Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7326, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538673

RESUMEN

Quantum processors using superconducting qubits suffer from dielectric loss leading to noise and dissipation. Qubits are usually designed as large capacitor pads connected to a non-linear Josephson junction (or SQUID) by a superconducting thin metal wiring. Here, we report on finite-element simulation and experimental results confirming that more than 50% of surface loss in transmon qubits can originate from Josephson junctions wiring and can limit qubit relaxation time. We experimentally extracted dielectric loss tangents of qubit elements and showed that dominant surface loss of wiring can occur for real qubits designs. Finally, we experimentally demonstrate up to 20% improvement in qubit quality factor by wiring design optimization.

2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339211

RESUMEN

The pentose phosphate pathway (PPP) is one of three major pathways involved in glucose metabolism, which is regulated by glucose-6-phosphate dehydrogenase (G6PD) controls NADPH formation. NADPH, in turn, regulates the balance of oxidative stress and reactive oxygen species (ROS) levels. G6PD dysfunction, affecting the PPP, is implicated in neurological disorders, including epilepsy. However, PPP's role in epileptogenesis and ROS production during epileptic activity remains unclear. To clarify these points, we conducted electrophysiological and imaging analyses on mouse hippocampal brain slices. Using the specific G6PD inhibitor G6PDi-1, we assessed its effects on mouse hippocampal slices, examining intracellular ROS, glucose/oxygen consumption, the NAD(P)H level and ROS production during synaptic stimulation and in the 4AP epilepsy model. G6PDi-1 increased basal intracellular ROS levels and reduced synaptically induced glucose consumption but had no impact on baselevel of NAD(P)H and ROS production from synaptic stimulation. In the 4AP model, G6PDi-1 did not significantly alter spontaneous seizure frequency or H2O2 release amplitude but increased the frequency and peak amplitude of interictal events. These findings suggest that short-term PPP inhibition has a minimal impact on synaptic circuit activity.


Asunto(s)
Epilepsia , Vía de Pentosa Fosfato , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , NADP/metabolismo , Peróxido de Hidrógeno , NAD/metabolismo , Glucosa/metabolismo , Hipocampo/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo
3.
iScience ; 27(1): 108770, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38261919

RESUMEN

The Centers for Disease Control and Prevention promoted the Test-to-Stay (TTS) program to facilitate in-person instruction in K-12 schools during COVID-19. This program delineates guidelines for schools to regularly test students and staff to minimize risks of infection transmission. TTS enrollment can be implemented via two different consent models: opt-in, in which students do not test regularly by default, and the opposite, opt-out model. We study the impacts of the two enrollment approaches on testing and positivity rates with data from 259 schools in Illinois. Our results indicate that after controlling for other covariates, schools following the opt-out model are associated with 84% higher testing rate and 30% lower positivity rate. If all schools adopted the opt-out model, 20% of the total lost school days could have been saved. The lower positivity rate among the opt-out group is largely explained by the higher testing rate in these schools, a manifestation of status quo bias.

4.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068892

RESUMEN

The development of novel radiocontrast agents, mainly used for the visualization of blood vessels, is still an emerging task due to the variety of side effects of conventional X-ray contrast media. Recently, we have shown that octahedral chalcogenide rhenium clusters with phosphine ligands-Na2H14[{Re6Q8}(P(C2H4COO)3)6] (Q = S, Se)-can be considered as promising X-ray contrast agents if their relatively high toxicity related to the high charge of the complexes can be overcome. To address this issue, we propose one of the most widely used methods for tuning the properties of proteins and peptides-PEGylation (PEG is polyethylene glycol). The reaction between the clusters and PEG-400 was carried out in acidic aqueous media and resulted in the binding of up to five carboxylate groups with PEG. The study of cytotoxicity against Hep-2 cells and acute toxicity in mice showed a twofold reduction in toxicity after PEGylation, demonstrating the success of the strategy chosen. Finally, the compound obtained has been used for the visualization of blood vessels of laboratory rats by angiography and computed tomography.


Asunto(s)
Péptidos , Proteínas , Ratas , Ratones , Animales , Péptidos/toxicidad , Medios de Contraste/toxicidad , Medios de Contraste/química , Ligandos , Polietilenglicoles/química , Angiografía
5.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138569

RESUMEN

Among well-studied and actively developing compounds are polyoxometalates (POMs), which show application in many fields. Extending this class of compounds, we introduce a new subclass of polyoxometal clusters (POMCs) [Mo12O28(µ-L)8]4- (L = pyrazolate (pz) or triazolate (1,2,3-trz or 1,2,4-trz)), structurally similar to POM, but containing binuclear Mo2O4 clusters linked by bridging oxo- and organic ligands. The complexes obtained by ampoule synthesis from the binuclear cluster [Mo2O4(C2O4)2(H2O)2]2- in a melt of an organic ligand are soluble and stable in aqueous solutions. In addition to the detailed characterization in solid state and in aqueous solution, the biological properties of the compounds on normal and cancer cells were investigated, and antiviral activity against influenza A virus (subtype H5N1) was demonstrated.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Agua , Modelos Moleculares , Molibdeno/farmacología , Triazoles/farmacología , Pirazoles/farmacología , Antivirales/farmacología
6.
Surg Neurol Int ; 14: 283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680926

RESUMEN

Background: Periventricular nodular heterotopia (PNH) is a rare pathological condition characterized by the presence of nodules of gray matter located along the lateral ventricles of the brain. The condition typically presents with seizures and other neurological symptoms, and various methods of surgical treatment and postoperative outcomes have been described in the literature. Case Description: We present a case study of a 17-year-old patient who has been experiencing seizures since the age of 13. The patient reported episodes of loss of consciousness and periodic freezing with preservation of posture. Two years later, the patient experienced his first generalized tonic-clonic seizure during nocturnal sleep and was subsequently admitted to a neurological department. A magnetic resonance imaging scan of the brain with an epilepsy protocol (3 Tesla) confirmed the presence of an extended bilateral subependymal nodular heterotopy at the level of the temporal and occipital horns of the lateral ventricles, which was larger on the left side, and a focal subcortical heterotopy of the right cerebellar hemisphere. The patient underwent a posterior quadrant disconnection surgery, which aimed to isolate the extensive epileptogenic zone in the left temporal, parietal, and occipital lobes using standard techniques. As of today, 6 months have passed since the surgery and there have been no registered epileptic seizures during this period following the surgical treatment. Conclusion: Although PNHs can be extensive and located bilaterally, surgical intervention may still be an effective way to achieve seizure control in selected cases.

7.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37762182

RESUMEN

The chemistry of transition metal clusters has been intensively developed in the last decades, leading to the preparation of a number of compounds with promising and practically useful properties. In this context, the present work demonstrates the preparation and study of the reactivity, i.e., the possibility of varying the ligand environment, of new square pyramidal molybdenum chalcogenide clusters [{Mo5(µ3-S)i4(µ4-S)i(µ-pz)i4}(pzH)t5]1+/2+ (pzH = pyrazole, i = inner, t = terminal). The one-step synthesis starting from the octahedral Mo6Br12 cluster as well as the substitution of the apical pyrazole ligand or the selective bromination of the inner pyrazolate ligands were demonstrated. All the obtained compounds were characterized in detail using a series of physicochemical methods both in solid state (X-ray diffraction analysis, etc.) and in solution (nuclear magnetic resonance spectroscopy, mass spectrometry, etc.). In this work, redox properties and absorption in the ultraviolet-visible and near-infrared region of the obtained compounds were studied.

8.
iScience ; 26(6): 106928, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37305692

RESUMEN

Arctic environments are changing rapidly and if we are to understand the resilience of species to future changes, we need to investigate alterations in their life histories. Egg size and egg shape are key life-history traits, reflecting parental investment as well as influencing future reproductive success. Here we focus on egg characteristics in two Arctic shorebirds, the Dunlin (Calidris alpina) and the Temminck's stint (Calidris temminckii). Using egg photos that encompass their full breeding ranges, we show that egg characteristics exhibit significant longitudinal variations, and the variation in the monogamous species (Dunlin) is significantly greater than the polygamous species (Temminck's stint). Our finding is consistent with the recent "disperse-to-mate" hypothesis which asserts that polygamous species disperse further to find mates than monogamous species, and by doing so they create panmictic populations. Taken together, Arctic shorebirds offer excellent opportunities to understand evolutionary patterns in life history traits.

9.
Sci Rep ; 13(1): 6772, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185459

RESUMEN

Josephson superconducting qubits and parametric amplifiers are prominent examples of superconducting quantum circuits that have shown rapid progress in recent years. As such devices become more complex, the requirements for reproducibility of their electrical properties across a chip are being tightened. Critical current of the Josephson junction Ic is the essential electrical parameter in a chip. So, its variation is to be minimized. According to the Ambegaokar-Baratoff formula, critical current is related to normal-state resistance, which can be measured at room temperature. In this study, we focused on the dominant source of non-uniformity for the Josephson junction critical current-junction area variation. We optimized Josephson junction fabrication process and demonstrated resistance variation of 9.8-4.4% and 4.8-2.3% across 22 × 22 mm2 and 5 × 10 mm2 chip areas, respectively. For a wide range of junction areas from 0.008 to 0.12 µm2, we ensure a small linewidth standard deviation of 4 nm measured over 4500 junctions with linear dimensions from 80 to 680 nm. We found that the dominate source of junction area variation limiting [Formula: see text] reproducibility is the imperfection of the evaporation system. The developed fabrication process was tested on superconducting highly coherent transmon qubits (T1 > 100 µs) and a nonlinear asymmetric inductive element parametric amplifier.

10.
Sci Rep ; 13(1): 4174, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914735

RESUMEN

The most commonly used physical realization of superconducting qubits for quantum circuits is a transmon. There are a number of superconducting quantum circuits applications, where Josephson junction critical current reproducibility over a chip is crucial. Here, we report on a robust chip scale Al/AlOx/Al junctions fabrication method due to comprehensive study of shadow evaporation and oxidation steps. We experimentally demonstrate the evidence of optimal Josephson junction electrodes thickness, deposition rate and deposition angle, which ensure minimal electrode surface and line edge roughness. The influence of oxidation method, pressure and time on critical current reproducibility is determined. With the proposed method we demonstrate Al/AlOx/Al junction fabrication with the critical current variation [Formula: see text] less than 3.9% (from 150 × 200 to 150 × 600 nm2 area) and 7.7% (for 100 × 100 nm2 area) over 20 × 20 mm2 chip. Finally, we fabricate separately three 5 × 10 mm2 chips with 18 transmon qubits (near 4.3 GHz frequency) showing less than 1.9% frequency variation between qubits on different chips. The proposed approach and optimization criteria can be utilized for a robust wafer-scale superconducting qubit circuits fabrication.

11.
Inorg Chem ; 62(12): 4934-4946, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36920338

RESUMEN

Octahedral cluster complexes of molybdenum and tungsten, [M6X8Y6]n- (M = Mo, W; X, Y = Cl, Br, I), are promising active components in various fields, including biomedicine and solar energy. Cluster complexes draw considerable attention due to their X-ray opacity, red/near-IR luminescence, and ability to convert triplet molecular oxygen to active singlet oxygen under UV and visible irradiation. Among the octahedral cluster complexes of molybdenum and tungsten, compounds with a {W6Br8}4+ core are the least studied. There are only a few examples of compounds with substituted terminal ligands, and their properties are not well understood. Among other things, this is due to more labor-intensive and expensive methods for obtaining the starting compounds in comparison with molybdenum counterparts. In this paper, we describe the synthesis of an octahedral cluster complex, (TBA)2[W6Br14] (TBA+ = tetrabutylammonium), in gram quantities, starting from simple substances─W, Br2, and Bi─in 70% yield. The formation of pentanuclear tungsten cluster complexes was recorded as a byproduct. Compounds with substituted terminal ligands (TBA)2[W6Br8Y6] (Y = NO3, Cl, I) were obtained. We also discuss the instability of (TBA)2[W6Br8(NO3)6] under light exposure, the optical properties of a series of compounds (TBA)2[W6Br8Y6] (Y = Cl, Br, I), and the effect of terminal ligands on the chemical shifts in 183W NMR spectra in dimethyl sulfoxide-d6. The presented approach to the synthesis of one of the main precursors of various bromide cluster complexes on a gram scale can stimulate the study of their properties and development of new functional materials based on them.

12.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834850

RESUMEN

The family of chalcogenide molybdenum clusters is well presented in the literature by a series of compounds of nuclearity ranging from binuclear to multinuclear articulating octahedral fragments. Clusters actively studied in the last decades were shown to be promising as components of superconducting, magnetic, and catalytic systems. Here, we report the synthesis and detailed characterization of new and unusual representatives of chalcogenide clusters: square pyramidal complexes [{Mo5(µ3-Se)i4(µ4-Se)i(µ-pz)i4}(pzH)t5]1+/2+ (pzH = pyrazole, i = inner, t = terminal). Individually obtained oxidized (2+) and reduced (1+) forms have very close geometry (proven by single-crystal X-ray diffraction analysis) and are able to reversibly transform into each other, which was confirmed by cyclic voltammetry. Comprehensive characterization of the complexes, both in solid and in solution, confirms the different charge state of molybdenum in clusters (XPS), magnetic properties (EPR), and so on. DFT calculations complement the diverse study of new complexes, expanding the chemistry of molybdenum chalcogenide clusters.


Asunto(s)
Molibdeno , Modelos Moleculares , Molibdeno/química , Ligandos , Cristalografía por Rayos X
13.
Sci Rep ; 12(1): 16727, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202867

RESUMEN

The sudden spread of COVID-19 infections in a region can catch its healthcare system by surprise. Can one anticipate such a spread and allow healthcare administrators to prepare for a surge a priori? We posit that the answer lies in distinguishing between two types of waves in epidemic dynamics. The first kind resembles a spatio-temporal diffusion pattern. Its gradual spread allows administrators to marshal resources to combat the epidemic. The second kind is caused by super-spreader events, which provide shocks to the disease propagation dynamics. Such shocks simultaneously affect a large geographical region and leave little time for the healthcare system to respond. We use time-series analysis and epidemiological model estimation to detect and react to such simultaneous waves using COVID-19 data from the time when the B.1.617.2 (Delta) variant of the SARS-CoV-2 virus dominated the spread. We first analyze India's second wave from April to May 2021 that overwhelmed the Indian healthcare system. Then, we analyze data of COVID-19 infections in the United States (US) and countries with a high and low Indian diaspora. We identify the Kumbh Mela festival as the likely super-spreader event, the exogenous shock, behind India's second wave. We show that a multi-area compartmental epidemiological model does not fit such shock-induced disease dynamics well, in contrast to its performance with diffusion-type spread. The insufficient fit to infection data can be detected in the early stages of a shock-wave propagation and can be used as an early warning sign, providing valuable time for a planned healthcare response. Our analysis of COVID-19 infections in the US reveals that simultaneous waves due to super-spreader events in one country (India) can lead to simultaneous waves in other places. The US wave in the summer of 2021 does not fit a diffusion pattern either. We postulate that international travels from India may have caused this wave. To support that hypothesis, we demonstrate that countries with a high Indian diaspora exhibit infection growth soon after India's second wave, compared to countries with a low Indian diaspora. Based on our data analysis, we provide concrete policy recommendations at various stages of a simultaneous wave, including how to avoid it, how to detect it quickly after a potential super-spreader event occurs, and how to proactively contain its spread.


Asunto(s)
COVID-19 , Epidemias , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , SARS-CoV-2 , Viaje , Estados Unidos/epidemiología
14.
Inorg Chem ; 61(36): 14462-14469, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36041168

RESUMEN

γ-Cyclodextrin (γ-CD) interacts in aqueous solution with octahedral halide clusters Na2[{M6X8}Cl6] (M = Mo, W; X = Br, I) to form robust inclusion supramolecular complexes [{M6X8}Cl6@2γ-CD]2-. Single-crystal X-ray diffraction analyses revealed two conformational organizations within the adduct depending on the nature of the inner halide X within the {M6X8} core. Using 35Cl NMR and UV-vis as complementary techniques, the kinetics of the hydrolysis process were shown to increase with the following order: {W6I8} < {W6Br8} ≈ {Mo6I8} < {Mo6Br8}. The complexation with γ-CD drastically enhances the hydrolytic stability of luminescent [{M6X8}Cl6]2- cluster-based units, which was quantitatively proved by the same techniques. The resulting host-guest complexation provides a protective shell against contact with water and offers promising horizons for octahedral clusters in biology as revealed by the low dark cytotoxicity and cellular uptake.


Asunto(s)
gamma-Ciclodextrinas , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Conformación Molecular , Agua/química , gamma-Ciclodextrinas/química
15.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955875

RESUMEN

Despite the great potential of octahedral tungsten cluster complexes in fields of biomedical applications such as X-ray computed tomography or angiography, there is only one example of a water-soluble W6Q8-cluster that has been reported in the literature. Herein we present the synthesis and a detailed characterization including X-ray structural analysis, NMR, IR, UV-Vis spectroscopies, HR-MS spectrometry, and the electrochemical behavior of two new cluster complexes of the general formula W6Q8L6 with phosphine ligands containing a hydrophilic carboxylic group, which makes the complexes soluble in an aqueous medium. The hydrolytic stability of the clusters' aqueous solutions allows us to investigate for the first time the influence of W6-clusters on cell viability. The results obtained clearly demonstrate their very low cytotoxicity, comparable to the least-toxic clusters presented in the literature.


Asunto(s)
Tungsteno , Agua , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Tungsteno/química , Agua/química
16.
Sci Rep ; 12(1): 6321, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428848

RESUMEN

The Indium Tin Oxide (ITO) platform is one of the promising solutions for state-of-the-art integrated optical modulators towards low-loss silicon photonics applications. One of the key challenges on this way is to optimize ITO-based thin films stacks for electro-optic modulators with both high extinction ratio and low insertion loss. In this paper we demonstrate the e-beam evaporation technology of 20 nm-thick ITO films with low extinction coefficient of 0.14 (Nc = 3.7·1020 cm-3) at 1550 nm wavelength and wide range of carrier concentrations (from 1 to 10 × 1020 cm-3). We investigate ITO films with amorphous, heterogeneously crystalline, homogeneously crystalline with hidden coarse grains and pronounced coarsely crystalline structure to achieve the desired optical and electrical parameters. Here we report the mechanism of oxygen migration in ITO film crystallization based on observed morphological features under low-energy growth conditions. Finally, we experimentally compare the current-voltage and optical characteristics of three electro-optic active elements based on ITO film stacks and reach strong ITO dielectric permittivity variation induced by charge accumulation/depletion (Δn = 0.199, Δk = 0.240 at λ = 1550 nm under ± 16 V). Our simulations and experimental results demonstrate the unique potential to create integrated GHz-range electro-optical modulators with sub-dB losses.

17.
J Comput Neurosci ; 50(1): 33-49, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35031915

RESUMEN

The majority of seizures recorded in humans and experimental animal models can be described by a generic phenomenological mathematical model, the Epileptor. In this model, seizure-like events (SLEs) are driven by a slow variable and occur via saddle node (SN) and homoclinic bifurcations at seizure onset and offset, respectively. Here we investigated SLEs at the single cell level using a biophysically relevant neuron model including a slow/fast system of four equations. The two equations for the slow subsystem describe ion concentration variations and the two equations of the fast subsystem delineate the electrophysiological activities of the neuron. Using extracellular K+ as a slow variable, we report that SLEs with SN/homoclinic bifurcations can readily occur at the single cell level when extracellular K+ reaches a critical value. In patients and experimental models, seizures can also evolve into sustained ictal activity (SIA) and depolarization block (DB), activities which are also parts of the dynamic repertoire of the Epileptor. Increasing extracellular concentration of K+ in the model to values found during experimental status epilepticus and DB, we show that SIA and DB can also occur at the single cell level. Thus, seizures, SIA, and DB, which have been first identified as network events, can exist in a unified framework of a biophysical model at the single neuron level and exhibit similar dynamics as observed in the Epileptor.Author Summary: Epilepsy is a neurological disorder characterized by the occurrence of seizures. Seizures have been characterized in patients in experimental models at both macroscopic and microscopic scales using electrophysiological recordings. Experimental works allowed the establishment of a detailed taxonomy of seizures, which can be described by mathematical models. We can distinguish two main types of models. Phenomenological (generic) models have few parameters and variables and permit detailed dynamical studies often capturing a majority of activities observed in experimental conditions. But they also have abstract parameters, making biological interpretation difficult. Biophysical models, on the other hand, use a large number of variables and parameters due to the complexity of the biological systems they represent. Because of the multiplicity of solutions, it is difficult to extract general dynamical rules. In the present work, we integrate both approaches and reduce a detailed biophysical model to sufficiently low-dimensional equations, and thus maintaining the advantages of a generic model. We propose, at the single cell level, a unified framework of different pathological activities that are seizures, depolarization block, and sustained ictal activity.


Asunto(s)
Epilepsia , Modelos Neurológicos , Animales , Fenómenos Electrofisiológicos , Humanos , Neuronas/fisiología , Convulsiones
18.
J Biol Inorg Chem ; 27(1): 111-119, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34782931

RESUMEN

Biological applications of octahedral molybdenum cluster complexes are complicated by their hydrolytic instability, since hydrolysis leads to irreversible changes in the structure and properties of these compounds. On the other hand, if such changes are thoroughly investigated and understood, the hydrolysis process can become an important tool for regulating specific biological effects of the clusters. In this work, we demonstrate how the luminescence and biological properties (cellular uptake, cytotoxicity in the dark and photodynamic effect) of highly unstable cluster complex [{Mo6I8}(DMSO)6](NO3)4 change along with the degree of hydrolysis. Particularly, cluster solution preliminarily aged in water demonstrated lower dark and higher photoinduced cytotoxicity and higher cellular uptake in comparison with fresh solution.


Asunto(s)
Dimetilsulfóxido , Molibdeno , Dimetilsulfóxido/farmacología , Hidrólisis , Ligandos , Luminiscencia , Molibdeno/química , Molibdeno/farmacología
19.
Phys Chem Chem Phys ; 23(41): 23909-23921, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34651626

RESUMEN

The electrical conductivity, density and diffusion coefficients of trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)amide ([P66614][NTf2]) ionic liquid and its binary solutions in acetonitrile, propionitrile, dimethyl and diethyl carbonates were measured in the temperature range of 293-348 K. The electrical conductivity - ionic liquid mole fraction dependencies for the binary solutions were fitted with the empirical Casteel-Amis equation. The temperature dependencies of electrical conductivity were analyzed using the Arrhenius, Litovitz and Vogel-Fulcher-Tammann approaches. The dependences of the Arrhenius activation energy and pre-exponential factor on the mole fraction of ionic liquid in the solutions were fitted with the empirical equations proposed in the literature. The thermo-gravimetric analysis combined with mass spectrometry demonstrated the high thermal stability of [P66614][NTf2] up to 600 K. At higher temperatures the decomposition of [P66614][NTf2] proceeded via the elimination of alkyl radicals as a result of the nucleophilic attack of reactive intermediates to the [P66614]+ cation with the formation of trialkylphosphines. The activation energies of the thermal destruction of [P66614][NTf2] were calculated using the Kissinger equation and non-linear integral isoconversional model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...