Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Heliyon ; 10(2): e24719, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312589

RESUMEN

We investigated the effect of growing on lactate instead of glucose in human cardiomyocyte assessing their viability, cell cycle activity, oxidative stress and metabolism by a proteomic and metabolomic approach. In previous studies performed on elite players, we found that adaptation to exercise is characterized by a chronic high plasma level of lactate. Lactate is considered not only an energy source but also a signalling molecule and is referred as "lactormone"; heart is one of the major recipients of exogenous lactate. With this in mind, we used a cardiac cell line AC16 to characterize the lactate metabolic profile and investigate the metabolic flexibility of the heart. Interestingly, our data indicated that cardiomyocytes grown on lactate (72 h) show change in several proteins and metabolites linked to cell hypertrophy and cytoskeleton remodelling. The obtained results could help to understand the effect of this metabolite on heart of high-performance athletes.

2.
Plant Sci ; 340: 111969, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38159610

RESUMEN

The in-depth studies over the years on the defence barriers by tomato plants have shown that the Systemin peptide controls the response to a wealth of environmental stress agents. This multifaceted stress reaction seems to be related to the intrinsic disorder of its precursor protein, Prosystemin (ProSys). Since latest findings show that ProSys has biological functions besides Systemin sequence, here we wanted to assess if this precursor includes peptide motifs able to trigger stress-related pathways. Candidate peptides were identified in silico and synthesized to test their capacity to trigger defence responses in tomato plants against different biotic stressors. Our results demonstrated that ProSys harbours several repeat motifs which triggered plant immune reactions against pathogens and pest insects. Three of these peptides were detected by mass spectrometry in plants expressing ProSys, demonstrating their effective presence in vivo. These experimental data shed light on unrecognized functions of ProSys, mediated by multiple biologically active sequences which may partly account for the capacity of ProSys to induce defense responses to different stress agents.


Asunto(s)
Péptidos , Proteínas de Plantas , Péptidos/metabolismo , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37762146

RESUMEN

Fungi produce surface-active proteins, among which hydrophobins are the most characterized and attractive also for their ability to form functional amyloids. Our most recent findings show that these abilities are shared with other classes of fungal proteins. Indeed, in this paper, we compared the characteristics of a class I hydrophobin (Vmh2 from Pleurotus ostreatus) and an unknown protein (named PAC3), extracted from the marine fungal strain Acremonium sclerotigenum, which does not belong to the same protein family based on its sequence features. They both proved to be good biosurfactants, stabilizing emulsions in several conditions (concentration, pH, and salinity) and decreasing surface tension to a comparable value to that of some synthetic surfactants. After that, we observed for both Vmh2 and PAC3 the formation of giant fibers without the need for harsh conditions or long incubation time, a remarkable ability herein reported for the first time.


Asunto(s)
Cisteína , Pleurotus , Proteínas Fúngicas , Proteínas de la Membrana , Salinidad
4.
Front Plant Sci ; 14: 1195673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745992

RESUMEN

The valorisation and conservation of plant genetic resources (PGRs) and wild fruit PGRs are critical to ensure the maintenance of genetic and cultural heritage and to promote new perspectives on resource use. New strategies to characterize PGRs are needed, and the omics approach can provide information that is still largely unknown. The Strawberry tree (Arbutus unedo L.) is an underutilized, drought and fire-resistant species distributed in the Mediterranean area and its berries have large ethnobotanical use. Although their phenolic profile and antioxidant capacity are known, they are not well characterised, particularly from a proteomic perspective. The aim of this work is the characterisation of two ecotypes of A. unedo (Campania and Sicily) from a molecular viewpoint to valorise and encourage the preservation of this wild fruit. Samples were collected from two different geographical areas to assess whether different geographical conditions could influence the characteristics of leaves and fruits at the three stages of ripening (green, veraison, red). Proteomic analysis identified 904 proteins, of which 122 showed significance along the ripening. Some of these differentially abundant proteins, such as chalcone synthase, show a marked increase during ripening. The protein functional classes with the highest representation are involved in protein and amino acid metabolism, glycolysis and in secondary metabolism. From a proteomic perspective, there are no differences between the fruits from the two regions compared by the ripening stage. However, the pedoclimatic metabolic imprinting allowed the observation of good diversity in the metabolomic profiles between the two ecotypes, especially for anthocyanins, 4 times more abundant in the Sicilian veraisoned fruit than in the Campania one, and catechins, with double the abundance in the Campania ecotype compared to the Sicilian ecotype in the green phase, but more abundant (3x) in the Sicilian veraisoned fruit. Phenolic compounds show a 20% greater abundance in the Campania green arbutus fruit than in the Sicilian one, values that then equalise as ripening progresses. Multi-omic characterisation enhanced the knowledge on a wild fruit plant species which shows specific adaptations and responses to the environment to be considered when addressing the issue of local agrobiodiversity.

5.
Front Immunol ; 14: 1217077, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600818

RESUMEN

Inflammatory response triggered by innate immunity can act to protect against microorganisms that behave as pathogens, with the aim to restore the homeostatic state between host and beneficial microbes. As a filter-feeder organism, the ascidian Ciona robusta is continuously exposed to external microbes that may be harmful under some conditions. In this work, we used transcriptional and proteomic approaches to investigate the inflammatory response induced by stimuli of bacterial (lipopolysaccharide -LPS- and diacylated lipopeptide - Pam2CSK4) and fungal (zymosan) origin, in Ciona juveniles at stage 4 of metamorphosis. We focused on receptors, co-interactors, transcription factors and cytokines belonging to the TLR and Dectin-1 pathways and on immune factors identified by homology approach (i.e. immunoglobulin (Ig) or C-type lectin domain containing molecules). While LPS did not induce a significant response in juvenile ascidians, Pam2CSK4 and zymosan exposure triggered the activation of specific inflammatory mechanisms. In particular, Pam2CSK4-induced inflammation was characterized by modulation of TLR and Dectin-1 pathway molecules, including receptors, transcription factors, and cytokines, while immune response to zymosan primarily involved C-type lectin receptors, co-interactors, Ig-containing molecules, and cytokines. A targeted proteomic analysis enabled to confirm transcriptional data, also highlighting a temporal delay between transcriptional induction and protein level changes. Finally, a protein-protein interaction network of Ciona immune molecules was rendered to provide a wide visualization and analysis platform of innate immunity. The in vivo inflammatory model described here reveals interconnections of innate immune pathways in specific responses to selected microbial stimuli. It also represents the starting point for studying ontogeny and regulation of inflammatory disorders in different physiological conditions.


Asunto(s)
Cordados no Vertebrados , Animales , Lipopolisacáridos , Proteómica , Zimosan , Inmunidad Innata , Citocinas , Anticuerpos , Lectinas Tipo C
6.
Healthcare (Basel) ; 11(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36673609

RESUMEN

The aim of this study was to characterize the salivary proteome and metabolome of highly trained female and male young basketball players, highlighting common and different traits. A total of 20 male and female basketball players (10 female and 10 male) and 20 sedentary control subjects (10 female and 10 male) were included in the study. The athletes exercised at least five times per week for 2 h per day. Saliva samples were collected mid-season, between 9:00 and 11:00 a.m. and away from sport competition. The proteome and metabolome were analyzed by using 2DE and GC-MS techniques, respectively. A computerized 2DE gel image analysis revealed 43 spots that varied in intensity among groups. Between these spots, 10 (23.2%) were differentially expressed among male athletes and controls, 22 (51.2%) between female basketball players and controls, 11 spots (25.6%) between male and female athletes, and 13 spots (30.2%) between male and female controls. Among the proteins identified were Immunoglobulin, Alpha-Amylase, and Dermcidin, which are inflammation-related proteins. In addition, several amino acids, such as glutamic acid, lysine, ornithine, glycine, tyrosine, threonine, and valine, were increased in trained athletes. In this study, we highlight that saliva is a useful biofluid to assess athlete performance and confirm that the adaptation of men and women to exercise has some common features, but also some different sex-specific behaviors, including differential amino acid utilization and expression of inflammation-related proteins, which need to be further investigated. Moreover, in the future, it will be interesting to examine the influence of sport-type on these differences.

7.
ACS Sustain Chem Eng ; 11(1): 381-389, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36643001

RESUMEN

Here, an unprecedented biorefinery approach has been designed to recover high-added value bioproducts starting from the culture ofPorphyridium cruentum. This unicellular marine red alga can secrete and accumulate high-value compounds that can find applications in a wide variety of industrial fields. 300 ± 67 mg/L of exopolysaccharides were obtained from cell culture medium; phycoerythrin was efficiently extracted (40% of total extract) and isolated by single chromatography, with a purity grade that allowed the crystal structure determination at 1.60 Å; a twofold increase in ß-carotene yield was obtained from the residual biomass; the final residual biomass was found to be enriched in saturated fatty acids. Thus, for the first time, a complete exploitation ofP. cruentumculture was set up.

8.
Front Chem ; 10: 1013788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324521

RESUMEN

Antimicrobial peptides (AMPs) are a unique and diverse group of molecules endowed with a broad spectrum of antibiotics properties that are being considered as new alternative therapeutic agents. Most of these peptides are membrane-active molecules, killing bacteria by membrane disruption. However, recently an increasing number of AMPs was shown to enter bacterial cells and target intracellular processes fundamental for bacterial life. In this paper we investigated the mechanism of action of Maganin-2 (Mag-2), a well-known antimicrobial peptide isolated from the African clawed frog Xenopus laevis, by functional proteomic approaches. Several proteins belonging to E. coli macromolecular membrane complexes were identified as Mag-2 putative interactors. Among these, we focused our attention on BamA a membrane protein belonging to the BAM complex responsible for the folding and insertion of nascent ß-barrel Outer Membrane Proteins (OMPs) in the outer membrane. In silico predictions by molecular modelling, in vitro fluorescence binding and Light Scattering experiments carried out using a recombinant form of BamA confirmed the formation of a stable Mag-2/BamA complex and indicated a high affinity of the peptide for BamA. Functional implications of this interactions were investigated by two alternative and complementary approaches. The amount of outer membrane proteins OmpA and OmpF produced in E. coli following Mag-2 incubation were evaluated by both western blot analysis and quantitative tandem mass spectrometry in Multiple Reaction Monitoring scan mode. In both experiments a gradual decrease in outer membrane proteins production with time was observed as a consequence of Mag-2 treatment. These results suggested BamA as a possible good target for the rational design of new antibiotics since this protein is responsible for a crucial biological event of bacterial life and is absent in humans.

9.
Front Med (Lausanne) ; 9: 963540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388911

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints and presence of systemic autoantibodies, with a great clinical and molecular heterogeneity. Rheumatoid Factor (RF) and anti-citrullinated protein antibodies (ACPA) are routinely used for the diagnosis of RA. However, additional serological markers are needed to improve the clinical management of this disease, allowing for better patient stratification and the desirable application of precision medicine strategies. In the present study, we investigated those systemic molecular changes that are associated with the RF and ACPA status of RA patients. To achieve this objective, we followed a proteomic biomarker pipeline from the discovery phase to validation. First, we performed an iTRAQ-based quantitative proteomic experiment on serum samples from the RA cohort of the Hospital of Santiago de Compostela (CHUS). In this discovery phase, serum samples from the CHUS cohort were pooled according to their RF/ACPA status. Shotgun analysis revealed that, in comparison with the double negative group (RF-/ACPA-), the abundance of 12 proteins was altered in the RF+/ACPA+ pool, 16 in the RF+/ACPA- pool and 10 in the RF-/ACPA+ pool. Vitamin D binding protein and haptoglobin were the unique proteins increased in all the comparisons. For the verification phase, 80 samples from the same cohort were analyzed individually. To this end, we developed a Multiple Reaction Monitoring (MRM) method that was employed in a comprehensive targeted analysis with the aim of verifying the results obtained in the discovery phase. Thirty-one peptides belonging to 12 proteins associated with RF and/or ACPA status were quantified by MRM. In a final validation phase, the serum levels of alpha-1-acid glycoprotein 1 (A1AG1), haptoglobin (HPT) and retinol-binding protein 4 (RET4) were measured by immunoassays in the RA cohort of the Hospital of A Coruña (HUAC). The increase of two of these putative biomarkers in the double seropositive group was validated in 260 patients from this cohort (p = 0.009 A1AG1; p = 0.003 HPT). The increased level of A1AG1 showed association with RF rather than ACPA (p = 0.023), whereas HPT showed association with ACPA rather than RF (p = 0.013). Altogether, this study has allowed a further classification of the RA seropositive patients into two novel clusters: RF+A1AG+ and ACPA+HPT+. The determination of A1AG1 and HPT in serum would provide novel information useful for RA patient stratification, which could facilitate the effective implementation of personalized medicine in routine clinical practice.

11.
Front Nutr ; 9: 915994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782922

RESUMEN

This work focused on the extraction, quantification, and characterization of bioactive compounds of Arbutus unedo L. fruits, comparing the results obtained from the different ripening states. Extractions were performed by different methods (such as maceration extraction and ultrasonic extraction) and food grade solvents (aqueous and hydroalcoholic solvents) in each of the all ripening states (four states considered, associated with four different colors, i.e., green, yellow, orange, and red). The presence of (poly)phenols was quantified and characterized, and scavenging activity was determined by the Folin-Ciocâlteu reagent and the DPPH method, respectively. The content of bioactive compounds was characterized by LC-MS/MS, such as multiple reaction monitoring (MRM) mass spectrometry. The results showed that ultrasound-assisted extraction (UAE) performed better than maceration extraction; ethanol-water mixture extracts showed a more positive effect than the use of aqueous extracts regarding the content of total phenolic compounds. Overall, the total phenolic compounds in the EtOH:H2O mixture at a ratio of 7:3 (v:v) were higher than that of the other solvents for both extraction methods. Some bioactive molecules were characterized for the first time in the extracts of A. unedo. The chemical profile of the strawberry tree extracts depended on the degree of fruit ripeness. The results suggest that A. unedo fruits may be of great interest for food and nutraceutical applications.

12.
ACS Food Sci Technol ; 2(4): 647-654, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35465209

RESUMEN

Safeguarding the biodiversity of plant species is of fundamental importance for their defense against pests and diseases even through the maintenance and dissemination of ancient agricultural traditions rooted within the small rural environments. The investigation area of the current research covered some municipalities belonging to the "Parco Nazionale del Cilento e Vallo di Diano" including the sub-mountainous part of "Comunità Montana del Vallo di Diano (Salerno, Campania)". Fifteen ancient apple varieties were collected from local communities to be analyzed and compared to some commercially available apples. To this aim, a Folin-Ciocâlteu assay was preliminarily used to measure the total polyphenol content in both ancient and commercial apple cultivars. Then, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis in the multiple reaction monitoring (MRM) ion mode was then implemented to detect and quantify specific polyphenols and to obtain a molecular comparison of a wide panel of polyphenols. The main finding of the present work pointed out that ancient apple cultivars are richer than commercial ones in anthocyanins, dihydrochalcones, and chlorogenic acid, whose beneficial effects on health are widely known. Thus, the safeguarding of these ancient varieties is greatly encouraged for the richness of polyphenols crucial both for the defense of plants from insects and for remarkable nutraceutical properties, in addition to the need for germplasm conservation as a source of genetic variability.

13.
Front Physiol ; 13: 813447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360242

RESUMEN

Monitoring fatigue and recovery during training periods contributes to identifying the best training methods to achieve sports performance. To date, little is known about sex-related differences in sports adaptations. The aim of the present study is to identify sex-related sports adaptation proteins in female basketball players and male basketball players using proteomics approach on plasma samples withdrawn from athletes during in-season training period but far from a competition. A cohort of 20 professional basketball players, 10 female (BF) and 10 male (BM), and 20 sedentary male (10 CM) and female (10 CF) as control, of comparable age and BMI, were involved in this study. Protein profiles of plasma samples obtained from BM, BF, CM, and CF were analyzed by two-dimensional electrophoresis (2-DE). Differentially expressed proteins were identified by mass spectrometry. The computational 2-DE gel image analysis pointed out 33 differentially expressed protein spots (ANOVA p-value < 0.05) and differences between male and female basketball players are more evident among the players than controls. The expression profile of 54.5% of the total proteins is affected by sports activity. Furthermore, 14 proteins are differentially expressed in basket female players in comparison with their relative controls while seven are differentially expressed in basket male players in comparison with their controls. In conclusion, we identify in female athletes a reduction in proteins related to transcription regulation, most of these modulate chronic inflammation confirming the anti-inflammatory effect of regular training in female muscle metabolism. In male and female athletes, we found a decrease in Transthyretin involved in muscle homeostasis and regeneration and Dermcidin a stress-induced myokine linked to inflammatory and it will be interesting to fully understand the role of its different isoforms in male and female skeletal muscle contraction.

14.
Sci Rep ; 12(1): 5838, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393448

RESUMEN

Oxylipins are signaling molecules originated by fatty acids that modulate vascular and bronchial tone, bronchial secretion, cytokine production and immune cell activity. The unbalanced production of pro-inflammatory and pro-resolving (i.e., anti-inflammatory) oxylipins has a relevant role in the pathogenesis of pulmonary inflammation like in cystic fibrosis (CF). We analyzed by LC-MRM/MS 65 oxylipins and 4 fatty acids in resting saliva from 69 patients with CF and 50 healthy subjects (controls). The salivary levels of 48/65 oxylipins were significantly different between CF patients and controls. Among these, EpETE, DHET, 6ketoPGE1 and HDHA were significantly higher in saliva from CF patients than in controls. All these molecules display anti-inflammatory effects, i.e., releasing of bronchial and vascular tone, modulation of cytokine release. While 20-hydroxyPGF2A, PGB2, EpDPE, 9 K-12-ELA, bicyclo-PGE2, oleic acid, LTC4, linoleic acid, 15oxoEDE, 20 hydroxyPGE2 and DHK-PGD2/PGE2 (mostly associated to pro-inflammatory effects) resulted significantly lower in CF patients than in controls. Our data suggest that the salivary oxylipins profile in CF patients is addressed toward a global anti-inflammatory effect. Although these findings need be confirmed on larger populations in prospective studies, they will contribute to better understand the pathogenesis of CF chronic inflammation and to drive targeted therapies based on the modulation of oxylipins synthesis and degradation.


Asunto(s)
Fibrosis Quística , Oxilipinas , Antiinflamatorios/metabolismo , Fibrosis Quística/metabolismo , Citocinas/metabolismo , Dinoprostona , Ácidos Grasos , Humanos , Oxilipinas/metabolismo , Estudios Prospectivos , Saliva/metabolismo
15.
ACS Omega ; 6(50): 34945-34953, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34926968

RESUMEN

Numerous reverse transcription polymerase chain reaction (RT-PCR) tests have emerged over the past year as the gold standard for detecting millions of cases of SARS-CoV-2 reported daily worldwide. However, problems with critical shortages of key reagents such as PCR primers and RNA extraction kits and unpredictable test reliability related to high viral replication cycles have triggered the need for alternative methodologies to PCR to detect specific COVID-19 proteins. Several authors have developed methods based on liquid chromatography with tandem mass spectrometry (LC-MS/MS) to confirm the potential of the technique to detect two major proteins, the spike and the nucleoprotein, of COVID-19. In the present work, an S-Trap mini spin column digestion protocol was used for sample preparation prodromal to LC-MS/MS analysis in multiple reactions monitoring ion mode (MRM) to obtain a comprehensive method capable of detecting different viral proteins. The developed method was applied to n. 81 oro/nasopharyngeal swabs submitted in parallel to quantitative reverse transcription PCR (RT-qPCR) assays to detect RdRP, the S and N genes specific for COVID-19, and the E gene for all Sarbecoviruses, including SARS-CoV-2 (with cycle negativity threshold set to 40). A total of 23 peptides representative of the six specific viral proteins were detected in the monitoring of 128 transitions found to have good ionic currents extracted in clinical samples that reacted differently to the PCR assay. The best instrumental response came from the FLPFQFGR sequence of spike [558-566] peptide used to test the analytical performance of the method that has good sensitivity with a low false-negative rate. Transition monitoring using a targeted MS approach has the great potential to detect the fragmentation reactions of any peptide molecularly defined by a specific amino acid sequence, offering the extensibility of the approach to any viral sequence including derived variants and thus providing insights into the development of new types of clinical diagnostics.

16.
mBio ; 12(6): e0281321, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34872358

RESUMEN

Arsenic detoxification systems can be found in a wide range of organisms, from bacteria to humans. In a previous study, we discovered an arsenic-responsive transcriptional regulator in the thermophilic bacterium Thermus thermophilus HB27 (TtSmtB). Here, we characterize the arsenic resistance system of T. thermophilus in more detail. We employed TtSmtB-based pulldown assays with protein extracts from cultures treated with arsenate and arsenite to obtain an S-adenosyl-l-methionine (SAM)-dependent arsenite methyltransferase (TtArsM). In vivo and in vitro analyses were performed to shed light on this new component of the arsenic resistance network and its peculiar catalytic mechanism. Heterologous expression of TtarsM in Escherichia coli resulted in arsenite detoxification at mesophilic temperatures. Although TtArsM does not contain a canonical arsenite binding site, the purified protein does catalyze SAM-dependent arsenite methylation with formation of monomethylarsenites (MMAs) and dimethylarsenites (DMAs). In addition, in vitro analyses confirmed the unique interaction between TtArsM and TtSmtB. Next, a highly efficient ThermoCas9-based genome-editing tool was developed to delete the TtArsM-encoding gene on the T. thermophilus genome and to confirm its involvement in the arsenite detoxification system. Finally, the TtarsX efflux pump gene in the T. thermophilus ΔTtarsM genome was substituted by a gene encoding a stabilized yellow fluorescent protein (sYFP) to create a sensitive genome-based bioreporter system for the detection of arsenic ions. IMPORTANCE We here describe the discovery of an unknown protein by using a proteomics approach with a transcriptional regulator as bait. Remarkably, we successfully obtained a novel type of enzyme through the interaction with a transcriptional regulator controlling the expression of this enzyme. Employing this strategy, we isolated TtArsM, the first thermophilic prokaryotic arsenite methyltransferase, as a new enzyme of the arsenic resistance mechanism in T. thermophilus HB27. The atypical arsenite binding site of TtArsM categorizes the enzyme as the first member of a new arsenite methyltransferase type, exclusively present in the Thermus genus. The enzyme methylates arsenite-producing MMAs and DMAs. Furthermore, we developed an hyperthermophilic Cas9-based genome-editing tool, active up to 65°C. The tool allowed us to perform highly efficient, marker-free modifications (either gene deletion or insertion) in the T. thermophilus genome. With these modifications, we confirmed the critical role of TtArsM in the arsenite detoxification system and developed a sensitive whole-cell bioreporter for arsenic ions. We anticipate that the developed tool can be easily adapted for editing the genomes of other thermophilic bacteria, significantly boosting fundamental and metabolic engineering in hyperthermophilic microorganisms.


Asunto(s)
Arsénico/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Metiltransferasas/química , Metiltransferasas/genética , Thermus thermophilus/enzimología , Secuencia de Aminoácidos , Arsénico/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Sistemas CRISPR-Cas , Estabilidad de Enzimas , Edición Génica , Metiltransferasas/metabolismo , Alineación de Secuencia , Thermus thermophilus/química , Thermus thermophilus/genética
17.
Rapid Commun Mass Spectrom ; 35(20): e9166, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34270816

RESUMEN

RATIONALE: Inflammation is a cascade of events mediated by a cytokine network triggering the cellular response. In order to monitor the modulation of the crucial inflammatory proteins, e.g., Tumour Necrosis Factor-α (TNF-α), Interferon-γ (INF-γ), Interleukin-8 (IL-8) and Interleukin-10 (IL-10), upon stimulation with endotoxins, differentiated and undifferentiated THP-1 cells were treated with lipopolysaccharides (LPSs) from E. coli, key cell wall components of Gram-negative bacteria. METHODS: The multiple reaction monitoring mass spectrometry (MRM-MS) method was optimized by using the standard proteins to be quantified, in order to construct external calibration curves and define the analytical parameters. The developed method was used to quantify the above-mentioned inflammatory proteins in THP-1 differentiated cells upon stimulation with LPSs with high accuracy, sensitivity, and robustness. RESULTS: The analysis of such proteins in MRM mode allowed the kinetics of stimulation along the time up to 24 h to be followed and the MS results were found to be comparable with those obtained by Western-blotting. A significant increase in TNF-α release triggered a cascade mechanism leading to the production of INF-γ and IL-8. IL-10, instead, was found to be constant throughout the process. CONCLUSIONS: The developed MRM-MS method allowed the quantification of TNF-α, INF-γ, IL-8 and IL-10 along a time-course from 2 to 24 h. Hence, a trace of the kinetics of the inflammatory response in THP-1 cells upon stimulation with E. coli LPSs was obtained. Finally, the extensibility of the developed MRM method to serum samples and other matrices demonstrated the versatility of the approach and the possibility to quantify multiple target proteins in different biological samples by using a few microliters in a single analysis.


Asunto(s)
Inflamación/inmunología , Lipopolisacáridos/inmunología , Espectrometría de Masas/métodos , Monocitos/química , Monocitos/inmunología , Escherichia coli/inmunología , Escherichia coli/fisiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Humanos , Inflamación/microbiología , Interferón gamma/química , Interferón gamma/inmunología , Interleucina-10/química , Interleucina-10/inmunología , Interleucina-8/química , Interleucina-8/inmunología , Cinética , Lipopolisacáridos/efectos adversos , Células THP-1 , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/inmunología
18.
Front Plant Sci ; 12: 668562, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995464

RESUMEN

Fruit ripening is a physiologically complex process altering texture, color, flavor, nutritional value, and aroma. However, some fruits are consumed at an early stage of ripening due to the very peculiar characteristics varying during ripening. An example is a particular ecotype of pepper, the Friariello pepper, among the most important representatives of Campania (Southern Italy) agro-alimentary culture. In this study, for the first time, the physiological variations during Friariello ripening (green, veraison, and fully ripe) were evaluated by hyphenated mass spectrometric techniques in a proteomic and metabolomic approach. We found that Lutein and Thaumatin are particularly abundant in the green Friariello. Friariello at an early stage of ripening, is rich in volatile compounds like butanol, 1 3 5-cycloheptatriene, dimethylheptane, α-pinene, furan-2-penthyl, ethylhexanol, 3-carene, detected by gas chromatography-mass spectrometry (GC-MS) analysis, which give it the peculiar fresh and pleasant taste. The detected features of Friariello may justify its preferential consumption in the early ripening stage and outline new knowledge aimed at preserving specific agro-cultural heritage.

19.
Acta Neuropathol Commun ; 9(1): 81, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941276

RESUMEN

Chorea-Acanthocytosis (ChAc) is a devastating, little understood, and currently untreatable neurodegenerative disease caused by VPS13A mutations. Based on our recent demonstration that accumulation of activated Lyn tyrosine kinase is a key pathophysiological event in human ChAc cells, we took advantage of Vps13a-/- mice, which phenocopied human ChAc. Using proteomic approach, we found accumulation of active Lyn, γ-synuclein and phospho-tau proteins in Vps13a-/- basal ganglia secondary to impaired autophagy leading to neuroinflammation. Mice double knockout Vps13a-/- Lyn-/- showed normalization of red cell morphology and improvement of autophagy in basal ganglia. We then in vivo tested pharmacologic inhibitors of Lyn: dasatinib and nilotinib. Dasatinib failed to cross the mouse brain blood barrier (BBB), but the more specific Lyn kinase inhibitor nilotinib, crosses the BBB. Nilotinib ameliorates both Vps13a-/- hematological and neurological phenotypes, improving autophagy and preventing neuroinflammation. Our data support the proposal to repurpose nilotinib as new therapeutic option for ChAc patients.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Neuroacantocitosis/tratamiento farmacológico , Neuroacantocitosis/enzimología , Inhibidores de Proteínas Quinasas/administración & dosificación , Familia-src Quinasas/antagonistas & inhibidores , Animales , Dasatinib/administración & dosificación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroacantocitosis/genética , Pirimidinas/administración & dosificación , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
20.
Osteoarthr Cartil Open ; 3(4): 100219, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36474758

RESUMEN

Objective: The aim of this study was to carry out a targeted phospholipidomic analysis on synovial fluid (SF) from patients with different grades of osteoarthritis (OA) and controls, in order to search for specific phospholipid profiles that may be useful for the deep phenotyping of this disease. Design: Multiple reaction monitoring-mass spectrometry (MRM/MS) was applied to explore the potential phospholipidomic differences in the SF of knee OA patients (n â€‹= â€‹15) (subclassified into early- and late-stage OA) and non-OA controls (n â€‹= â€‹4). Multivariate statistical analyses conducted by partial least squares discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA) were performed to identify significantly altered phospholipids in OA, characterize phospholipidomic profiles associated with the radiographic stage of the disease and describe potential endotypes at early stages. Results: Significant discrimination of phospholipid profiles between non-OA controls and the early- and late-stage OA groups were found by PLS-DA and HCA. Compared to SF from non-OA controls, OA patients showed higher levels of most quantified phospholipid species, including phosphatidylcholines (PC), phosphatidylserines and phosphatidylinositols. Furthermore, several PC species showed significant differences in abundance between the two OA subgroups and were negatively correlated with cartilage damage. Finally, two distinct endotypes of early-stage OA were identified based on the phospholipidomic profile of SF. Conclusions: Our data provides a novel insight into the phospholipid profiles of OA synovial fluid, revealing specific alterations associated with the radiographic stage of the disease. This targeted phospholipidomic profiling also facilitated the characterization of two different OA endotypes at early stages of the disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...