Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Lancet Infect Dis ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38040006

RESUMEN

The 2023 Marburg virus disease outbreaks in Equatorial Guinea and Tanzania highlighted the importance of better understanding this lethal pathogen. We did a systematic review (PROSPERO CRD42023393345) of peer-reviewed articles reporting historical outbreaks, modelling studies, and epidemiological parameters focused on Marburg virus disease. We searched PubMed and Web of Science from database inception to March 31, 2023. Two reviewers evaluated all titles and abstracts with consensus-based decision making. To ensure agreement, 13 (31%) of 42 studies were double-extracted and a custom-designed quality assessment questionnaire was used for risk of bias assessment. We present detailed information on 478 reported cases and 385 deaths from Marburg virus disease. Analysis of historical outbreaks and seroprevalence estimates suggests the possibility of undetected Marburg virus disease outbreaks, asymptomatic transmission, or cross-reactivity with other pathogens, or a combination of these. Only one study presented a mathematical model of Marburg virus transmission. We estimate an unadjusted, pooled total random effect case fatality ratio of 61·9% (95% CI 38·8-80·6; I2=93%). We identify epidemiological parameters relating to transmission and natural history, for which there are few estimates. This systematic review and the accompanying database provide a comprehensive overview of Marburg virus disease epidemiology and identify key knowledge gaps, contributing crucial information for mathematical models to support future Marburg virus disease epidemic responses.

3.
PLoS One ; 18(10): e0286199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37851661

RESUMEN

Since 8th March 2020 up to the time of writing, we have been producing near real-time weekly estimates of SARS-CoV-2 transmissibility and forecasts of deaths due to COVID-19 for all countries with evidence of sustained transmission, shared online. We also developed a novel heuristic to combine weekly estimates of transmissibility to produce forecasts over a 4-week horizon. Here we present a retrospective evaluation of the forecasts produced between 8th March to 29th November 2020 for 81 countries. We evaluated the robustness of the forecasts produced in real-time using relative error, coverage probability, and comparisons with null models. During the 39-week period covered by this study, both the short- and medium-term forecasts captured well the epidemic trajectory across different waves of COVID-19 infections with small relative errors over the forecast horizon. The model was well calibrated with 56.3% and 45.6% of the observations lying in the 50% Credible Interval in 1-week and 4-week ahead forecasts respectively. The retrospective evaluation of our models shows that simple transmission models calibrated using routine disease surveillance data can reliably capture the epidemic trajectory in multiple countries. The medium-term forecasts can be used in conjunction with the short-term forecasts of COVID-19 mortality as a useful planning tool as countries continue to relax public health measures.


Asunto(s)
COVID-19 , Epidemias , Humanos , COVID-19/epidemiología , Estudios Retrospectivos , SARS-CoV-2 , Tiempo , Predicción
4.
Nat Commun ; 14(1): 4279, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460537

RESUMEN

As the SARS-CoV-2 pandemic progressed, distinct variants emerged and dominated in England. These variants, Wildtype, Alpha, Delta, and Omicron were characterized by variations in transmissibility and severity. We used a robust mathematical model and Bayesian inference framework to analyse epidemiological surveillance data from England. We quantified the impact of non-pharmaceutical interventions (NPIs), therapeutics, and vaccination on virus transmission and severity. Each successive variant had a higher intrinsic transmissibility. Omicron (BA.1) had the highest basic reproduction number at 8.3 (95% credible interval (CrI) 7.7-8.8). Varying levels of NPIs were crucial in controlling virus transmission until population immunity accumulated. Immune escape properties of Omicron decreased effective levels of immunity in the population by a third. Furthermore, in contrast to previous studies, we found Alpha had the highest basic infection fatality ratio (2.9%, 95% CrI 2.7-3.2), followed by Delta (2.2%, 95% CrI 2.0-2.4), Wildtype (1.2%, 95% CrI 1.1-1.2), and Omicron (0.7%, 95% CrI 0.6-0.8). Our findings highlight the importance of continued surveillance. Long-term strategies for monitoring and maintaining effective immunity against SARS-CoV-2 are critical to inform the role of NPIs to effectively manage future variants with potentially higher intrinsic transmissibility and severe outcomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teorema de Bayes , COVID-19/epidemiología , Inglaterra/epidemiología
5.
Lancet Infect Dis ; 23(9): e383-e388, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37150186

RESUMEN

Novel data and analyses have had an important role in informing the public health response to the COVID-19 pandemic. Existing surveillance systems were scaled up, and in some instances new systems were developed to meet the challenges posed by the magnitude of the pandemic. We describe the routine and novel data that were used to address urgent public health questions during the pandemic, underscore the challenges in sustainability and equity in data generation, and highlight key lessons learnt for designing scalable data collection systems to support decision making during a public health crisis. As countries emerge from the acute phase of the pandemic, COVID-19 surveillance systems are being scaled down. However, SARS-CoV-2 resurgence remains a threat to global health security; therefore, a minimal cost-effective system needs to remain active that can be rapidly scaled up if necessary. We propose that a retrospective evaluation to identify the cost-benefit profile of the various data streams collected during the pandemic should be on the scientific research agenda.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias/prevención & control , Estudios Retrospectivos , Recolección de Datos
6.
Epidemics ; 43: 100676, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36913804

RESUMEN

In an emergency epidemic response, data providers supply data on a best-faith effort to modellers and analysts who are typically the end user of data collected for other primary purposes such as to inform patient care. Thus, modellers who analyse secondary data have limited ability to influence what is captured. During an emergency response, models themselves are often under constant development and require both stability in their data inputs and flexibility to incorporate new inputs as novel data sources become available. This dynamic landscape is challenging to work with. Here we outline a data pipeline used in the ongoing COVID-19 response in the UK that aims to address these issues. A data pipeline is a sequence of steps to carry the raw data through to a processed and useable model input, along with the appropriate metadata and context. In ours, each data type had an individual processing report, designed to produce outputs that could be easily combined and used downstream. Automated checks were in-built and added as new pathologies emerged. These cleaned outputs were collated at different geographic levels to provide standardised datasets. Finally, a human validation step was an essential component of the analysis pathway and permitted more nuanced issues to be captured. This framework allowed the pipeline to grow in complexity and volume and facilitated the diverse range of modelling approaches employed by researchers. Additionally, every report or modelling output could be traced back to the specific data version that informed it ensuring reproducibility of results. Our approach has been used to facilitate fast-paced analysis and has evolved over time. Our framework and its aspirations are applicable to many settings beyond COVID-19 data, for example for other outbreaks such as Ebola, or where routine and regular analyses are required.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Salud Pública , Reproducibilidad de los Resultados , Brotes de Enfermedades
7.
Lancet Public Health ; 8(3): e174-e183, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36774945

RESUMEN

BACKGROUND: The UK was the first country to start national COVID-19 vaccination programmes, initially administering doses 3 weeks apart. However, early evidence of high vaccine effectiveness after the first dose and the emergence of the SARS-CoV-2 alpha variant prompted the UK to extend the interval between doses to 12 weeks. In this study, we aimed to quantify the effect of delaying the second vaccine dose in England. METHODS: We used a previously described model of SARS-CoV-2 transmission, calibrated to COVID-19 surveillance data from England, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data, using a Bayesian evidence-synthesis framework. We modelled and compared the epidemic trajectory in the counterfactual scenario in which vaccine doses were administered 3 weeks apart against the real reported vaccine roll-out schedule of 12 weeks. We estimated and compared the resulting numbers of daily infections, hospital admissions, and deaths. In sensitivity analyses, we investigated scenarios spanning a range of vaccine effectiveness and waning assumptions. FINDINGS: In the period from Dec 8, 2020, to Sept 13, 2021, the number of individuals who received a first vaccine dose was higher under the 12-week strategy than the 3-week strategy. For this period, we estimated that delaying the interval between the first and second COVID-19 vaccine doses from 3 to 12 weeks averted a median (calculated as the median of the posterior sample) of 58 000 COVID-19 hospital admissions (291 000 cumulative hospitalisations [95% credible interval 275 000-319 000] under the 3-week strategy vs 233 000 [229 000-238 000] under the 12-week strategy) and 10 100 deaths (64 800 deaths [60 200-68 900] vs 54 700 [52 800-55 600]). Similarly, we estimated that the 3-week strategy would have resulted in more infections compared with the 12-week strategy. Across all sensitivity analyses the 3-week strategy resulted in a greater number of hospital admissions. In results by age group, the 12-week strategy led to more hospitalisations and deaths in older people in spring 2021, but fewer following the emergence of the delta variant during summer 2021. INTERPRETATION: England's delayed-second-dose vaccination strategy was informed by early real-world data on vaccine effectiveness in the context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly providing partial (single-dose) vaccine-induced protection to a larger proportion of the population was successful in reducing the burden of COVID-19 hospitalisations and deaths overall. FUNDING: UK National Institute for Health Research; UK Medical Research Council; Community Jameel; Wellcome Trust; UK Foreign, Commonwealth and Development Office; Australian National Health and Medical Research Council; and EU.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Anciano , Lactante , Teorema de Bayes , Estudios Seroepidemiológicos , Australia , SARS-CoV-2 , Inglaterra
8.
Artículo en Inglés | MEDLINE | ID: mdl-36673886

RESUMEN

This study examined changes in physical activity (PA), sedentary behavior (SB), screen time, sleep, and executive function among Japanese preschoolers between COVID-19 pre-pandemic and pandemic periods, using cross-sectional and longitudinal data. Accelerometer data from 63 children aged 5-6 years were collected from three kindergartens in Tokyo, Japan, in late 2019 (pre-COVID-19). This was compared to the data of 49 children aged 5-6 years from the same kindergartens, collected in late 2020 (during COVID-19). Sixteen children in the pre-COVID-19 cohort also participated in the 2020 survey and provided data for the longitudinal analysis. The mean minutes of PA, SB, screen time, and sleep duration, as well as executive function, were compared between the pre- and during COVID-19 cohorts. After adjusting for school, sex, and accelerometer wear time, there were no significant differences in any of the measured outcomes between the two cohorts. However, the analysis of longitudinal data revealed significant increases in time spent in SB and on screens, and a decrease in light-intensity PA and sleep duration during the pandemic compared to the pre-pandemic period. Results suggest that, despite the COVID-19 pandemic, young children's activity levels and SB did not significantly differ from pre-pandemic levels. However, school-aged children's SB, light PA, and sleep time were affected, although this cannot be disentangled from the effects of the transition to school.


Asunto(s)
COVID-19 , Humanos , Niño , Preescolar , COVID-19/epidemiología , Conducta Sedentaria , Japón/epidemiología , Pandemias , Estudios Transversales , Ejercicio Físico , Acelerometría/métodos
9.
Epidemics ; 41: 100637, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36219929

RESUMEN

Contact tracing, where exposed individuals are followed up to break ongoing transmission chains, is a key pillar of outbreak response for infectious disease outbreaks. Unfortunately, these systems are not fully effective, and infections can still go undetected as people may not remember all their contacts or contacts may not be traced successfully. A large proportion of undetected infections suggests poor contact tracing and surveillance systems, which could be a potential area of improvement for a disease response. In this paper, we present a method for estimating the proportion of infections that are not detected during an outbreak. Our method uses next generation matrices that are parameterized by linked contact tracing data and case line-lists. We validate the method using simulated data from an individual-based model and then investigate two case studies: the proportion of undetected infections in the SARS-CoV-2 outbreak in New Zealand during 2020 and the Ebola epidemic in Guinea during 2014. We estimate that only 5.26% of SARS-CoV-2 infections were not detected in New Zealand during 2020 (95% credible interval: 0.243 - 16.0%) if 80% of contacts were under active surveillance but depending on assumptions about the ratio of contacts not under active surveillance versus contacts under active surveillance 39.0% or 37.7% of Ebola infections were not detected in Guinea (95% credible intervals: 1.69 - 87.0% or 1.70 - 80.9%).


Asunto(s)
COVID-19 , Fiebre Hemorrágica Ebola , Humanos , SARS-CoV-2 , COVID-19/epidemiología , Brotes de Enfermedades , Trazado de Contacto/métodos , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/epidemiología
10.
PLoS Negl Trop Dis ; 16(7): e0010592, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35816508

RESUMEN

BACKGROUND: Dengue virus (DENV) infection is a global health concern of increasing magnitude. To target intervention strategies, accurate estimates of the force of infection (FOI) are necessary. Catalytic models have been widely used to estimate DENV FOI and rely on a binary classification of serostatus as seropositive or seronegative, according to pre-defined antibody thresholds. Previous work has demonstrated the use of thresholds can cause serostatus misclassification and biased estimates. In contrast, mixture models do not rely on thresholds and use the full distribution of antibody titres. To date, there has been limited application of mixture models to estimate DENV FOI. METHODS: We compare the application of mixture models and time-constant and time-varying catalytic models to simulated data and to serological data collected in Vietnam from 2004 to 2009 (N ≥ 2178) and Indonesia in 2014 (N = 3194). RESULTS: The simulation study showed larger mean FOI estimate bias from the time-constant and time-varying catalytic models (-0.007 (95% Confidence Interval (CI): -0.069, 0.029) and -0.006 (95% CI -0.095, 0.043)) than from the mixture model (0.001 (95% CI -0.036, 0.065)). Coverage of the true FOI was > 95% for estimates from both the time-varying catalytic and mixture model, however the latter had reduced uncertainty. When applied to real data from Vietnam, the mixture model frequently produced higher FOI and seroprevalence estimates than the catalytic models. CONCLUSIONS: Our results suggest mixture models represent valid, potentially less biased, alternatives to catalytic models, which could be particularly useful when estimating FOI from data with largely overlapping antibody titre distributions.


Asunto(s)
Dengue , Humanos , Indonesia/epidemiología , Estudios Seroepidemiológicos , Vietnam/epidemiología
11.
Artículo en Inglés | MEDLINE | ID: mdl-35805547

RESUMEN

While limited evidence is available, preliminary studies highlight the potential health benefits of risky play. However, most of the studies have used subjective methods (i.e., questionnaires) to evaluate children's risky play, which limits their validity and reliability. The purpose of the present study was to examine the relationship between the frequency of risky play and social behavior among Japanese preschoolers by using a valid and reliable method such as direct observation. A total of 32 Japanese preschoolers (71.4 ± 3.5 months old) participated in the study, and their social behaviors were measured by the Strength and Difficulties Questionnaire (SDQ). Data regarding the frequency of risky play was collected through direct observation. Results stated that, in a non-adjusted model, there was no significant association between children's risky play and prosocial behavior. However, the association became significant after adjusting for covariates such as gender, parental employment status, and physical activity. In contrast, there was no significant association between children's risky play and problem behavior (hyperactivity and aggression) after adjusting for covariates. In conclusion, covariates such as parental employment should be considered when examining the benefits of risky play.


Asunto(s)
Ejercicio Físico , Conducta Social , Niño , Preescolar , Humanos , Japón , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
12.
Front Pediatr ; 10: 912221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837239

RESUMEN

This study aims to examine the immediate and lasting effects of resident summer camp on movement behaviors among children with repeated pre-, during-, and post-intervention measurements. In total, 21 children (aged 10.3 ± 1.2 years, 17 boys and 4 girls) participated in a 31-day nature-based resident summer camp in Japan. Daily children's movement behaviors (moderate-to-vigorous physical activity (MVPA), sedentary behavior (SB), and sleep) were continuously monitored before, during, and after the summer camp (i.e., 75 continuous days). It was found that the children engaged more time in MVPA (9.6%), less time in SB (58.0%), had more steps (22,405 steps/day), and an earlier midpoint of sleep (0:24 a.m.) in the summer camp as compared to the other periods (before and after the camp). However, the children engaged in unfavorable behaviors [reduction in MVPA (3.6%), increased SB (67.3%), and a later midpoint of sleep (1:32 a.m.)] during the summer vacation after the camp. This study indicates that the resident summer camp was effective in improving children's movement behaviors during the camp. However, the lasting effects were negligible or at least limited after its completion.

13.
BMC Infect Dis ; 22(1): 493, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614394

RESUMEN

BACKGROUND: Understanding the characteristics and natural history of novel pathogens is crucial to inform successful control measures. Japan was one of the first affected countries in the COVID-19 pandemic reporting their first case on 14 January 2020. Interventions including airport screening, contact tracing, and cluster investigations were quickly implemented. Here we present insights from the first 3 months of the epidemic in Japan based on detailed case data. METHODS: We conducted descriptive analyses based on information systematically extracted from individual case reports from 13 January to 31 March 2020 including patient demographics, date of report and symptom onset, symptom progression, travel history, and contact type. We analysed symptom progression and estimated the time-varying reproduction number, Rt, correcting for epidemic growth using an established Bayesian framework. Key delays and the age-specific probability of transmission were estimated using data on exposures and transmission pairs. RESULTS: The corrected fitted mean onset-to-reporting delay after the peak was 4 days (standard deviation: ± 2 days). Early transmission was driven primarily by returning travellers with Rt peaking at 2.4 (95% CrI: 1.6, 3.3) nationally. In the final week of the trusted period (16-23 March 2020), Rt accounting for importations diverged from overall Rt at 1.1 (95% CrI: 1.0, 1.2) compared to 1.5 (95% CrI: 1.3, 1.6), respectively. Household (39.0%) and workplace (11.6%) exposures were the most frequently reported potential source of infection. The estimated probability of transmission was assortative by age with individuals more likely to infect, and be infected by, contacts in a similar age group to them. Across all age groups, cases most frequently onset with cough, fever, and fatigue. There were no reported cases of patients < 20 years old developing pneumonia or severe respiratory symptoms. CONCLUSIONS: Information collected in the early phases of an outbreak are important in characterising any novel pathogen. The availability of timely and detailed data and appropriate analyses is critical to estimate and understand a pathogen's transmissibility, high-risk settings for transmission, and key symptoms. These insights can help to inform urgent response strategies.


Asunto(s)
COVID-19 , Adulto , Teorema de Bayes , COVID-19/epidemiología , Humanos , Japón/epidemiología , Pandemias/prevención & control , SARS-CoV-2 , Adulto Joven
14.
Children (Basel) ; 9(3)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35327714

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic may result in a greater decrease in visual acuity (VA) among Japanese children. Our study aimed to examine Japanese children's VA during the pandemic. VA data were collected using standard eye tests during school health check-ups conducted in 2019 and 2020 on 5893 children, in seven public elementary schools and four public junior high schools in Tokyo, Saitama, Kanagawa, and Shizuoka. VA changes were statistically analyzed. The relationship between the survey year and poor VA yielded a significant regression coefficient for the surveyed years in elementary and junior high school students. The 2019 VA value and VA change from 2019 to 2020 demonstrated a significant regression coefficient in elementary school students with VAs of "B (0.7−0.9)" and "C (0.3−0.6)", and junior high school students with VAs of "B", "C", and "D (<0.3)". An analysis of the relationship between the survey year and eye laterality of VA yielded a significant regression coefficient in the surveyed years for elementary (OR, 1.516; 95% CI, 1.265−1.818) and junior high school students (OR, 1.423; 95% CI, 1.136−1.782). Lifestyle changes during the COVID-19 pandemic might have affected VA and eye laterality in Japanese children.

15.
Lancet ; 398(10313): 1825-1835, 2021 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-34717829

RESUMEN

BACKGROUND: England's COVID-19 roadmap out of lockdown policy set out the timeline and conditions for the stepwise lifting of non-pharmaceutical interventions (NPIs) as vaccination roll-out continued, with step one starting on March 8, 2021. In this study, we assess the roadmap, the impact of the delta (B.1.617.2) variant of SARS-CoV-2, and potential future epidemic trajectories. METHODS: This mathematical modelling study was done to assess the UK Government's four-step process to easing lockdown restrictions in England, UK. We extended a previously described model of SARS-CoV-2 transmission to incorporate vaccination and multi-strain dynamics to explicitly capture the emergence of the delta variant. We calibrated the model to English surveillance data, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data using a Bayesian evidence synthesis framework, then modelled the potential trajectory of the epidemic for a range of different schedules for relaxing NPIs. We estimated the resulting number of daily infections and hospital admissions, and daily and cumulative deaths. Three scenarios spanning a range of optimistic to pessimistic vaccine effectiveness, waning natural immunity, and cross-protection from previous infections were investigated. We also considered three levels of mixing after the lifting of restrictions. FINDINGS: The roadmap policy was successful in offsetting the increased transmission resulting from lifting NPIs starting on March 8, 2021, with increasing population immunity through vaccination. However, because of the emergence of the delta variant, with an estimated transmission advantage of 76% (95% credible interval [95% CrI] 69-83) over alpha, fully lifting NPIs on June 21, 2021, as originally planned might have led to 3900 (95% CrI 1500-5700) peak daily hospital admissions under our central parameter scenario. Delaying until July 19, 2021, reduced peak hospital admissions by three fold to 1400 (95% CrI 700-1700) per day. There was substantial uncertainty in the epidemic trajectory, with particular sensitivity to the transmissibility of delta, level of mixing, and estimates of vaccine effectiveness. INTERPRETATION: Our findings show that the risk of a large wave of COVID-19 hospital admissions resulting from lifting NPIs can be substantially mitigated if the timing of NPI relaxation is carefully balanced against vaccination coverage. However, with the delta variant, it might not be possible to fully lift NPIs without a third wave of hospital admissions and deaths, even if vaccination coverage is high. Variants of concern, their transmissibility, vaccine uptake, and vaccine effectiveness must be carefully monitored as countries relax pandemic control measures. FUNDING: National Institute for Health Research, UK Medical Research Council, Wellcome Trust, and UK Foreign, Commonwealth and Development Office.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , COVID-19/transmisión , Control de Enfermedades Transmisibles/organización & administración , SARS-CoV-2 , Cobertura de Vacunación/organización & administración , COVID-19/epidemiología , COVID-19/mortalidad , Inglaterra/epidemiología , Mortalidad Hospitalaria/tendencias , Hospitalización/estadística & datos numéricos , Humanos , Modelos Teóricos , Admisión del Paciente/estadística & datos numéricos
17.
Sci Rep ; 11(1): 13903, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230530

RESUMEN

SARS-CoV-2 infections have been reported in all age groups including infants, children, and adolescents. However, the role of children in the COVID-19 pandemic is still uncertain. This systematic review of early studies synthesises evidence on the susceptibility of children to SARS-CoV-2 infection, the severity and clinical outcomes in children with SARS-CoV-2 infection, and the transmissibility of SARS-CoV-2 by children in the initial phases of the COVID-19 pandemic. A systematic literature review was conducted in PubMed. Reviewers extracted data from relevant, peer-reviewed studies published up to July 4th 2020 during the first wave of the SARS-CoV-2 outbreak using a standardised form and assessed quality using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. For studies included in the meta-analysis, we used a random effects model to calculate pooled estimates of the proportion of children considered asymptomatic or in a severe or critical state. We identified 2775 potential studies of which 128 studies met our inclusion criteria; data were extracted from 99, which were then quality assessed. Finally, 29 studies were considered for the meta-analysis that included information of symptoms and/or severity, these were further assessed based on patient recruitment. Our pooled estimate of the proportion of test positive children who were asymptomatic was 21.1% (95% CI: 14.0-28.1%), based on 13 included studies, and the proportion of children with severe or critical symptoms was 3.8% (95% CI: 1.5-6.0%), based on 14 included studies. We did not identify any studies designed to assess transmissibility in children and found that susceptibility to infection in children was highly variable across studies. Children's susceptibility to infection and onward transmissibility relative to adults is still unclear and varied widely between studies. However, it is evident that most children experience clinically mild disease or remain asymptomatically infected. More comprehensive contact-tracing studies combined with serosurveys are needed to quantify children's transmissibility relative to adults. With children back in schools, testing regimes and study protocols that will allow us to better understand the role of children in this pandemic are critical.


Asunto(s)
Factores de Edad , COVID-19/diagnóstico , COVID-19/epidemiología , Susceptibilidad a Enfermedades , SARS-CoV-2/patogenicidad , Adolescente , Adulto , Niño , Estudios de Cohortes , Estudios Transversales , Reacciones Falso Negativas , Reacciones Falso Positivas , Humanos
18.
Sci Transl Med ; 13(602)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34158411

RESUMEN

We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modeling framework, allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rt eff) below 1 consistently; if introduced 1 week earlier, it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 [95% credible interval (CrI): 15,900 to 38,400]. The infection fatality ratio decreased from 1.00% (95% CrI: 0.85 to 1.21%) to 0.79% (95% CrI: 0.63 to 0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95% CrI: 14.7 to 35.2%) than those residing in the community (7.9%, 95% CrI: 5.9 to 10.3%). On 2 December 2020, England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95% CrI: 5.4 to 10.2%) and 22.3% (95% CrI: 19.4 to 25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow nonpharmaceutical interventions to be lifted without a resurgence of transmission.


Asunto(s)
COVID-19 , Epidemias , Anciano , Control de Enfermedades Transmisibles , Inglaterra/epidemiología , Humanos , SARS-CoV-2
19.
Nat Commun ; 12(1): 1090, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597546

RESUMEN

In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2 transmission by restricting population movement through social distancing interventions, thus reducing the number of contacts. Mobility data represent an important proxy measure of social distancing, and here, we characterise the relationship between transmission and mobility for 52 countries around the world. Transmission significantly decreased with the initial reduction in mobility in 73% of the countries analysed, but we found evidence of decoupling of transmission and mobility following the relaxation of strict control measures for 80% of countries. For the majority of countries, mobility explained a substantial proportion of the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR - across countries [27-77%]). Where a change in the relationship occurred, predictive ability decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across countries [49-91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across countries [12-48%]) post-relaxation. In countries with a clear relationship between mobility and transmission both before and after strict control measures were relaxed, mobility was associated with lower transmission rates after control measures were relaxed indicating that the beneficial effects of ongoing social distancing behaviours were substantial.


Asunto(s)
COVID-19/transmisión , Control de Enfermedades Transmisibles/métodos , Pandemias/prevención & control , SARS-CoV-2/aislamiento & purificación , Algoritmos , COVID-19/epidemiología , COVID-19/virología , Control de Enfermedades Transmisibles/estadística & datos numéricos , Salud Global , Humanos , Modelos Teóricos , Distanciamiento Físico , Cuarentena/métodos , SARS-CoV-2/fisiología
20.
PLoS One ; 16(2): e0247002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606709

RESUMEN

2020 saw the continuation of the second largest outbreak of Ebola virus disease (EVD) in history. Determining epidemiological links between cases is a key part of outbreak control. However, due to the large quantity of data and subsequent data entry errors, inconsistencies in potential epidemiological links are difficult to identify. We present chainchecker, an online and offline shiny application which visualises, curates and verifies transmission chain data. The application includes the calculation of exposure windows for individual cases of EVD based on user defined incubation periods and user specified symptom profiles. It has an upload function for viral hemorrhagic fever data and utility for additional entries. This data may then be visualised as a transmission tree with inconsistent links highlighted. Finally, there is utility for cluster analysis and the ability to highlight nosocomial transmission. chainchecker is a R shiny application which has an offline version for use with VHF (viral hemorrhagic fever) databases or linelists. The software is available at https://shiny.dide.imperial.ac.uk/chainchecker which is a web-based application that links to the desktop application available for download and the github repository, https://github.com/imperialebola2018/chainchecker.


Asunto(s)
Presentación de Datos , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Internet , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...