Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 16: 829415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35516796

RESUMEN

Background: Atypical processing of unfamiliar, but less so familiar, stimuli has been described in Autism Spectrum Disorder (ASD), in particular in relation to face processing. We examined the construct of familiarity in ASD using familiar and unfamiliar songs, to investigate the link between familiarity and autism symptoms, such as repetitive behavior. Methods: Forty-eight children, 24 with ASD (21 males, mean age = 9.96 years ± 1.54) and 24 typically developing (TD) controls (21 males, mean age = 10.17 ± 1.90) completed a music familiarity task using individually identified familiar compared to unfamiliar songs, while magnetoencephalography (MEG) was recorded. Each song was presented for 30 s. We used both amplitude envelope correlation (AEC) and the weighted phase lag index (wPLI) to assess functional connectivity between specific regions of interest (ROI) and non-ROI parcels, as well as at the whole brain level, to understand what is preserved and what is impaired in familiar music listening in this population. Results: Increased wPLI synchronization for familiar vs. unfamiliar music was found for typically developing children in the gamma frequency. There were no significant differences within the ASD group for this comparison. During the processing of unfamiliar music, we demonstrated left lateralized increased theta and beta band connectivity in children with ASD compared to controls. An interaction effect found greater alpha band connectivity in the TD group compared to ASD to unfamiliar music only, anchored in the left insula. Conclusion: Our results revealed atypical processing of unfamiliar songs in children with ASD, consistent with previous studies in other modalities reporting that processing novelty is a challenge for ASD. Relatively typical processing of familiar stimuli may represent a strength and may be of interest to strength-based intervention planning.

2.
Soc Cogn Affect Neurosci ; 17(4): 377-386, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34654932

RESUMEN

Very preterm (VPT: ≤32 weeks of gestational age) birth poses an increased risk for social and cognitive morbidities that persist throughout life. Resting-state functional network connectivity studies provide information about the intrinsic capacity for cognitive processing. We studied the following four social-cognitive resting-state networks: the default mode, salience, frontal-parietal and language networks. We examined functional connectivity using magnetoencephalography with individual head localization using each participant's MRI at 6 (n = 40) and 8 (n = 40) years of age compared to age- and sex-matched full-term (FT) born children (n = 38 at 6 years and n = 43 at 8 years). VPT children showed increased connectivity compared to FT children in the gamma band (30-80 Hz) at 6 years within the default mode network (DMN), and between the DMN and the salience, frontal-parietal and language networks, pointing to more diffuse, less segregated processing across networks at this age. At 8 years, VPT children had more social and academic difficulties. Increased DMN connectivity at 6 years was associated with social and working memory difficulties at 8 years. Therefore, we suggest that increased DMN connectivity contributes to the observed emerging social and cognitive morbidities in school age.


Asunto(s)
Encéfalo , Recien Nacido Extremadamente Prematuro , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Niño , Cognición , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Magnetoencefalografía
3.
Hum Brain Mapp ; 42(17): 5747-5760, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582067

RESUMEN

The ability to effectively and automatically regulate one's response to emotional information is a basic, fundamental skill for social functioning. The neural mechanisms underlying emotion regulation processing have been assessed, however few investigations have leveraged neurophysiological techniques, particularly magnetoencephalography (MEG) to determine the development of this critical ability. The current MEG study is the first to examine developmental changes in the neural mechanisms supporting automatic emotion regulation. We used an emotional go/no-go task with happy and angry faces in a single-site cohort of 97 healthy participants, 4-40 years of age. We found age-related changes as a function of emotion and condition in brain regions key to emotion regulation, including the right inferior frontal gyrus, orbitofrontal cortices and primarily right-lateralized temporal areas. Interaction effects, including an age by emotion and condition, were also found in the left angular gyrus, an area critical in emotion regulation and attention. Findings demonstrate protracted and nonlinear development, due to the adolescent group, of emotion regulation processing from child to adulthood, and highlight that age-related differences in emotion regulation are modulated by emotional face type.


Asunto(s)
Corteza Cerebral/fisiología , Regulación Emocional/fisiología , Función Ejecutiva/fisiología , Desarrollo Humano/fisiología , Inhibición Psicológica , Magnetoencefalografía , Adolescente , Adulto , Niño , Preescolar , Expresión Facial , Reconocimiento Facial/fisiología , Femenino , Humanos , Masculino , Desempeño Psicomotor/fisiología , Adulto Joven
4.
Neuroimage ; 237: 118142, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33951516

RESUMEN

Recent work identified that patterns of distributed brain regions sharing similar myeloarchitecture are related to underlying functional connectivity, demonstrating cortical myelin's plasticity to changes in functional demand. However, the changing relations between functional and structural architecture throughout child and adulthood are poorly understood. We show that structural covariance connectivity (T1-weighted/T2-weighted ratio) and functional connectivity (magnetoencephalography) exhibit nonlinear developmental changes. We then show significant relations between structural and functional connectivity, which have shared and distinct characteristics dependent on the neural oscillatory frequency. Increases in structure-function coupling are visible during the protracted myelination observed throughout childhood and adolescence and are followed by decreases near the onset of adulthood. Our work lays the foundation for understanding the mechanisms by which myeloarchitecture supports brain function, enabling future investigations into how clinical populations may deviate from normative patterns.


Asunto(s)
Ondas Encefálicas , Corteza Cerebral , Conectoma , Imagen por Resonancia Magnética , Magnetoencefalografía , Vaina de Mielina , Red Nerviosa , Adolescente , Adulto , Ondas Encefálicas/fisiología , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vaina de Mielina/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Adulto Joven
5.
Neurobiol Aging ; 96: 246-254, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049517

RESUMEN

We have used the magnetisation transfer (MT) MRI measure as a primary measure of myelination in both the gray matter (GM) of the 78 cortical automated anatomical labeling (AAL) regions of the brain, and the underlying white matter in each region, in a cohort of healthy adults (aged 19-62 year old). The results revealed a significant quadratic trend in myelination with age, with average global myelination peaking at 42.9 year old in gray matter, and at 41.7 year old in white matter. We also explored the possibility of using the Nuclear Overhauser Enhancement (NOE) effect, which is acquired in a similar method to MT, as an additional measure of myelination. We found that the MT and NOE signals were strongly correlated in the brain and that the NOE effects displayed similar (albeit weaker) parabolic trends with age. We also investigated differences in cortical thickness with age, and confirmed a previous result of a linear decline of 4.5 ± 1.2 µm/y.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Envejecimiento Saludable/patología , Imagen por Resonancia Magnética/métodos , Vaina de Mielina/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
6.
Neuroimage ; 219: 116995, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32480036

RESUMEN

Magnetoencephalography (MEG) is a powerful technique for functional neuroimaging, offering a non-invasive window on brain electrophysiology. MEG systems have traditionally been based on cryogenic sensors which detect the small extracranial magnetic fields generated by synchronised current in neuronal assemblies, however, such systems have fundamental limitations. In recent years, non-cryogenic quantum-enabled sensors, called optically-pumped magnetometers (OPMs), in combination with novel techniques for accurate background magnetic field control, have promised to lift those restrictions offering an adaptable, motion-robust MEG system, with improved data quality, at reduced cost. However, OPM-MEG remains a nascent technology, and whilst viable systems exist, most employ small numbers of sensors sited above targeted brain regions. Here, building on previous work, we construct a wearable OPM-MEG system with 'whole-head' coverage based upon commercially available OPMs, and test its capabilities to measure alpha, beta and gamma oscillations. We design two methods for OPM mounting; a flexible (EEG-like) cap and rigid (additively-manufactured) helmet. Whilst both designs allow for high quality data to be collected, we argue that the rigid helmet offers a more robust option with significant advantages for reconstruction of field data into 3D images of changes in neuronal current. Using repeat measurements in two participants, we show signal detection for our device to be highly robust. Moreover, via application of source-space modelling, we show that, despite having 5 times fewer sensors, our system exhibits comparable performance to an established cryogenic MEG device. While significant challenges still remain, these developments provide further evidence that OPM-MEG is likely to facilitate a step change for functional neuroimaging.


Asunto(s)
Encéfalo/diagnóstico por imagen , Diseño de Equipo , Neuroimagen Funcional/instrumentación , Dispositivos de Protección de la Cabeza , Magnetoencefalografía/instrumentación , Adulto , Femenino , Humanos , Masculino , Adulto Joven
7.
Neuroimage ; 209: 116537, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935517

RESUMEN

Neural oscillations dominate electrophysiological measures of macroscopic brain activity and fluctuations in these rhythms offer an insightful window on cortical excitation, inhibition, and connectivity. However, in recent years the 'classical' picture of smoothly varying oscillations has been challenged by the idea that many 'oscillations' may actually be formed from the recurrence of punctate high-amplitude bursts in activity, whose spectral composition intersects the traditionally defined frequency ranges (e.g. alpha/beta band). This finding offers a new interpretation of measurable brain activity, however neither the methodological means to detect bursts, nor their link to other findings (e.g. connectivity) have been settled. Here, we use a new approach to detect bursts in magnetoencephalography (MEG) data. We show that a time-delay embedded Hidden Markov Model (HMM) can be used to delineate single-region bursts which are in agreement with existing techniques. However, unlike existing techniques, the HMM looks for specific spectral patterns in timecourse data. We characterise the distribution of burst duration, frequency of occurrence and amplitude across the cortex in resting state MEG data. During a motor task we show how the movement related beta decrease and post movement beta rebound are driven by changes in burst occurrence. Finally, we show that the beta band functional connectome can be derived using a simple measure of burst overlap, and that coincident bursts in separate regions correspond to a period of heightened coherence. In summary, this paper offers a new methodology for burst identification and connectivity analysis which will be important for future investigations of neural oscillations.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Conectoma/métodos , Magnetoencefalografía/métodos , Red Nerviosa/fisiología , Reconocimiento Visual de Modelos/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Artículo en Inglés | MEDLINE | ID: mdl-31706907

RESUMEN

BACKGROUND: Visual regions develop rapidly in utero and throughout early childhood, but very preterm (VPT) birth can disrupt the typical maturation of primary cortices, with VPT children exhibiting mild visual impairments in early life and throughout development. This is thought to be due to dysfunctional maturation of occipital cortices. A way to readily index brain function is to examine neural oscillations; these mechanisms play a central role in the modeling and pruning of connections, providing an intrinsic temporal structure that refines the precise alignment of spiking, processing information in the brain, and coordinating networks. METHODS: Using magnetoencephalography, we examined regional oscillatory patterns and functional coupling in VPT and full-term children. Five minutes of eyes-open resting-state data were acquired from 27 VPT and 32 full-term children at 8 years of age. RESULTS: As hypothesized, the VPT group, when compared with control children, had elevated theta-band power, while alpha amplitude envelope coupling, a marker of connectivity, was found to be decreased. CONCLUSIONS: These results support the hypothesis of spectral slowing in VPT children and more broadly suggest that the developmental arc of visual neurophysiology is disrupted by VPT birth. We conclude that these deficits underlie difficulties in complex visual perceptual processing evident during childhood and beyond.


Asunto(s)
Nacimiento Prematuro , Corteza Visual , Encéfalo , Femenino , Humanos , Recién Nacido , Magnetoencefalografía , Neurofisiología , Embarazo
9.
Sci Rep ; 9(1): 15757, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673006

RESUMEN

Children born very preterm (VPT) often demonstrate selective difficulties in working memory (WM), which may underlie academic difficulties observed in this population. Despite this, few studies have investigated the functional networks underlying WM in young children born VPT, a period when cognitive deficits become apparent. Using magnetoencephalography, we examined the networks underlying the maintenance of visual information in 6-year-old VPT (n = 15) and full-term (FT; n = 20) children. Although task performance was similar, VPT children engaged different oscillatory mechanisms during WM maintenance. Within the FT group, we observed higher mean whole-brain connectivity in the alpha-band during the retention (i.e. maintenance) interval associated with correct compared to incorrect responses. VPT children showed reduced whole-brain alpha synchrony, and a different network organization with fewer connections. In the theta-band, VPT children demonstrated a slight increase in whole-brain connectivity during WM maintenance, and engaged similar network hubs as FT children in the alpha-band, including the left dorsolateral prefrontal cortex and superior temporal gyrus. These findings suggest that VPT children rely on the theta-band to support similar task performance. Altered oscillatory mechanisms may reflect a less mature pattern of functional recruitment underlying WM in VPT children, which may affect the processing in complex ecological situations.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Conectoma , Recien Nacido Extremadamente Prematuro/fisiología , Magnetoencefalografía , Memoria a Corto Plazo/fisiología , Niño , Femenino , Humanos , Recién Nacido , Masculino
10.
Netw Neurosci ; 3(2): 497-520, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984904

RESUMEN

Detailed characterization of typical human neurodevelopment is key if we are to understand the nature of mental and neurological pathology. While research on the cellular processes of neurodevelopment has made great advances, in vivo human imaging is crucial to understand our uniquely human capabilities, as well as the pathologies that affect them. Using magnetoencephalography data in the largest normative sample currently available (324 participants aged 6-45 years), we assess the developmental trajectory of resting-state oscillatory power and functional connectivity from childhood to middle age. The maturational course of power, indicative of local processing, was found to both increase and decrease in a spectrally dependent fashion. Using the strength of phase-synchrony between parcellated regions, we found significant linear and nonlinear (quadratic and logarithmic) trajectories to be characterized in a spatially heterogeneous frequency-specific manner, such as a superior frontal region with linear and nonlinear trajectories in theta and gamma band respectively. Assessment of global efficiency revealed similar significant nonlinear trajectories across all frequency bands. Our results link with the development of human cognitive abilities; they also highlight the complexity of neurodevelopment and provide quantitative parameters for replication and a robust footing from which clinical research may map pathological deviations from these typical trajectories.

11.
Cereb Cortex ; 29(6): 2668-2681, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897408

RESUMEN

Event-related fluctuations of neural oscillatory amplitude are reported widely in the context of cognitive processing and are typically interpreted as a marker of brain "activity". However, the precise nature of these effects remains unclear; in particular, whether such fluctuations reflect local dynamics, integration between regions, or both, is unknown. Here, using magnetoencephalography, we show that movement induced oscillatory modulation is associated with transient connectivity between sensorimotor regions. Further, in resting-state data, we demonstrate a significant association between oscillatory modulation and dynamic connectivity. A confound with such empirical measurements is that increased amplitude necessarily means increased signal-to-noise ratio (SNR): this means that the question of whether amplitude and connectivity are genuinely coupled, or whether increased connectivity is observed purely due to increased SNR is unanswered. Here, we counter this problem by analogy with computational models which show that, in the presence of global network coupling and local multistability, the link between oscillatory modulation and long-range connectivity is a natural consequence of neural networks. Our results provide evidence for the notion that connectivity is mediated by neural oscillations, and suggest that time-frequency spectrograms are not merely a description of local synchrony but also reflect fluctuations in long-range connectivity.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Adulto , Simulación por Computador , Femenino , Humanos , Magnetoencefalografía , Masculino , Desempeño Psicomotor/fisiología
12.
Schizophr Bull ; 45(4): 883-891, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-30239878

RESUMEN

INTRODUCTION: Schizophrenia and schizotypal personality disorder (SPD) lie on a single spectrum of mental illness and converging evidence suggests similarities in the etiology of the 2 conditions. However, schizotypy is a heterogeneous facet of personality in the healthy population and so may be seen as a bridge between health and mental illness. Neural evidence for such a continuity would have implications for the characterization and treatment of schizophrenia. Based on our previous work identifying a relationship between symptomology in schizophrenia and abnormal movement-induced electrophysiological response (the post-movement beta rebound [PMBR]), we predicted that if subclinical schizotypy arises from similar neural mechanisms to schizophrenia, schizotypy in healthy individuals would be associated with reduced PMBR. METHODS: One-hundred sixteen participants completed a visuomotor task while their neural activity was recorded by magnetoencephalography. Partial correlations were computed between a measure of PMBR extracted from left primary motor cortex and scores on the Schizotypal Personality Questionnaire (SPQ), a self-report measure of schizotypal personality. Correlations between PMBR and SPQ factor scores measuring cognitive-perceptual, interpersonal and disorganization dimensions of schizotypy were also computed. Effects of site, age, and sex were controlled for. RESULTS: We found a significant negative correlation between total SPQ score and PMBR. This was most strongly mediated by variance shared between interpersonal and disorganization factor scores. CONCLUSION: These findings indicate a continuum of neural deficit between schizotypy and schizophrenia, with diminution of PMBR, previously reported in schizophrenia, also measurable in individuals with schizotypal features, particularly disorganization and impaired interpersonal relations.


Asunto(s)
Ritmo beta/fisiología , Corteza Cerebral/fisiopatología , Desempeño Psicomotor/fisiología , Trastorno de la Personalidad Esquizotípica/fisiopatología , Adulto , Electromiografía , Femenino , Humanos , Individualidad , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Esquizofrenia/fisiopatología , Adulto Joven
13.
Dev Cogn Neurosci ; 34: 114-123, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30336447

RESUMEN

Working Memory (WM) supports a wide range of cognitive functions, and is positively associated with academic achievement. Although fMRI studies have revealed WM networks in adults, little is known about how these networks develop to support successful WM performance in children. Using magnetoencephalography, we examined the networks underlying the maintenance of visual information in 6-year-old children. We observed an increase in mean whole-brain connectivity that was specific to the alpha frequency band during the retention interval associated with correct compared to incorrect responses. Additionally, our network analysis revealed elevated alpha synchronization during WM maintenance in a distributed network of frontal, parietal and temporal regions. Central hubs in the network were lateralized to the left hemisphere with dominant fronto-temporal connections, including the dorsolateral prefrontal cortex, middle temporal and superior temporal gyri, as well as other canonical language areas. Local changes in power were also analysed for seeds of interest, including the left inferior parietal lobe, which revealed an increase in alpha power after stimulus onset that was sustained throughout the retention period of WM. Our results therefore implicate sustained fronto-temporal alpha synchrony during the retention interval with subsequent successful WM responses in children, which may be aided by subvocal rehearsal strategies.


Asunto(s)
Ritmo alfa/fisiología , Imagen por Resonancia Magnética/métodos , Magnetoencefalografía/métodos , Memoria a Corto Plazo/fisiología , Niño , Femenino , Humanos , Masculino
14.
Nat Commun ; 9(1): 2987, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061566

RESUMEN

Frequency-specific oscillations and phase-coupling of neuronal populations are essential mechanisms for the coordination of activity between brain areas during cognitive tasks. Therefore, the ongoing activity ascribed to the different functional brain networks should also be able to reorganise and coordinate via similar mechanisms. We develop a novel method for identifying large-scale phase-coupled network dynamics and show that resting networks in magnetoencephalography are well characterised by visits to short-lived transient brain states, with spatially distinct patterns of oscillatory power and coherence in specific frequency bands. Brain states are identified for sensory, motor networks and higher-order cognitive networks. The cognitive networks include a posterior alpha (8-12 Hz) and an anterior delta/theta range (1-7 Hz) network, both exhibiting high power and coherence in areas that correspond to posterior and anterior subdivisions of the default mode network. Our results show that large-scale cortical phase-coupling networks have characteristic signatures in very specific frequency bands, possibly reflecting functional specialisation at different intrinsic timescales.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Magnetoencefalografía , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Adolescente , Adulto , Cognición , Femenino , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Cadenas de Markov , Persona de Mediana Edad , Modelos Neurológicos , Distribución Normal , Oscilometría , Descanso , Factores de Tiempo , Adulto Joven
15.
Neuroimage ; 174: 563-575, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29524625

RESUMEN

Network connectivity is an integral feature of human brain function, and characterising its maturational trajectory is a critical step towards understanding healthy and atypical neurodevelopment. Here, we used magnetoencephalography (MEG) to investigate both stationary (i.e. time averaged) and rapidly modulating (dynamic) electrophysiological connectivity, in participants aged from mid-childhood to early adulthood (youngest participant 9 years old; oldest participant 25 years old). Stationary functional connectivity (measured via inter-regional coordination of neural oscillations) increased with age in the alpha and beta frequency bands, particularly in bilateral parietal and temporo-parietal connections. Our dynamic analysis (also applied to alpha/beta oscillations) revealed the spatiotemporal signatures of 8 dynamic networks; these modulate on a ∼100 ms time scale, and temporal stability in attentional networks was found to increase with age. Significant overlap was found between age-modulated dynamic networks and inter-regional oscillatory coordination, implying that altered network dynamics underlie age related changes in functional connectivity. Our results provide novel insights into brain network electrophysiology, and lay a foundation for future work in childhood disorders.


Asunto(s)
Ritmo alfa , Ritmo beta , Encéfalo/crecimiento & desarrollo , Adolescente , Adulto , Envejecimiento , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Vías Nerviosas/crecimiento & desarrollo , Adulto Joven
16.
PLoS Comput Biol ; 14(2): e1006007, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29474352

RESUMEN

Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Mapeo Encefálico , Conectoma , Electrofisiología , Humanos , Magnetoencefalografía , Red Nerviosa/fisiología , Neuronas/fisiología , Oscilometría , Dinámica Poblacional , Descanso/fisiología
17.
Neuroimage ; 146: 667-678, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27639354

RESUMEN

The characterisation of dynamic electrophysiological brain networks, which form and dissolve in order to support ongoing cognitive function, is one of the most important goals in neuroscience. Here, we introduce a method for measuring such networks in the human brain using magnetoencephalography (MEG). Previous network analyses look for brain regions that share a common temporal profile of activity. Here distinctly, we exploit the high spatio-temporal resolution of MEG to measure the temporal evolution of connectivity between pairs of parcellated brain regions. We then use an ICA based procedure to identify networks of connections whose temporal dynamics covary. We validate our method using MEG data recorded during a finger movement task, identifying a transient network of connections linking somatosensory and primary motor regions, which modulates during the task. Next, we use our method to image the networks which support cognition during a Sternberg working memory task. We generate a novel neuroscientific picture of cognitive processing, showing the formation and dissolution of multiple networks which relate to semantic processing, pattern recognition and language as well as vision and movement. Our method tracks the dynamics of functional connectivity in the brain on a timescale commensurate to the task they are undertaking.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Cognición/fisiología , Magnetoencefalografía , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Memoria a Corto Plazo/fisiología , Vías Nerviosas/fisiología , Procesamiento de Señales Asistido por Computador , Adulto Joven
18.
Magn Reson Med ; 78(2): 645-655, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27747930

RESUMEN

PURPOSE: To develop a method that fits a multipool model to z-spectra acquired from non-steady state sequences, taking into account the effects of variations in T1 or B1 amplitude and the results estimating the parameters for a four-pool model to describe the z-spectrum from the healthy brain. METHODS: We compared measured spectra with a look-up table (LUT) of possible spectra and investigated the potential advantages of simultaneously considering spectra acquired at different saturation powers (coupled spectra) to provide sensitivity to a range of different physicochemical phenomena. RESULTS: The LUT method provided reproducible results in healthy controls. The average values of the macromolecular pool sizes measured in white matter (WM) and gray matter (GM) of 10 healthy volunteers were 8.9% ± 0.3% (intersubject standard deviation) and 4.4% ± 0.4%, respectively, whereas the average nuclear Overhauser effect pool sizes in WM and GM were 5% ± 0.1% and 3% ± 0.1%, respectively, and average amide proton transfer pool sizes in WM and GM were 0.21% ± 0.03% and 0.20% ± 0.02%, respectively. CONCLUSIONS: The proposed method demonstrated increased robustness when compared with existing methods (such as Lorentzian fitting and asymmetry analysis) while yielding fully quantitative results. The method can be adjusted to measure other parameters relevant to the z-spectrum. Magn Reson Med 78:645-655, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Simulación por Computador , Sustancia Gris/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Algoritmos , Humanos , Reproducibilidad de los Resultados
19.
Proc Natl Acad Sci U S A ; 113(47): 13510-13515, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27830650

RESUMEN

The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology.


Asunto(s)
Corteza Cerebral/fisiología , Fenómenos Electrofisiológicos , Vaina de Mielina/metabolismo , Red Nerviosa/fisiología , Adulto , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino
20.
Neuroimage ; 132: 425-438, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26908313

RESUMEN

Recent years have shown the critical importance of inter-regional neural network connectivity in supporting healthy brain function. Such connectivity is measurable using neuroimaging techniques such as MEG, however the richness of the electrophysiological signal makes gaining a complete picture challenging. Specifically, connectivity can be calculated as statistical interdependencies between neural oscillations within a large range of different frequency bands. Further, connectivity can be computed between frequency bands. This pan-spectral network hierarchy likely helps to mediate simultaneous formation of multiple brain networks, which support ongoing task demand. However, to date it has been largely overlooked, with many electrophysiological functional connectivity studies treating individual frequency bands in isolation. Here, we combine oscillatory envelope based functional connectivity metrics with a multi-layer network framework in order to derive a more complete picture of connectivity within and between frequencies. We test this methodology using MEG data recorded during a visuomotor task, highlighting simultaneous and transient formation of motor networks in the beta band, visual networks in the gamma band and a beta to gamma interaction. Having tested our method, we use it to demonstrate differences in occipital alpha band connectivity in patients with schizophrenia compared to healthy controls. We further show that these connectivity differences are predictive of the severity of persistent symptoms of the disease, highlighting their clinical relevance. Our findings demonstrate the unique potential of MEG to characterise neural network formation and dissolution. Further, we add weight to the argument that dysconnectivity is a core feature of the neuropathology underlying schizophrenia.


Asunto(s)
Mapeo Encefálico/métodos , Ondas Encefálicas , Encéfalo/fisiología , Magnetoencefalografía , Redes Neurales de la Computación , Adulto , Ritmo alfa , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Modelos Neurológicos , Vías Nerviosas/fisiología , Lóbulo Occipital , Esquizofrenia/fisiopatología , Procesamiento de Señales Asistido por Computador , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...