Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4567, 2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403625

RESUMEN

Development of high yielding cowpea varieties coupled with good taste and rich in essential minerals can promote consumption and thus nutrition and profitability. The sweet taste of cowpea grain is determined by its sugar content, which comprises mainly sucrose and galacto-oligosaccharides (GOS) including raffinose and stachyose. However, GOS are indigestible and their fermentation in the colon can produce excess intestinal gas, causing undesirable bloating and flatulence. In this study, we aimed to examine variation in grain sugar and mineral concentrations, then map quantitative trait loci (QTLs) and estimate genomic-prediction (GP) accuracies for possible application in breeding. Grain samples were collected from a multi-parent advanced generation intercross (MAGIC) population grown in California during 2016-2017. Grain sugars were assayed using high-performance liquid chromatography. Grain minerals were determined by inductively coupled plasma-optical emission spectrometry and combustion. Considerable variation was observed for sucrose (0.6-6.9%) and stachyose (2.3-8.4%). Major QTLs for sucrose (QSuc.vu-1.1), stachyose (QSta.vu-7.1), copper (QCu.vu-1.1) and manganese (QMn.vu-5.1) were identified. Allelic effects of major sugar QTLs were validated using the MAGIC grain samples grown in West Africa in 2017. GP accuracies for minerals were moderate (0.4-0.58). These findings help guide future breeding efforts to develop mineral-rich cowpea varieties with desirable sugar content.


Asunto(s)
Sitios de Carácter Cuantitativo , Vigna , Sitios de Carácter Cuantitativo/genética , Vigna/genética , Azúcares , Fitomejoramiento , Minerales , Grano Comestible/genética , Genómica , Sacarosa
3.
BMC Genomics ; 23(1): 100, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123403

RESUMEN

BACKGROUND: Previous reports have shown that soil salinity is a growing threat to cowpea production, and thus the need for breeding salt-tolerant cowpea cultivars. A total of 234 Multi-Parent Advanced Generation Inter-Cross (MAGIC) lines along with their 8 founders were evaluated for salt tolerance under greenhouse conditions. The objectives of this study were to evaluate salt tolerance in a multi-parent advanced generation inter-cross (MAGIC) cowpea population, to identify single nucleotide polymorphism (SNP) markers associated with salt tolerance, and to assess the accuracy of genomic selection (GS) in predicting salt tolerance, and to explore possible epistatic interactions affecting salt tolerance in cowpea. Phenotyping was validated through the use of salt-tolerant and salt-susceptible controls that were previously reported. Genome-wide association study (GWAS) was conducted using a total of 32,047 filtered SNPs. The epistatic interaction analysis was conducted using the PLINK platform. RESULTS: Results indicated that: (1) large variation in traits evaluated for salt tolerance was identified among the MAGIC lines, (2) a total of 7, 2, 18, 18, 3, 2, 5, 1, and 23 were associated with number of dead plants, salt injury score, leaf SPAD chlorophyll under salt treatment, relative tolerance index for leaf SPAD chlorophyll, fresh leaf biomass under salt treatment, relative tolerance index for fresh leaf biomass, relative tolerance index for fresh stem biomass, relative tolerance index for the total above-ground fresh biomass, and relative tolerance index for plant height, respectively, with overlapping SNP markers between traits, (3) candidate genes encoding for proteins involved in ion transport such as Na+/Ca2+ K+ independent exchanger and H+/oligopeptide symporter were identified, and (4) epistatic interactions were identified. CONCLUSIONS: These results will have direct applications in breeding programs aiming at improving salt tolerance in cowpea through marker-assisted selection. To the best of our knowledge, this study was one of the earliest reports using a MAGIC population to investigate the genetic architecture of salt tolerance in cowpea.


Asunto(s)
Tolerancia a la Sal , Vigna , Estudio de Asociación del Genoma Completo , Humanos , Padres , Fenotipo , Polimorfismo de Nucleótido Simple , Tolerancia a la Sal/genética , Vigna/genética
4.
Hortic Res ; 8(1): 24, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33518704

RESUMEN

Cowpea is a nutrient-dense legume that significantly contributes to the population's diet in sub-Saharan Africa and other regions of the world. Improving cowpea cultivars to be more resilient to abiotic stress such as drought would be of great importance. The use of a multi-parent advanced generation intercross (MAGIC) population has been shown to be efficient in increasing the frequency of rare alleles that could be associated with important agricultural traits. In addition, drought tolerance index has been reported to be a reliable parameter for assessing crop tolerance to water-deficit conditions. Therefore, the objectives of this study were to evaluate the drought tolerance index for plant growth habit, plant maturity, flowering time, 100-seed weight, and grain yield in a MAGIC cowpea population, to conduct genome-wide association study (GWAS) and identify single nucleotide polymorphism (SNP) markers associated with the drought tolerance indices, to investigate the potential relationship existing between the significant loci associated with the drought tolerance indices, and to conduct genomic selection (GS). These analyses were performed using the existing phenotypic and genotypic data published for the MAGIC population which consisted of 305 F8 recombinant inbred lines (RILs) developed at University of California, Riverside. The results indicated that: (1) large variation in drought tolerance indices existed among the cowpea genotypes, (2) a total of 14, 18, 5, 5, and 35 SNPs were associated with plant growth habit change due to drought stress, and drought tolerance indices for maturity, flowering time, 100-seed weight, and grain yield, respectively, (3) the network-guided approach revealed clear interactions between the loci associated with the drought tolerance traits, and (4) the GS accuracy varied from low to moderate. These results could be applied to improve drought tolerance in cowpea through marker-assisted selection (MAS) and genomic selection (GS). To the best of our knowledge, this is the first report on marker loci associated with drought tolerance indices in cowpea.

5.
Front Plant Sci ; 10: 1346, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708953

RESUMEN

The appearance of the seed is an important aspect of consumer preference for cowpea (Vigna unguiculata [L.] Walp.). Seed coat pattern in cowpea has been a subject of study for over a century. This study makes use of newly available resources, including mapping populations, a reference genome and additional genome assemblies, and a high-density single nucleotide polymorphism genotyping platform, to map various seed coat pattern traits to three loci, concurrent with the Color Factor (C), Watson (W), and Holstein (H) factors identified previously. Several gene models encoding proteins involved in regulating the later stages of the flavonoid biosynthesis pathway have been identified as candidate genes, including a basic helix-loop-helix gene (Vigun07g110700) for the C locus, a WD-repeat gene (Vigun09g139900) for the W locus and an E3 ubiquitin ligase gene (Vigun10g163900) for the H locus. A model of seed coat development, consisting of six distinct stages, is described to explain some of the observed pattern phenotypes.

6.
Plant J ; 93(6): 1129-1142, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29356213

RESUMEN

Multi-parent advanced generation inter-cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.) from eight founder parents. These founders were genetically diverse and carried many abiotic and biotic stress resistance, seed quality and agronomic traits relevant to cowpea improvement in the United States and sub-Saharan Africa, where cowpea is vitally important in the human diet and local economies. The eight parents were inter-crossed using structured matings to ensure that the population would have balanced representation from each parent, followed by single-seed descent, resulting in 305 F8 recombinant inbred lines each carrying a mosaic of genome blocks contributed by all founders. This was confirmed by single nucleotide polymorphism genotyping with the Illumina Cowpea Consortium Array. These lines were on average 99.74% homozygous but also diverse in agronomic traits across environments. Quantitative trait loci (QTLs) were identified for several parental traits. Loci with major effects on photoperiod sensitivity and seed size were also verified by biparental genetic mapping. The recombination events were concentrated in telomeric regions. Due to its broad genetic base, this cowpea MAGIC population promises breakthroughs in genetic gain, QTL and gene discovery, enhancement of breeding populations and, for some lines, direct releases as new varieties.


Asunto(s)
Genes de Plantas/genética , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo/genética , Vigna/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Genética de Población , Genoma de Planta/genética , Genotipo , Filogenia , Polimorfismo de Nucleótido Simple , Semillas/genética , Especificidad de la Especie , Vigna/clasificación
7.
PLoS One ; 13(1): e0189185, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29300744

RESUMEN

Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.


Asunto(s)
Genes de Plantas , Nematodos/patogenicidad , Sitios de Carácter Cuantitativo , Transcriptoma , Vigna/genética , Animales , Regulación de la Expresión Génica de las Plantas , Genotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Vigna/parasitología
8.
J Nematol ; 50(4): 545-558, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31094157

RESUMEN

Cowpea (Vigna unguiculata L. Walp) is an affordable source of protein and strategic legume crop for food security in Africa and other developing regions; however, damage from infection by root-knot nematodes (RKN) suppresses cowpea yield. The deployment through breeding of resistance gene Rk in cowpea cultivars has provided protection to cowpea growers worldwide for many years. However, occurrence of more aggressive nematode isolates threatens the effectiveness of this monogenic resistance. A cowpea germplasm collection of 48 genotypes representing the cowpea gene-pool from Eastern and Southern Africa (cowpea has two major pools of genetic resources - Western Africa and Eastern/Southern Africa) was screened in replicated experiments under field, greenhouse and controlled-growth conditions to identify resistance to RKN, to determine the spectrum of resistance to RKN, the relative virulence (VI) among RKN species and isolates, and the relationship between root-galling (RG) and egg-mass production (EM). Analysis of variance of data for RG and EM per root system identified seven genotypes with broad-based resistance to Meloidogyne javanica (Mj), avirulent (Avr-Mi), and virulent (Mi) M. incognita isolates. Two of the 48 genotypes exhibited specific resistance to both Mi isolates. Most of the genotypes were resistant to Avr-Mi indicating predominance of Rk gene in the collection. Based on RG data, both Mj (VI = 50%) and Mi (VI = 42%) were fourfold more virulent than Avr-Mi (VI = 12%). Resistant genotypes had more effective resistance than the Rk-based resistance in cowpea genotype CB46 against Mj and Mi. Root-galling was correlated across isolates (Avr-Mi/Mj: r = 0.72; Mi/Mj: r = 0.98), and RG was correlated with EM (r = 0.60), indicating resistance to RG and EM is under control by the same genetic factors. These new sources of resistance identified in cowpea gene-pool two provide valuable target traits for breeders to improve cowpea production on RKN-infested fields.Cowpea (Vigna unguiculata L. Walp) is an affordable source of protein and strategic legume crop for food security in Africa and other developing regions; however, damage from infection by root-knot nematodes (RKN) suppresses cowpea yield. The deployment through breeding of resistance gene Rk in cowpea cultivars has provided protection to cowpea growers worldwide for many years. However, occurrence of more aggressive nematode isolates threatens the effectiveness of this monogenic resistance. A cowpea germplasm collection of 48 genotypes representing the cowpea gene-pool from Eastern and Southern Africa (cowpea has two major pools of genetic resources ­ Western Africa and Eastern/Southern Africa) was screened in replicated experiments under field, greenhouse and controlled-growth conditions to identify resistance to RKN, to determine the spectrum of resistance to RKN, the relative virulence (VI) among RKN species and isolates, and the relationship between root-galling (RG) and egg-mass production (EM). Analysis of variance of data for RG and EM per root system identified seven genotypes with broad-based resistance to Meloidogyne javanica (Mj), avirulent (Avr-Mi), and virulent (Mi) M. incognita isolates. Two of the 48 genotypes exhibited specific resistance to both Mi isolates. Most of the genotypes were resistant to Avr-Mi indicating predominance of Rk gene in the collection. Based on RG data, both Mj (VI = 50%) and Mi (VI = 42%) were fourfold more virulent than Avr-Mi (VI = 12%). Resistant genotypes had more effective resistance than the Rk-based resistance in cowpea genotype CB46 against Mj and Mi. Root-galling was correlated across isolates (Avr-Mi/Mj: r = 0.72; Mi/Mj: r = 0.98), and RG was correlated with EM (r = 0.60), indicating resistance to RG and EM is under control by the same genetic factors. These new sources of resistance identified in cowpea gene-pool two provide valuable target traits for breeders to improve cowpea production on RKN-infested fields.

9.
Plant Biotechnol J ; 15(5): 547-557, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27658053

RESUMEN

Cowpea (V. unguiculata L. Walp) is a climate resilient legume crop important for food security. Cultivated cowpea (V. unguiculata L) generally comprises the bushy, short-podded grain cowpea dominant in Africa and the climbing, long-podded vegetable cowpea popular in Asia. How selection has contributed to the diversification of the two types of cowpea remains largely unknown. In the current study, a novel genotyping assay for over 50 000 SNPs was employed to delineate genomic regions governing pod length. Major, minor and epistatic QTLs were identified through QTL mapping. Seventy-two SNPs associated with pod length were detected by genome-wide association studies (GWAS). Population stratification analysis revealed subdivision among a cowpea germplasm collection consisting of 299 accessions, which is consistent with pod length groups. Genomic scan for selective signals suggested that domestication of vegetable cowpea was accompanied by selection of multiple traits including pod length, while the further improvement process was featured by selection of pod length primarily. Pod growth kinetics assay demonstrated that more durable cell proliferation rather than cell elongation or enlargement was the main reason for longer pods. Transcriptomic analysis suggested the involvement of sugar, gibberellin and nutritional signalling in regulation of pod length. This study establishes the basis for map-based cloning of pod length genes in cowpea and for marker-assisted selection of this trait in breeding programmes.


Asunto(s)
Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Vigna/genética , África , China , Regulación de la Expresión Génica de las Plantas , Genética de Población , Estudio de Asociación del Genoma Completo , Variantes Farmacogenómicas
10.
Theor Appl Genet ; 130(2): 419-431, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864597

RESUMEN

KEY MESSAGE: Genetic analysis of data produced by novel root phenotyping tools was used to establish relationships between cowpea root traits and performance indicators as well between root traits and Striga tolerance. Selection and breeding for better root phenotypes can improve acquisition of soil resources and hence crop production in marginal environments. We hypothesized that biologically relevant variation is measurable in cowpea root architecture. This study implemented manual phenotyping (shovelomics) and automated image phenotyping (DIRT) on a 189-entry diversity panel of cowpea to reveal biologically important variation and genome regions affecting root architecture phenes. Significant variation in root phenes was found and relatively high heritabilities were detected for root traits assessed manually (0.4 for nodulation and 0.8 for number of larger laterals) as well as repeatability traits phenotyped via DIRT (0.5 for a measure of root width and 0.3 for a measure of root tips). Genome-wide association study identified 11 significant quantitative trait loci (QTL) from manually scored root architecture traits and 21 QTL from root architecture traits phenotyped by DIRT image analysis. Subsequent comparisons of results from this root study with other field studies revealed QTL co-localizations between root traits and performance indicators including seed weight per plant, pod number, and Striga (Striga gesnerioides) tolerance. The data suggest selection for root phenotypes could be employed by breeding programs to improve production in multiple constraint environments.


Asunto(s)
Estudios de Asociación Genética , Raíces de Plantas/crecimiento & desarrollo , Vigna/genética , Mapeo Cromosómico , Marcadores Genéticos , Modelos Genéticos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Vigna/crecimiento & desarrollo
11.
Plant J ; 89(5): 1042-1054, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27775877

RESUMEN

Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress.


Asunto(s)
Productos Agrícolas/genética , Productos Agrícolas/fisiología , Vigna/genética , Vigna/fisiología , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas/genética , Clima , Abastecimiento de Alimentos , Genoma de Planta/genética , Genotipo
12.
Front Plant Sci ; 7: 757, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375632

RESUMEN

Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved varieties available to farmers, thereby boosting cowpea production and productivity in SSA.

13.
Theor Appl Genet ; 129(1): 87-95, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26450274

RESUMEN

KEY MESSAGE: Genome resolution of a major QTL associated with the Rk locus in cowpea for resistance to root-knot nematodes has significance for plant breeding programs and R gene characterization. Cowpea (Vigna unguiculata L. Walp.) is a susceptible host of root-knot nematodes (Meloidogyne spp.) (RKN), major plant-parasitic pests in global agriculture. To date, breeding for host resistance in cowpea has relied on phenotypic selection which requires time-consuming and expensive controlled infection assays. To facilitate marker-based selection, we aimed to identify and map quantitative trait loci (QTL) conferring the resistance trait. One recombinant inbred line (RIL) and two F2:3 populations, each derived from a cross between a susceptible and a resistant parent, were genotyped with genome-wide single nucleotide polymorphism (SNP) markers. The populations were screened in the field for root-galling symptoms and/or under growth-chamber conditions for nematode reproduction levels using M. incognita and M. javanica biotypes. One major QTL was mapped consistently on linkage group VuLG11 of each population. By genotyping additional cowpea lines and near-isogenic lines derived from conventional backcrossing, we confirmed that the detected QTL co-localized with the genome region associated with the Rk locus for RKN resistance that has been used in conventional breeding for many decades. This chromosomal location defined with flanking markers will be a valuable target in marker-assisted breeding and for positional cloning of genes controlling RKN resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Fabaceae/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Tylenchoidea , Animales , Mapeo Cromosómico , Cruzamientos Genéticos , Fabaceae/parasitología , Ligamiento Genético , Genotipo , Fenotipo , Enfermedades de las Plantas/parasitología , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Polimorfismo de Nucleótido Simple
14.
Front Plant Sci ; 6: 126, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852699

RESUMEN

Seed size distinguishes most crops from their wild relatives and is an important quality trait for the grain legume cowpea. In order to breed cowpea varieties with larger seeds we introgressed a rare haplotype associated with large seeds at the Css-1 locus from an African buff seed type cultivar, IT82E-18 (18.5 g/100 seeds), into a blackeye seed type cultivar, CB27 (22 g/100 seed). Four recombinant inbred lines derived from these two parents were chosen for marker-assisted breeding based on SNP genotyping with a goal of stacking large seed haplotypes into a CB27 background. Foreground and background selection were performed during two cycles of backcrossing based on genome-wide SNP markers. The average seed size of introgression lines homozygous for haplotypes associated with large seeds was 28.7g/100 seed and 24.8 g/100 seed for cycles 1 and 2, respectively. One cycle 1 introgression line with desirable seed quality was selfed for two generations to make families with very large seeds (28-35 g/100 seeds). Field-based performance trials helped identify breeding lines that not only have large seeds but are also desirable in terms of yield, maturity, and plant architecture when compared to industry standards. A principal component analysis was used to explore the relationships between the parents relative to a core set of landraces and improved varieties based on high-density SNP data. The geographic distribution of haplotypes at the Css-1 locus suggest the haplotype associated with large seeds is unique to accessions collected from Southeastern Africa. Therefore this quantitative trait locus has a strong potential to develop larger seeded varieties for other growing regions which is demonstrated in this work using a California pedigree.

15.
Mol Breed ; 35: 36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25620880

RESUMEN

The cowpea aphid Aphis craccivora Koch (CPA) is a destructive insect pest of cowpea, a staple legume crop in Sub-Saharan Africa and other semiarid warm tropics and subtropics. In California, CPA causes damage on all local cultivars from early vegetative to pod development growth stages. Sources of CPA resistance are available in African cowpea germplasm. However, their utilization in breeding is limited by the lack of information on inheritance, genomic location and marker linkage associations of the resistance determinants. In the research reported here, a recombinant inbred line (RIL) population derived from a cross between a susceptible California blackeye cultivar (CB27) and a resistant African breeding line (IT97K-556-6) was genotyped with 1,536 SNP markers. The RILs and parents were phenotyped for CPA resistance using field-based screenings during two main crop seasons in a 'hotspot' location for this pest within the primary growing region of the Central Valley of California. One minor and one major quantitative trait locus (QTL) were consistently mapped on linkage groups 1 and 7, respectively, both with favorable alleles contributed from IT97K-556-6. The major QTL appeared dominant based on a validation test in a related F2 population. SNP markers flanking each QTL were positioned in physical contigs carrying genes involved in plant defense based on synteny with related legumes. These markers could be used to introgress resistance alleles from IT97K-556-6 into susceptible local blackeye varieties by backcrossing.

16.
Methods Mol Biol ; 1145: 59-66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24816659

RESUMEN

High-resolution melting (HRM) analysis is a simple, closed tube, post-PCR method used to identify genetic variation. The method is highly sensitive and can discriminate DNA sequence variants based on length (such as insertions or deletions), composition (such as single nucleotide polymorphisms, i.e., SNP) or strand complementarity (such as heterozygous or homozygous material). The technique involves PCR amplification of a target sequence in the presence of a fluorescent double-stranded DNA (dsDNA) binding dye, melting of the fluorescent amplicons, and subsequent interpretation of melt curve profiles. Here, we describe general considerations for assay design, PCR amplification, and HRM analysis.


Asunto(s)
Técnicas de Genotipaje , Cartilla de ADN/genética , Genotipo , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Temperatura de Transición
17.
Front Plant Sci ; 4: 95, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23596454

RESUMEN

Highly specific seed market classes for cowpea and other grain legumes exist because grain is most commonly cooked and consumed whole. Size, shape, color, and texture are critical features of these market classes and breeders target development of cultivars for market acceptance. Resistance to biotic and abiotic stresses that are absent from elite breeding material are often introgressed through crosses to landraces or wild relatives. When crosses are made between parents with different grain quality characteristics, recovery of progeny with acceptable or enhanced grain quality is problematic. Thus genetic markers for grain quality traits can help in pyramiding genes needed for specific market classes. Allelic variation dictating the inheritance of seed size can be tagged and used to assist the selection of large seeded lines. In this work we applied 1,536-plex SNP genotyping and knowledge of legume synteny to characterize regions of the cowpea genome associated with seed size. These marker-trait associations will enable breeders to use marker-based selection approaches to increase the frequency of progeny with large seed. For 804 individuals derived from eight bi-parental populations, QTL analysis was used to identify markers linked to 10 trait determinants. In addition, the population structure of 171 samples from the USDA core collection was identified and incorporated into a genome-wide association study which supported more than half of the trait-associated regions important in the bi-parental populations. Seven of the total 10 QTLs were supported based on synteny to seed size associated regions identified in the related legume soybean. In addition to delivering markers linked to major trait determinants in the context of modern breeding, we provide an analysis of the diversity of the USDA core collection of cowpea to identify genepools, migrants, admixture, and duplicates.

18.
Plant Mol Biol ; 80(3): 299-314, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22864927

RESUMEN

Fructans are soluble carbohydrates with health benefits and possible roles in plant adaptation. Fructan biosynthetic genes were isolated using comparative genomics and physical mapping followed by BAC sequencing in barley. Genes encoding sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT) and sucrose:fructan 6-fructosyltransferase (6-SFT) were clustered together with multiple copies of vacuolar invertase genes and a transposable element on two barley BAC. Intron-exon structures of the genes were similar. Phylogenetic analysis of the fructosyltransferases and invertases in the Poaceae showed that the fructan biosynthetic genes may have evolved from vacuolar invertases. Quantitative real-time PCR was performed using leaf RNA extracted from three wheat cultivars grown under different conditions. The 1-SST, 1-FFT and 6-SFT genes had correlated expression patterns in our wheat experiment and in existing barley transcriptome database. Single nucleotide polymorphism (SNP) markers were developed and successfully mapped to a major QTL region affecting wheat grain fructan accumulation in two independent wheat populations. The alleles controlling high- and low- fructan in parental lines were also found to be associated in fructan production in a diverse set of 128 wheat lines. To the authors' knowledge, this is the first report on the mapping and sequencing of a fructan biosynthetic gene cluster and in particular, the isolation of a novel 1-FFT gene from barley.


Asunto(s)
Fructanos/biosíntesis , Hordeum/enzimología , Familia de Multigenes/genética , Proteínas de Plantas/genética , Triticum/enzimología , Secuencia de Aminoácidos , Mapeo Cromosómico/métodos , ADN de Plantas/química , ADN de Plantas/genética , Fructanos/análisis , Fructanos/genética , Regulación de la Expresión Génica de las Plantas/genética , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hordeum/genética , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN , Triticum/genética , Vacuolas/enzimología , beta-Fructofuranosidasa/genética
19.
Theor Appl Genet ; 117(5): 701-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18536901

RESUMEN

Fructans (fructo-oligosaccharides) are prebiotics that are thought to selectively promote the growth of colonic bifidobacteria, thereby improving human gut health. Fructans are present in the grain of wheat, a staple food crop. In the research reported here, we aimed to detect and map loci affecting grain fructan concentration in wheat using a doubled-haploid population derived from a cross between a high-fructan breeding line, Berkut, and a low-fructan cultivar, Krichauff. Fructan concentration was measured in grain samples grown at two locations in Australia and one in Kazakhstan. Fructan concentration varied widely within the population, ranging from 0.6 to 2.6% of grain dry weight, and was quite repeatable, with broad-sense heritability estimated as 0.71. With a linkage map of 528 molecular markers, quantitative trait loci (QTLs) were detected on chromosomes 2B, 3B, 5A, 6D and 7A. Of these, the QTLs on chromosomes 6D and 7A had the largest effects, explaining 17 and 27% of the total phenotypic variance, respectively, both with the favourable (high-fructan concentration) alleles contributed from Berkut. These chromosome regions had similar effects in another mapping population, Sokoll/Krichauff, with the favourable alleles contributed from Sokoll. It is concluded that grain fructan concentration of wheat can be improved by breeding and that molecular markers could be used to select effectively for favourable alleles in two regions of the wheat genome.


Asunto(s)
Fructanos/metabolismo , Sitios de Carácter Cuantitativo , Triticum/genética , Alelos , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Epistasis Genética , Fructanos/genética , Ligamiento Genético , Marcadores Genéticos , Genotipo , Triticum/metabolismo
20.
Plant Cell Environ ; 30(8): 984-93, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17617826

RESUMEN

Cultivar differences in root elongation under B toxic conditions were observed in barley (Hordeum vulgare L.). A significant increase in the length and width of the root meristematic zone (RMZ) was observed in Sahara 3771 (B tolerant) when it was grown under excessive B concentration, compared to when grown at adequate B supply. This coincided with an increase in cell width and cell numbers in the meristematic zone (MZ), whereas a significant decrease in the length and no significant effect on the width of the MZ was observed in Clipper (B intolerant) when it was grown under excessive B supply. This was accompanied by a decrease in cell numbers, but an increase in the length and width of individual cells present along the MZ. Excessive B concentrations led to a significantly lower osmotic potential within the cell sap of the root tip in SloopVic (B tolerant) and Sahara 3771, while the opposite was observed in Clipper. Enhanced sugar levels in the root tips of SloopVic were observed between 48 and 96 h after excess B was applied. This coincided with an increase in the root elongation rate and with a 2.7-fold increase in sucrose level within mature leaf tissue. A significant decrease in reducing sugar levels was observed in the root tips of Clipper under excessive B concentrations. This coincided with significantly lower root elongation rates and lower sucrose levels in leaf tissues. Results indicate a B tolerance mechanism associated with a complex control of sucrose levels between leaf and root tip that assist in maintaining root growth under B toxicity.


Asunto(s)
Boro/metabolismo , Hordeum/metabolismo , Metabolismo de los Hidratos de Carbono , Aumento de la Célula , Proliferación Celular , Medios de Cultivo , Genotipo , Hordeum/citología , Hordeum/genética , Hordeum/crecimiento & desarrollo , Meristema/citología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Ósmosis , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , beta-Fructofuranosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...