Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Food Chem Toxicol ; 188: 114713, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702036

RESUMEN

Bisphenol A (BPA) is an endocrine disruptor strongly associated with ovarian dysfunction. BPA is being substituted by structurally similar chemicals, such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, the toxicity of these analogues in female reproduction remains largely unknown. This study evaluated the effects of BPA and its analogues BPS, BPF, and BPAF on the mitochondrial mass and function, oxidative stress, and their potential to induce apoptosis of human granulosa cells (KGN cells). BPA and its analogues, especially BPA and BPAF, significantly decreased mitochondrial activity and cell viability. The potential of bisphenols to reduce mitochondrial mass and function differed in the following order: BPAF > BPA > BPF > BPS. Flow cytometry revealed that exposure to bisphenols significantly increased mitochondrial ROS levels and increased mitochondrial Ca2+ levels. Thus, bisphenols exposure causes mitochondrial stress in KGN cells. At the same time, bisphenols exposure significantly induced apoptosis. These results thus emphasize the toxicity of these bisphenols to cells. Our study suggests the action mechanism of BPA and its analogues in damage caused to ovarian granulosa cells. Additionally, these novel analogues may be regrettable substitutes, and the biological effects and potential risks of BPA alternatives must be evaluated.


Asunto(s)
Apoptosis , Compuestos de Bencidrilo , Células de la Granulosa , Mitocondrias , Fenoles , Especies Reactivas de Oxígeno , Humanos , Fenoles/toxicidad , Fenoles/química , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/química , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Femenino , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/química , Sulfonas/toxicidad , Sulfonas/química , Línea Celular , Calcio/metabolismo , Fluorocarburos
2.
Food Chem ; 452: 139604, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38749139

RESUMEN

This study aims to repurpose waste grain from the Baijiu brewing process into activated carbon for mitigating risk factors in alcoholic beverages, enhancing quality and ensuring safety. For attaining the most effective activated carbon, tailored carbon synthesis conditions were identified for diverse alcoholic beverages, optimising strategies. For beverages with low flavour compound content, optimal conditions include 900 °C calcination, 16-hour activation and a 1:2 activation ratio. In contrast, for those with abundant flavour compounds, 800 °C calcination, 16-hour activation and a 1:1 activation ratio are recommended. Post-synthesis analyses, employing nitrogen physisorption-desorption isotherms, FT-IR and SEM, validated a significant BET surface area of 244.871 m2/g for the KOH-activated carbon. Critical to adsorption efficiency, calcination temperature showcased noteworthy micro-porosity (0.8-1 nm), selectively adsorbing higher alcohols (C3-C6) and acetaldehyde while minimising acid and ester adsorption. Sensory evaluations refined optimal parameters, ensuring efficient spent grain management and heightened beverage safety without compromising aroma.

3.
Food Chem X ; 22: 101353, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38623502

RESUMEN

The volatile compounds in Dacha liquor (DL) and Ercha liquor (EL) from Niulanshan Erguotou Baijiu (NEB) were analyzed. The results demonstrated that a total of 34 odorants were identified. For the first time, the products of different brewing stages were analyzed using temperature-programmed headspace gas chromatography-ion mobility spectrometry (TP-HS-GC-IMS). The 3D fingerprint obtained revealed that the compounds exhibited different change patterns during the brewing process. Furthermore, the results of principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) revealed that hexanal, 3-hydroxy-2-butanone, trans-2-pentenal, and ethyl hexanoate could be used to distinguish different types of fermented grains; and hexanal, 1-pentanol, methyl isovalerate, isoamyl acetate, 3-hydroxy-2-butanone, ethyl hexanoate, ethyl acetate, ethyl 2-methylbutanoate, and ethyl pentanoate could be used to distinguish different types of distilled spirits. This study serves as a useful reference for enhancing quality control measures in the production of NEB.

4.
Food Chem ; 451: 138767, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663241

RESUMEN

By collecting real samples throughout the entire production process and employing chemometrics, metabolomics, and modern separation omic techniques, it unveiled the patterns of pesticide transfer during solid-state fermentation. The results indicated that 12 types of pesticide residues were prevalent during baijiu production, with organochlorine and carbamate pesticides being the most abundant in raw materials. After fermentation, organochlorine pesticides and pyrethroid pesticides exhibited higher content, while carbamate pesticides dominated in the final product. The pathways for pesticide input and elimination were identified, and the intricate mechanisms underlying these changes were further elucidated. Additionally, key control points were defined to facilitate targeted monitoring. The results indicated that pesticide residue primarily originates from raw materials and Daqu, whereas both solid-state fermentation and distillation processes were effective in reducing pesticide residues. The study offers valuable guidance for establishing pesticide residue standards in the context of baijiu production.

5.
Front Chem ; 12: 1374898, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516611

RESUMEN

It is of great significance to develop a simple and rapid electrochemical sensor for simultaneous determination of heavy metal ions (HMIs) in Baijiu by using new nanomaterials. Here, graphene (GR) was utilized to combine with covalent organic frameworks (COFs) that was synthesized via the aldehyde-amine condensation between 2, 5-dimethoxyterephthalaldehyde (DMTP) and 1, 3, 5-tris(4-aminophenyl) benzene (TAPB) to prepare a new GR/COFDPTB/GCE sensor for electrochemical sensing multiple HMIs. Compared with the glass carbon electrode (GCE), GR/GCE and COFDPTB/GCE, the developed sensor exhibited excellent electrochemical analysis ability for the simultaneous detection of Cd2+, Pb2+, and Cu2+ owing to the synergistically increased the specific surface area, the periodic porous network and plenty of effective binding sites, as well as the enhanced conductivity. Under the optimized experimental parameters, the proposed sensor showed good linearity range of 0.1-25 µM for Cd2+, and both 0.1-11 µM for Pb2+ and Cu2+ with the detection limits of Cd2+, Pb2+, and Cu2+ being 0.011 µM, 8.747 nM, and 6.373 nM, respectively. Besides, the designed sensor was successfully applied to the simultaneous detection of the three HMIs in Baijiu samples, suggesting its good practical application performance and a new method for the rapid detection of HMIs being expended.

6.
J Agric Food Chem ; 72(10): 5222-5236, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38377589

RESUMEN

Huangshui polysaccharides (HSPs) have attracted extensive attention recently for their biological activity and physicochemical property. This research investigated the extraction, structural characterization, and prebiotic activity of three different HSPs (HSP40-0, HSP60-0, and HSP80-0) in vitro to reveal the scientific support for the high-value utilization of Huangshui. HSPs were heteropolysaccharide with diverse structures and surface morphologies. Comprehensive analysis was conducted through 16S rRNA gene sequencing and metabolite profiling techniques, and results showed that HSPs had different potentials to regulate the gut microbiota due to their different structures; for instance, both HSP40-0 and HSP80-0 could notably increase the relative abundance of Bacteroidota, whereas HSP60-0 could increase the relative abundance of Phascolarctobacterium. In addition, HSPs upregulated beneficial differential metabolites, especially short-chain fatty acids (SCFAs). Fermentation products containing these metabolites exhibited anti-inflammatory effects on LPS-treated Caco-2 cells. This study will provide reference for exploring the relationship between the natural polysaccharide structure and the prebiotic activity and widen the application of Huangshui.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Fermentación , ARN Ribosómico 16S , Células CACO-2 , Polisacáridos/química , Ácidos Grasos Volátiles/metabolismo
7.
J Agric Food Chem ; 72(10): 5403-5415, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38386648

RESUMEN

Sotolone, a chiral compound, plays an important role in the food industry. Herein, (R)-/(S)-sotolone were separated to determine their odor characteristics and thresholds in air (R-form: smoky, burned, herb, and green aroma, 0.0514 µg/m3; S-form: sweet, milk, acid, and nutty aroma, 0.0048 µg/m3). OR8D1 responses to (R)-/(S)-sotolone were detected in a HEK293 cell-based luminescence assay. (S)-Sotolone was a more potent agonist than (R)-sotolone (EC50 values of 84.98 ± 1.05 and 167.20 ± 0.25 µmol/L, respectively). Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analyses confirmed that the combination of (S)-sotolone and OR8D1 was more stable than that of (R)-sotolone. Odorant docking, multiple sequence alignments, site-directed mutagenesis, and functional studies with recombinant odorant receptors (ORs) in a cell-based luminescence assay identified 11 amino-acid residues that influence the enantioselectivity of OR8D1 toward sotolone significantly and that N2065.46 was indispensable to the activation of OR8D1 by (S)-sotolone.


Asunto(s)
Receptores Odorantes , Humanos , Receptores Odorantes/química , Células HEK293 , Furanos , Olfato , Odorantes/análisis
8.
Compr Rev Food Sci Food Saf ; 23(1): e13278, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284610

RESUMEN

Separation process is one of the key processes in the production of fruit spirits, including the traditional distillation method and the new pervaporation membrane method. The separation process significantly determines the constituents and proportions of compounds in the fruit spirit, which has a significant impact on the spirit quality and consumer acceptance. Therefore, it is important and complex to reveal the changing rules of chemical substances and the principles behind them during the separation process of fruit spirits. This review summarized the traditional separation methods commonly used in fruit spirits, covering the types, principles, and corresponding equipment of distillation methods, focused on the enrichment or removal of aroma compounds and harmful factors in fruit spirits by distillation methods, and tried to explain the mechanism behind it. It also proposed a new separation technology for the production of fruit spirits, pervaporation membrane technology, summarized its working principle, operation, working parameters, and application in the production of fruit spirits, and outlined the impact of the separation method on the production of fruit spirits based on existing research, focusing on the separation of flavor compounds, sensory qualities, and hazard factors in fruit spirits, along with a preliminary comparison with distillation. Finally, according to the current researches of the separation methods and the development requirement of the separation process of fruit spirits, the prospect of corresponding research is put forward, in order to propose new ideas and development directions for the research in this field.


Asunto(s)
Destilación , Frutas , Frutas/química , Destilación/métodos
9.
Ecotoxicol Environ Saf ; 272: 116026, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290317

RESUMEN

Epidemiological and clinical data have demonstrated that exposure to cadmium (Cd), a toxic heavy metal, is associated with an increased risk of female infertility. Granulosa cells, the main somatic cells comprising ovarian follicles, are one of the main targets of Cd in the ovaries. However, the mechanism by which Cd induces cytotoxicity in granulosa cells has not been fully elucidated. In this study, we exposed human ovarian granulosa cells (KGN cells) to Cd and conducted in vitro cell experiments and multi-omics (metabolomics and transcriptomics) methods to elucidate these mechanisms. Cd exposure was found to not only induce the apoptosis of the KGN cells but also further reduced mitochondrial function by decreasing mitochondrial membrane potential, ATP production, and respiratory chain complex activity as well as increasing mitochondrial reactive oxygen species (ROS) production. A total of 443 differentially expressed metabolites (160 upregulated and 283 downregulated) and 5200 differentially expressed genes (4634 upregulated and 566 downregulated) were observed in the Cd exposed-cells. The multi-omics data showed that Cd interfered with citric acid cycle (TCA cycle), amino acid (including alanine, glycine, serine, threonine, arginine, and proline) metabolism, and calcium signaling. These findings help to better elucidate the potential toxicity mechanisms of Cd on granulosa cells and the ovary.


Asunto(s)
Cadmio , Multiómica , Humanos , Femenino , Cadmio/toxicidad , Cadmio/metabolismo , Células de la Granulosa/metabolismo , Folículo Ovárico , Ovario/metabolismo , Apoptosis
10.
Food Chem ; 438: 138064, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37995582

RESUMEN

This study successfully constructed a novel multifunctional bio-adsorbent using sodium alginate (SA), ferroferric oxide (FFO), and carboxymethyl Huangshui polysaccharide (CMHSP) with rapid separation, pH sensitivity, efficient adsorption, and reusability for enhancing the removal of methylene blue (MB) in wastewater. FTIR, XRD, SEM, and VSM results indicated CMHSP improved the porosity of the hydrogel spheres, thus significantly enhancing the MB adsorption capacity with the rate-limiting controlled by chemical adsorption, intraparticle diffusion, and film diffusion. The maximum adsorption capacity obtained from Langmuir model of SA-FFO-CMHSP (186.57 mg/g) was obviously higher than that of SA-FFO (178.82 mg/g). Thermodynamic results showed that the MB adsorption process was endothermic, spontaneous, and favorable, and physical adsorption was dominant. Remarkably, MB adsorption maintained 87% ∼ 95% of the initial after four adsorption-desorption cycles, and proper carboxymethylation was conducive to MB adsorption over a broader range pH. These findings provided reference for designing new efficient bio-adsorbents and the recyclable utilization of Huangshui by-products, which was of great value.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Alginatos , Azul de Metileno , Adsorción , Hidrogeles , Colorantes , Purificación del Agua/métodos , Cinética , Concentración de Iones de Hidrógeno
11.
J Dairy Sci ; 107(5): 2760-2773, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38135047

RESUMEN

This study aims to identify lactic acid bacteria (LAB) isolates possessing physiological characteristics suitable for use as probiotics in yogurt fermentation. Following acid and bile salt tolerance tests, Lactiplantibacillus plantarum (NUC08 and NUC101), Lacticaseibacillus rhamnosus (NUC55 and NUC201), and Lacticaseibacillus paracasei (NUC159, NUC216, and NUC351) were shortlisted based on intraspecies distribution for further evaluation. Their physiological probiotic properties, including transit tolerance, adhesion, autoaggregation, surface hydrophobicity, biofilm formation, and antibacterial activity, were assessed. Principal component analysis indicated that Lactiplantibacillus plantarum NUC08 was the preferred choice among the evaluated strains. Subsequent investigations revealed that co-culturing Lactiplantibacillus plantarum NUC08 with 2 yogurt starter strains resulted in a cooperative and synergistic effect, enhancing the growth of mixed strains and increasing their tolerance to simulated gastric and intestinal conditions. Additionally, when Vibrio harveyi bioluminescent reporter strain was used, the 3 cocultured strains cooperated to induce the activity of a quorum sensing (QS) molecule autoinducer-2 (AI-2), hinting a potential connection between phenotypic traits and QS in the cocultured strains. Importantly, LAB viable counts were significantly higher in yogurt co-fermented with Lactiplantibacillus plantarum NUC08, consistently throughout the storage period. In conclusion, the study demonstrates that the probiotic strain Lactiplantibacillus plantarum NUC08 can be employed in synergy with yogurt starter strains, affirming its potential for use in the development of functional fermented dairy products.


Asunto(s)
Productos Lácteos Cultivados , Lactobacillus plantarum , Probióticos , Animales , Yogur/microbiología , Lactobacillus plantarum/fisiología , Lactobacillaceae
12.
J Agric Food Chem ; 72(1): 313-325, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38126348

RESUMEN

Huangshui polysaccharide (HSP) has attracted more and more interest due to its potential health benefits. Despite being an excellent source for the preparation of oligosaccharides, there are currently no relevant research reports on HSP. In the present study, a novel oligosaccharide (HSO) with a molecular weight of 1791 Da and a degree of polymerization of 11 was prepared through enzymatic degradation of crude HSP (cHSP). Methylation and NMR analyses revealed that the main chain of HSO was (1 → 4)-α-d-glucose with two O-6-linked branched chains. Morphological observations indicated that HSO exhibited smooth surface with lamellar and filamentary structure, and the glycan size ranged from 0.03 to 0.20 µm. Notably, HSO significantly promoted the proliferation of Bifidobacterium, Bacteroides, and Phascolarctobacterium, thereby making positive alterations in intestinal microbiota composition. Moreover, HSO markedly increased the content of short-chain fatty acids during in vitro fermentation. Metabolomics analysis illustrated the important metabolic pathways primarily involving glucose metabolism, amino acid metabolism, and fatty acid metabolism.


Asunto(s)
Microbioma Gastrointestinal , Oligosacáridos , Oligosacáridos/química , Polisacáridos/química , Ácidos Grasos Volátiles/metabolismo , Bifidobacterium/metabolismo
13.
Foods ; 12(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38137210

RESUMEN

A novel polysaccharide, HSP80-2, with an average molecular weight of 13.8 kDa, was successfully isolated by the gradient ethanol precipitation (GEP) method from Huangshui (HS), the by-product of Chinese Baijiu. It was mainly composed of arabinose, xylose, and glucose with a molar ratio of 4.0:3.1:2.4, which was completely different from the previous reported HS polysaccharides (HSPs). Morphological observations indicated that HSP80-2 exhibited a smooth but uneven fragmented structure. Moreover, HSP80-2 exerted prebiotic activity evaluated by in vitro fermentation. Specifically, HSP80-2 was utilized by gut microbiota, and significantly regulated the composition and abundance of beneficial microbiota such as Phascolarctobacterium, Parabacteroides, and Bacteroides. Notably, KEGG pathway enrichment analysis illustrated that HSP80-2 enriched the pathways of amino sugar and nucleotide sugar metabolism (Ko00520), galactose metabolism (ko00052), and the citrate cycle (TCA cycle) (ko00020). Meanwhile, the contents of short-chain fatty acids (SCFAs) mainly including acetic acid, propionic acid, and butyric acid in the HSP80-2 group were remarkably increased, which was closely associated with the growth of Lachnoclostridium and Parabacteroides. These results showed that HSP80-2 might be used as a potential functional factor to promote human gut health, which further extended the high value utilization of HS.

14.
Food Chem X ; 19: 100852, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780286

RESUMEN

Niulanshan Baijiu (NLS), a notable variety of Baijiu known for its light flavor and extensive historical legacy, was subjected to a comparative analysis using two different processes: Hunzheng Xucha (HX) and Qingzheng Qingcha (QQ). The study combined sensory-oriented flavor analysis and penalty analysis to assess the differences between the two processes. Aroma compounds in NLS were extracted using liquid-liquid extraction and headspace solid phase microextraction. Gas chromatography-olfactometry-mass spectrometry was employed to identify 46 aroma-active compounds, including the first-time discovery of ethyl isohexanoate and 2,4-nonadienal in NLS. Quantification of 35 compounds with odor activity value (OAV) ≥ 1 was achieved using internal standard curve methods. Sensory assessments by a cohort of 111 participants highlighted the preference for HX-NLS in terms of flavor, while QQ-NLS exhibited a sour-Chen aroma that required improvement. The study further revealed the significant impact of acetic acid, butyric acid, hexanoic acid, octanoic acid, and 3-methylbutanal on the sour-Chen aroma in liquor.

15.
Food Res Int ; 172: 113226, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689963

RESUMEN

Huangjiu is a traditional Chinese alcoholic beverage, whose non-volatile chemical profile remains unclarified. Here, the non-volatile compounds of Huangjiu were first identified using a widely targeted metabolomics analysis. In total, 1146 compounds were identified, 997 of them were identified in Huangjiu for the first time. Moreover, 113 compounds were identified as key active ingredients of traditional Chinese medicines and 78 components were found as active pharmaceutical ingredients against 389 diseases. In addition, the comparative analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that Huangjiu from different regions differ in metabolite composition. Cofactor and amino acid biosynthesis and ABC transport were the dominant metabolic pathways. Furthermore, 7 metabolic pathways and 77 metabolic pathway regulatory markers were further found to be related with the different characteristics of different Huangjius. This study provides a theoretical and material basis for the quality control, health efficacy, and industrial development of Huangjiu.


Asunto(s)
Bebidas Alcohólicas , Metabolómica , Control de Calidad
16.
Foods ; 12(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37628086

RESUMEN

The storage process of Baijiu is an integral part of its production (the quality undergoes substantial changes during the aging process of Baijiu). As the storage time extends, the flavor compounds in Baijiu tend to undergo coordinated transformation, thereby enhancing the quality of Baijiu. Among them, long-chain fatty acid ethyl esters (LCFAEEs) were widely distributed in Baijiu and have been shown to have potential contributions to the quality of Baijiu. However, the current research on LCFAEEs in Baijiu predominantly focuses on the olfactory sensation aspect, while there is a lack of systematic investigation into their influence on taste and evaluation after drinking Baijiu during the aging process. In light of this, the present study investigates the distribution of LCFAEEs in Baijiu over different years. We have combined modern flavor sensory analysis with multivariate chemometrics to comprehensively and objectively explore the influence of LCFAEEs on Baijiu quality. The results demonstrate a significant positive correlation between the concentration of LCFAEEs and the fruity aroma (p < 0.05, r = 0.755) as well as the aged aroma (p < 0.05, r = 0.833) of Baijiu within a specific range; they can effectively reduce the off-flavors and spicy sensation of Baijiu. Furthermore, additional experiments utilizing a single variable suggest that LCFAEEs were crucial factors influencing the flavor of Baijiu, with Ethyl Palmitate (EP) being the most notable LCFAEE that merits further systematic investigation.

17.
J Sci Food Agric ; 103(15): 7434-7444, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37395138

RESUMEN

BACKGROUND: Baijiu is a very complex system and its flavor substances are endogenous, influenced by raw materials, starter, production process, production region and other factors. The production region directly affects the composition of flavor substances and quality of baijiu. However, identification of baijiu region is challenging because the corresponding relationship between the production region and baijiu quality is not clear, and the identification of regionalmarkers is indeterminate. In this study, the differences in volatile components of sauce-aroma style baijiu from four representative regions were investigated. RESULTS: A total of 94 volatile compounds were identified in samples tested. Additionally, it was verified that 35 potential flavor substances had important contributions to the aroma of sauce-aroma style baijiu. Meanwhile, nine potential regionalmarkers were screened through multivariate analysis. Further, based on distribution of volatile compounds and the results of sensory evaluation combined with multivariate analysis, a molecular matrix and correlation network were established according to the results of addition experiments, which showed that six substances had a significant impact on the flavor of the tested samples. CONCLUSION: Six key flavor substances (ethyl octanoate, ethyl 2-methylpropanoate, propyl acetate, ethyl heptanoate, 2-nonanone and butyl hexanoate) were considered as important regionalmarkers to effectively identify the production region of sauce-aroma style baijiu. © 2023 Society of Chemical Industry.


Asunto(s)
Alimentos , Odorantes , Odorantes/análisis , Análisis Multivariante
18.
Foods ; 12(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37509756

RESUMEN

Tartary buckwheat is a healthy grain rich in nutrients and medicinal ingredients and consequently is commonly used for Huangjiu brewing. In order to reveal the correlation between microbial succession and higher alcohols production, in this study, Huangjiu fermentation was conducted using Tartary buckwheat as the raw material and wheat Qu as the starter culture. Microbial community dynamics analysis indicated that the bacterial diversity initially decreased rapidly to a lower level and then increased and maintained at a higher level during fermentation. Lactococcus was the dominant bacteria and Ralstonia, Acinetobacter, Cyanobacteria, and Oxalobacteraceae were the bacterial genera with higher abundances. In sharp contrast, only 13 fungal genera were detected during fermentation, and Saccharomyces showed the dominant abundance. Moreover, 18 higher alcohol compounds were detected by GC-MS during fermentation. Four compounds (2-phenylethanol, isopentanol, 1-hexadecanol, and 2-phenoxyethanol) were stably detected with high concentrations during fermentation. The compound 2-ethyl-2-methyl-tridecanol was detected to be of the highest concentration in the later period of fermentation. Correlation analysis revealed that the generation of 2-phenylethanol, isopentanol, 1-hexadecanol, and 2-phenoxyethanol were positively correlated with Granulicatella and Pelomonas, Bacteroides, Pseudonocardia and Pedomicrobium, and Corynebacterium, respectively. The verification fermentation experiments indicated that the improved wheat Qu QT3 and QT4 inoculated with Granulicatella T3 and Acidothermus T4 led to significant increases in the contents of 2-phenylethanol and pentanol, as well as isobutanol and isopentanol, respectively, in the Tartary buckwheat Huangjiu. The findings benefit understanding of higher alcohols production and flavor formation mechanisms in Huangjiu fermentation.

19.
Foods ; 12(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37509766

RESUMEN

In recent years, intensified Qu (IQ) has been gradually applied to brewing in order to improve the aroma of Huangjiu (Chinese rice wine). In this study, Saccharomyces cerevisiae and Wickerhamomyces anomalus solutions were added to Fengmi Qu (FMQ) from Fangxian, China to produce IQ, and brewing trial was conducted. High-throughput sequencing (HTS) was used to analyze the microbial community in fermentation broth of IQ (IQFB). Headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and sensory evaluation were performed to analyze volatile aroma compounds (VACs) in sample without Qu and both fermentation broths. The results showed that Pediococcus, Cronobacter, Enterococcus, Weissella, and Acinetobacter and Saccharomycopsis, Wickerhamomyces, and Saccharomyces were dominant bacterial and fungal groups, respectively. A total of 115 VACs were detected, and the content of esters including ethyl acetate, isoamyl acetate, and so on was noticeably higher in IQFB. The finding of sensory evaluation reflected that adding pure yeast to Qu could enhance fruit and floral aromas. Correlation analysis yielded 858 correlations between significant microorganisms and different VACs. In addition, prediction of microbial community functions in IQFB revealed global and overview maps and carbohydrate metabolism to be the main one. This study is advantageous for further regulation of the fermentation process of Huangjiu by microbial means.

20.
Front Microbiol ; 14: 1215884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434704

RESUMEN

The gut microbiome profile in patients with pathological scars remains rarely known, especially those patients who are susceptible to pathological scars. Previous studies demonstrated that gut microbial dysbiosis can promote the development of a series of diseases via the interaction between gut microbiota and host. The current study aimed to explore the gut microbiota of patients who are prone to suffer from pathological scars. 35 patients with pathological scars (PS group) and 40 patients with normal scars (NS group) were recruited for collection of fecal samples to sequence the 16S ribosomal RNA (16S rRNA) V3-V4 region of gut microbiota. Alpha diversity of gut microbiota showed a significant difference between NS group and PS group, and beta diversity indicated that the composition of gut microbiota in NS and PS participants was different, which implied that dysbiosis exhibits in patients who are susceptible to pathological scars. Based on phylum, genus, species levels, we demonstrated that the changing in some gut microbiota (Firmicutes; Bacteroides; Escherichia coli, etc.) may contribute to the occurrence or development of pathological scars. Moreover, the interaction network of gut microbiota in NS and PS group clearly revealed the different interaction model of each group. Our study has preliminary confirmed that dysbiosis exhibits in patients who are susceptible to pathological scars, and provide a new insight regarding the role of the gut microbiome in PS development and progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...