this deep brain stimulation-based circuit for cognitive decline aligned with an a priori lesion-based circuit for memory impairment (P = 0.017). To begin translating these results into a clinical tool that might be used for deep brain stimulation programming, we generated a 'heat map' in which the intensity of each voxel reflects the connectivity to our cognitive decline circuit. We then validated this heat map using an independent dataset of Parkinson's disease patients in which cognitive performance was measured following subthalamic deep brain stimulation (n = 33). Intersection of deep brain stimulation sites with our heat map was correlated with changes in the Mattis dementia rating scale 1 year after lead implantation (r = 0.39; P = 0.028). Finally, to illustrate how this heat map might be used in clinical practice, we present a case that was flagged as 'high risk' for cognitive decline based on intersection of the patient's deep brain stimulation site with our heat map. This patient had indeed experienced cognitive decline and our heat map was used to select alternative deep brain stimulation parameters. At 14 days follow-up the patient's cognition improved without loss of motor benefit. These results lend insight into the mechanism of deep brain stimulation induced cognitive decline and suggest that connectivity-based heat maps may help identify patients at risk and who might benefit from deep brain stimulation reprogramming.


Asunto(s)
Disfunción Cognitiva , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Encéfalo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia
3.
Nat Hum Behav ; 5(12): 1707-1716, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34239076

RESUMEN

Damage to specific brain circuits can cause specific neuropsychiatric symptoms. Therapeutic stimulation to these same circuits may modulate these symptoms. To determine whether these circuits converge, we studied depression severity after brain lesions (n = 461, five datasets), transcranial magnetic stimulation (n = 151, four datasets) and deep brain stimulation (n = 101, five datasets). Lesions and stimulation sites most associated with depression severity were connected to a similar brain circuit across all 14 datasets (P < 0.001). Circuits derived from lesions, deep brain stimulation and transcranial magnetic stimulation were similar (P < 0.0005), as were circuits derived from patients with major depression versus other diagnoses (P < 0.001). Connectivity to this circuit predicted out-of-sample antidepressant efficacy of transcranial magnetic stimulation and deep brain stimulation sites (P < 0.0001). In an independent analysis, 29 lesions and 95 stimulation sites converged on a distinct circuit for motor symptoms of Parkinson's disease (P < 0.05). We conclude that lesions, transcranial magnetic stimulation and DBS converge on common brain circuitry that may represent improved neurostimulation targets for depression and other disorders.


Asunto(s)
Encéfalo/diagnóstico por imagen , Estimulación Encefálica Profunda/métodos , Trastornos Mentales/terapia , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos Mentales/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Estimulación Magnética Transcraneal
4.
Mol Psychiatry ; 26(4): 1299-1309, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31659272

RESUMEN

The brain regions responsible for hallucinations remain unclear. We studied 89 brain lesions causing hallucinations using a recently validated technique termed lesion network mapping. We found that hallucinations occurred following lesions to a variety of different brain regions, but these lesion locations fell within a single functionally connected brain network. This network was defined by connectivity to the cerebellar vermis, inferior cerebellum (bilateral lobule X), and the right superior temporal sulcus. Within this single hallucination network, additional connections with the lesion location dictated the sensory modality of the hallucination: lesions causing visual hallucinations were connected to the lateral geniculate nucleus in the thalamus while lesions causing auditory hallucinations were connected to the dentate nucleus in the cerebellum. Our results suggest that lesions causing hallucinations localize to a single common brain network, but additional connections within this network dictate the sensory modality, lending insight into the causal neuroanatomical substrate of hallucinations.


Asunto(s)
Encéfalo , Enfermedades del Sistema Nervioso , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cerebelo , Alucinaciones , Humanos , Imagen por Resonancia Magnética
5.
J Clin Invest ; 130(10): 5209-5222, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32831292

RESUMEN

BACKGROUNDAlthough mania is characteristic of bipolar disorder, it can also occur following focal brain damage. Such cases may provide unique insight into brain regions responsible for mania symptoms and identify therapeutic targets.METHODSLesion locations associated with mania were identified using a systematic literature search (n = 41) and mapped onto a common brain atlas. The network of brain regions functionally connected to each lesion location was computed using normative human connectome data (resting-state functional MRI, n = 1000) and contrasted with those obtained from lesion locations not associated with mania (n = 79). Reproducibility was assessed using independent cohorts of mania lesions derived from clinical chart review (n = 15) and of control lesions (n = 490). Results were compared with brain stimulation sites previously reported to induce or relieve mania symptoms.RESULTSLesion locations associated with mania were heterogeneous and no single brain region was lesioned in all, or even most, cases. However, these lesion locations showed a unique pattern of functional connectivity to the right orbitofrontal cortex, right inferior temporal gyrus, and right frontal pole. This connectivity profile was reproducible across independent lesion cohorts and aligned with the effects of therapeutic brain stimulation on mania symptoms.CONCLUSIONBrain lesions associated with mania are characterized by a specific pattern of brain connectivity that lends insight into localization of mania symptoms and potential therapeutic targets.FUNDINGFundação para a Ciência e Tecnologia (FCT), Harvard Medical School DuPont-Warren Fellowship, Portuguese national funds from FCT and Fundo Europeu de Desenvolvimento Regional, Child Neurology Foundation Shields Research, Sidney R. Baer, Jr. Foundation, Nancy Lurie Marks Foundation, Mather's Foundation, and the NIH.


Asunto(s)
Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/diagnóstico por imagen , Manía/diagnóstico por imagen , Manía/etiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Conectoma/métodos , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos , Masculino , Manía/terapia , Persona de Mediana Edad , Modelos Neurológicos , Estimulación Magnética Transcraneal , Adulto Joven
6.
Hum Brain Mapp ; 41(6): 1520-1531, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31904898

RESUMEN

Brain lesions can provide unique insight into the neuroanatomical substrate of human consciousness. For example, brainstem lesions causing coma map to a specific region of the tegmentum. Whether specific lesion locations outside the brainstem are associated with loss of consciousness (LOC) remains unclear. Here, we investigate the topography of cortical lesions causing prolonged LOC (N = 16), transient LOC (N = 91), or no LOC (N = 64). Using standard voxel lesion symptom mapping, no focus of brain damage was associated with LOC. Next, we computed the network of brain regions functionally connected to each lesion location using a large normative connectome dataset (N = 1,000). This technique, termed lesion network mapping, can test whether lesions causing LOC map to a connected brain circuit rather than one brain region. Connectivity between cortical lesion locations and an a priori coma-specific region of brainstem tegmentum was an independent predictor of LOC (B = 1.2, p = .004). Connectivity to the dorsal brainstem was the only predictor of LOC in a whole-brain voxel-wise analysis. This relationship was driven by anticorrelation (negative correlation) between lesion locations and the dorsal brainstem. The map of regions anticorrelated to the dorsal brainstem thus defines a distributed brain circuit that, when damaged, is most likely to cause LOC. This circuit showed a slight posterior predominance and had peaks in the bilateral claustrum. Our results suggest that cortical lesions causing LOC map to a connected brain circuit, linking cortical lesions that disrupt consciousness to brainstem sites that maintain arousal.


Asunto(s)
Tronco Encefálico/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/lesiones , Traumatismos Penetrantes de la Cabeza/diagnóstico por imagen , Traumatismos Penetrantes de la Cabeza/fisiopatología , Inconsciencia/diagnóstico por imagen , Adulto , Anciano , Mapeo Encefálico , Corteza Cerebral/fisiopatología , Claustro/diagnóstico por imagen , Claustro/fisiopatología , Coma , Conectoma , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Valor Predictivo de las Pruebas , Inconsciencia/fisiopatología , Veteranos , Guerra de Vietnam
7.
Brain Commun ; 1(1): fcz006, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31608325

RESUMEN

Dementia is a common and devastating symptom of Parkinson's disease but the anatomical substrate remains unclear. Some evidence points towards hippocampal involvement but neuroimaging abnormalities have been reported throughout the brain and are largely inconsistent across studies. Here, we test whether these disparate neuroimaging findings for Parkinson's disease dementia localize to a common brain network. We used a literature search to identify studies reporting neuroimaging correlates of Parkinson's dementia (11 studies, 385 patients). We restricted our search to studies of brain atrophy and hypometabolism that compared Parkinson's patients with dementia to those without cognitive involvement. We used a standard coordinate-based activation likelihood estimation meta-analysis to assess for consistency in the neuroimaging findings. We then used a new approach, coordinate-based network mapping, to test whether neuroimaging findings localized to a common brain network. This approach uses resting-state functional connectivity from a large cohort of normative subjects (n = 1000) to identify the network of regions connected to a reported neuroimaging coordinate. Activation likelihood estimation meta-analysis failed to identify any brain regions consistently associated with Parkinson's dementia, showing major heterogeneity across studies. In contrast, coordinate-based network mapping found that these heterogeneous neuroimaging findings localized to a specific brain network centred on the hippocampus. Next, we tested whether this network showed symptom specificity and stage specificity by performing two further analyses. We tested symptom specificity by examining studies of Parkinson's hallucinations (9 studies, 402 patients) that are frequently co-morbid with Parkinson's dementia. We tested for stage specificity by using studies of mild cognitive impairment in Parkinson's disease (15 studies, 844 patients). Coordinate-based network mapping revealed that correlates of visual hallucinations fell within a network centred on bilateral lateral geniculate nucleus and correlates of mild cognitive impairment in Parkinson's disease fell within a network centred on posterior default mode network. In both cases, the identified networks were distinct from the hippocampal network of Parkinson's dementia. Our results link heterogeneous neuroimaging findings in Parkinson's dementia to a common network centred on the hippocampus. This finding was symptom and stage-specific, with implications for understanding Parkinson's dementia and heterogeneity of neuroimaging findings in general.

8.
Case Rep Neurol ; 11(2): 199-204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31543803

RESUMEN

Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disease due to mutation of the VPS13A gene encoding the protein chorein. ChAc is a slowly progressive disorder that typically presents in early adulthood, and whose clinical features include chorea and dystonia with involuntary lip, cheek, and tongue biting. Some patients also have seizures. Treatment for ChAc is symptomatic. A small number of ChAc patients have been treated with bilateral deep brain stimulation (DBS) of the globus pallidus interna (GPi), and we now present an additional case. Patient chart, functional measures, and laboratory findings were reviewed from the time of ChAc diagnosis until 6 months after DBS surgery. Here, we present a case of ChAc in a 31-year-old male positive for VPS13A gene mutations who presented with chorea, tongue biting, dysarthria, weight loss, and mild cognitive dysfunction. DBS using monopolar stimulation with placement slightly lateral to the GPi was associated with significant improvement in chorea and dysarthria. This case adds to the current state of knowledge regarding the efficacy and safety of bilateral GPi-DBS for symptomatic control of drug-resistant hyperkinetic movements seen in ChAc. Controlled trials are needed to better assess the impact and ideal target of DBS in ChAc.

9.
Brain ; 141(8): 2445-2456, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982424

RESUMEN

Bradykinesia, rigidity, and tremor frequently co-occur, a clinical syndrome known as parkinsonism. Because this syndrome is commonly seen in Parkinson's disease, symptoms are often attributed to cell loss in the substantia nigra. However, parkinsonism occurs in several other neurological disorders and often fails to correlate with nigrostriatal pathology, raising the question of which brain region(s) cause this syndrome. Here, we studied cases of new-onset parkinsonism following focal brain lesions. We identified 29 cases, only 31% of which hit the substantia nigra. Lesions were located in a variety of different cortical and subcortical locations. To determine whether these heterogeneous lesion locations were part of a common brain network, we leveraged the human brain connectome and a recently validated technique termed lesion network mapping. Lesion locations causing parkinsonism were functionally connected to a common network of regions including the midbrain, basal ganglia, cingulate cortex, and cerebellum. The most sensitive and specific connectivity was to the claustrum. This lesion connectivity pattern matched atrophy patterns seen in Parkinson's disease, progressive supranuclear palsy, and multiple system atrophy, suggesting a shared neuroanatomical substrate for parkinsonism. Lesion connectivity also predicted medication response and matched the pattern of effective deep brain stimulation, suggesting relevance as a treatment target. Our results, based on causal brain lesions, lend insight into the localization of parkinsonism, one of the most common syndromes in neurology. Because many patients with parkinsonism fail to respond to dopaminergic medication, these results may aid the development of alternative treatments.10.1093/brain/awy161_video1awy161media15815555971001.


Asunto(s)
Ganglios Basales/patología , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Cerebelo/patología , Conectoma/métodos , Femenino , Giro del Cíngulo/patología , Humanos , Masculino , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/patología , Sustancia Negra/patología , Parálisis Supranuclear Progresiva/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...