Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930977

RESUMEN

Specialized chemicals are used for intensifying food production, including boosting meat and crop yields. Among the applied formulations, antibiotics and pesticides pose a severe threat to the natural balance of the ecosystem, as they either contribute to the development of multidrug resistance among pathogens or exhibit ecotoxic and mutagenic actions of a persistent character. Recently, cold atmospheric pressure plasmas (CAPPs) have emerged as promising technologies for degradation of these organic pollutants. CAPP-based technologies show eco-friendliness and potency for the removal of organic pollutants of diverse chemical formulas and different modes of action. For this reason, various types of CAPP-based systems are presented in this review and assessed in terms of their constructions, types of discharges, operating parameters, and efficiencies in the degradation of antibiotics and persistent organic pollutants. Additionally, the key role of reactive oxygen and nitrogen species (RONS) is highlighted. Moreover, optimization of the CAPP operating parameters seems crucial to effectively remove contaminants. Finally, the CAPP-related paths and technologies are further considered in terms of biological and environmental effects associated with the treatments, including changes in antibacterial properties and toxicity of the exposed solutions, as well as the potential of the CAPP-based strategies for limiting the spread of multidrug resistance.


Asunto(s)
Presión Atmosférica , Gases em Plasma , Gases em Plasma/química , Contaminantes Ambientales/química , Industria de Alimentos , Antibacterianos/química , Antibacterianos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Compuestos Orgánicos/química
2.
Anal Methods ; 16(25): 4187-4197, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38881497

RESUMEN

An alternative method of rice sample preparation for measuring the total content of selected elements, i.e., Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn, by ICP OES was developed. The proposed approach is based on the ultrasound-assisted extraction (USAE) of rice samples in the presence of a small amount of concentrated HNO3. The optimal operating parameters were found using the design of experiments (DOE) approach, and the studied experimental factors were the temperature of the ultrasonic bath (A), the sonication time (B), and the volume of concentrated HNO3 added per 0.5 g of a rice sample (C). Under the optimal conditions of the USAE procedure, i.e., A = 60 °C, B = 16 min and C = 4.0 mL, the rice samples were readily solubilized, and the obtained sample solutions could be analyzed by ICP OES with the simple standard solution calibration (without matrix matching). The analysis of the certified reference material (rice flour, NIST SRM 1568b) confirmed the satisfactory trueness of the USAE-ICP OES method. Additionally, no statistically significant differences between the results obtained for the samples prepared by USAE and open-vessel wet digestion (WD, the reference method) were found. In comparison to the routinely used microwave-assisted digestion and open-vessel digestion, the USAE approach offers lower acid consumption, lower detection limits (LODs) of elements, ranging from 4.0 ng g-1 for Mn to 2.7 µg g-1 for K, and a much shorter time of sample preparation.

3.
Toxicol In Vitro ; 98: 105846, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754599

RESUMEN

Progressive incidence and a pessimistic survival rate of breast cancer in women worldwide remains one of the most concerning topics. Progressing research indicates a potentially high effectiveness of use cold atmospheric plasma (CAP) systems. The undoubted advantage seems its simplicity in combination with other anti-cancer modalities. Following observed trend of studies, one inventory CAP system was applied to directly treat human breast cancer cell lines and culturing in two different Plasma Activated Media (PAM) for combined utilization. Proposed CAP treatments on MCF-10 A, MCF-7, and MDA-MB-231 cell lines were studied in terms of impact on cell viability by MTT assay. Disturbances in cell motility following direct and combined CAP application were assessed by scratch test. Finally, the induction of apoptosis and necrosis was verified with annexin V and propidium iodide staining. Reactive species generated during CAP treatment were determined based on optical emission spectrometry analysis along with colorimetric methods to qualitatively assess the NO2-, NO3-, H2O2, and total ROS with free radicals concentration. The most effective approach for CAP utilization was combined treatment, leading to significant disruption in cell viability, motility and mostly apoptosis induction in breast cancer cell lines. Determined CAP dose allows for mild outcome, showing insignificant harm for the non-cancerous MCF-10 A cell line, while the highly aggressive MDA-MB-231 cell line shows the highest sensitivity on proposed CAP treatment. Direct CAP treatment seems to drive the cells into the sensitive state in which the effectiveness of PAM is boosted. Observed anti-cancer response of CAP treatment was mostly triggered by RNS (mostly NO2- ions) and ROS along with free radicals (such as H2O2, OH•, O2-•, 1O2, HO2•). The combined application of one CAP source represent a promising alternative in the development of new and effective modalities for breast cancer treatment.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Movimiento Celular , Supervivencia Celular , Gases em Plasma , Especies Reactivas de Oxígeno , Humanos , Gases em Plasma/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Femenino , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología
4.
ACS Biomater Sci Eng ; 9(12): 6632-6643, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37982239

RESUMEN

Atmospheric pressure plasma treatments are nowadays gaining importance to improve the performance of biomaterials in the orthopedic field. Among those, magnesium phosphate-based cements (MPCs) have recently shown attractive features as bone repair materials. The effect of plasma treatments on such cements, which has not been investigated so far, could represent an innovative strategy to modify MPCs' physicochemical properties and to tune their interaction with cells. MPCs were prepared and treated for 5, 7.5, and 10 min with a cold atmospheric pressure plasma jet. The reactive nitrogen and oxygen species formed during the treatment were characterized. The surfaces of MPCs were studied in terms of the phase composition, morphology, and topography. After a preliminary test in simulated body fluid, the proliferation, adhesion, and osteogenic differentiation of human mesenchymal cells on MPCs were assessed. Plasma treatments induce modifications in the relative amounts of struvite, newberyite, and farringtonite on the surfaces on MPCs in a time-dependent fashion. Nonetheless, all investigated scaffolds show a good biocompatibility and cell adhesion, also supporting osteogenic differentiation of mesenchymal cells.


Asunto(s)
Osteogénesis , Fosfatos , Humanos , Ensayo de Materiales , Fosfatos/farmacología , Fosfatos/química , Presión Atmosférica
5.
Environ Res ; 231(Pt 3): 116297, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37268206

RESUMEN

The common utilization of antimicrobial agents in medicine and veterinary creates serious problems with multidrug resistance spreading among pathogens. Bearing this in mind, wastewaters have to be completely purified from antimicrobial agents. In this context, a dielectric barrier discharge cold atmospheric pressure plasma (DBD-CAPP) system was used in the present study as a multifunctional tool for the deactivation of nitro-based pharmacuticals such as furazolidone (FRz) and chloramphenicol (ChRP) in solutions. A direct approach was applied to this by treating solutions of the studied drugs by DBD-CAPP in the presence of the ReO4- ions. It was found that Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), generated in the DBD-CAPP-treated liquid, played a dual role in the process. On the one hand, ROS and RNS led to the direct degradation of FRz and ChRP, and on the other hand, they enabled the production of Re nanoparticles (ReNPs). The produced in this manner ReNPs consisted of catalytically active Re+4, Re+6, and Re+7 species which allowed the reduction of -NO2 groups contained in the FRz and ChRP. Unlike the DBD-CAPP, the catalytically enhanced DBD-CAPP led to almost FRz and ChRP removals from studied solutions. The catalytic boost was particularly highlighted when catalyst/DBD-CAPP was operated in the synthetic waste matrix. Re-active sites in this scenario led to the facilitated deactivation of antibiotics, achieving significantly higher FRz and ChRP removals than DBD-CAPP on its own.


Asunto(s)
Antiinfecciosos , Gases em Plasma , Renio , Antibacterianos/farmacología , Especies Reactivas de Oxígeno , Gases em Plasma/química , Cloranfenicol , Furazolidona , Presión Atmosférica
6.
Talanta ; 249: 123650, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35688082

RESUMEN

A new analytical method was proposed for multielement (Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn) analysis of Pu-erh teas infusions by inductively coupled plasma optical emission spectrometry. The Box-Behnken response surface design together with individual desirability functions and the joint desirability function approach was applied to develop experimental conditions of this new procedure, being alternative to high-temperature wet digestion. The procedure involved the samples to be just 5-fold diluted with 1.7 mol L-1 HNO3. The proposed method was precise (relative standard deviations within 2-8%), true (relative errors from -8 to +6%) and guaranteed very good detectability (detection limits within 1-6 ng g-1, except for Ca and Fe). It was used for analysis of infusions of Pu-erh teas as well as to verify the effect of their preparation conditions (steeping water temperature, steeping time).


Asunto(s)
Oligoelementos , Calor , Iones/análisis , , Oligoelementos/análisis
7.
Sci Rep ; 12(1): 7354, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513687

RESUMEN

Doxycycline (DOX), an antibiotic commonly used in medicine and veterinary, is frequently detected in natural waterways. Exposition of bacteria to DOX residuals poses a selective pressure leading to a common occurrence of DOX-resistance genetic determinants among microorganisms, including virulent human pathogens. In view of diminishment of the available therapeutic options, we developed a continuous-flow reaction-discharge system generating pulse-modulated radio-frequency atmospheric pressure glow discharge (pm-rf-APGD) intended for DOX removal from liquid solutions. A Design of Experiment and a Response Surface Methodology were implemented in the optimisation procedure. The removal efficiency of DOX equalling 79 ± 4.5% and the resultant degradation products were identified by High-Performance Liquid Chromatography-Diode Array Detection, Liquid Chromatography Quadruple Time of Flight Mass Spectrometry, Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry, total organic carbon, total nitrogen, Attenuated Total Reflectance Furrier Transform-Infrared, and UV/Vis-based methods. The pm-rf-APGD-treated DOX solution due to the generated Reactive Oxygen and Nitrogen Species either lost its antimicrobial properties towards Escherichia coli ATCC25922 or significantly decreased biocidal activities by 37% and 29% in relation to Staphylococcus haemolyticus ATCC29970 and Staphylococcus aureus ATCC25904, respectively. Future implementation of this efficient and eco-friendly antibiotic-degradation technology into wastewater purification systems is predicted.


Asunto(s)
Líquidos Corporales , Doxiciclina , Antibacterianos/farmacología , Presión Atmosférica , Doxiciclina/farmacología , Escherichia coli , Humanos , Nitrógeno
8.
Talanta ; 241: 123215, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35063875

RESUMEN

The Box-Behnken response surface design together with the individual desirability functions were used to develop the new and greenish sample preparation procedure of coffee brews prior to their multielement (Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr and Zn) analysis by inductively coupled plasma optical emission spectrometry (ICP OES). The developed procedure required only 2-fold dilution of the samples with a 1.8 mol L-1 HNO3 solution and then, the sonication of the resulting samples solutions for 8 min at room temperature. The proposed method was precise (0.6-7.5% as RSD), true (relative errors changing from -5.2% to +4.6%) and guaranteed the limits of detection (LODs) of the studied elements between 0.1 and 5 ng g-1. Finally, this simplified ICP OES based method was applied for the multielement analysis of brews of different Arabica coffees as well as those prepared with seldomly reported devices, i.e., dripper, slow dripper, French press, aeropress and syphon.


Asunto(s)
Café , Oligoelementos , Café/química , Iones , Análisis Espectral/métodos , Oligoelementos/análisis , Zinc/análisis
9.
Food Chem ; 377: 131903, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34990952

RESUMEN

We proposed an innovative and economic method for rapid production of functionalized orange juice (OJ) with excellent nutritional properties, prolonged shelf life, and safe consumption. To reach this goal, we have employed direct current atmospheric pressure glow discharge, generated in contact with a flowing liquid cathode (FLC-dc-APGD) in a highly-throughput reaction-discharge system. It was found that controlled FLC-dc-APGD-treatment of OJ lead to increase the concentration of selected metals and phenolic compounds. The so-obtained OJ had the same qualitative composition of fragrance as the untreated one, however, its shelf life was prolonged up to 26 days. Furthermore, OJ exposed to FLC-dc-APGD-treatment did not exhibit any cytotoxic properties towards non-malignant human intestinal epithelial cell lines. On the other hand, the induction of cell cytotoxicity was observed in human colorectal adenocarcinoma cells line after FLC-dc-APGD-treated OJ application. We truly believe that produced by us functionalized OJ might be a tempting alternative to classic, non-treated by FLC-dc-APGD OJ.


Asunto(s)
Líquidos Corporales , Citrus sinensis , Presión Atmosférica , Jugos de Frutas y Vegetales , Humanos , Fenoles
10.
Food Chem ; 375: 131831, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34952383

RESUMEN

Cold atmospheric pressure plasma (CAPP) is a prospective technology for various branches of industry. As such, much attention has been recently paid towards the use of CAPPs for treating fruit and vegetable beverages as they do not need any more to be thermally pasteurized or sanitized. However, this application of CAPPs is not only limited to the improvement of their shelf-life. It could also contribute to the enhancement of their nutritional properties and anticancer activity. This could be achieved due to the presence of numerous reactive oxygen and nitrogen species (RONS), produced at the plasma-liquid interface, that might contribute to the increase of the content of nutritional and bioactive compounds, simply upgrading the juices. In this context, the present review focuses on the recent advances in the CAPP-based technology towards the processing of fruit and vegetable juices. As such, a series of different CAPP-based reaction-discharge systems and their configurations are reviewed and set together with the physicochemical, nutritional, and antimicrobial characteristics of the CAPP-treated juices, providing an useful insight into the perspective development of emerging CAPP technology.


Asunto(s)
Jugos de Frutas y Vegetales , Gases em Plasma , Bebidas , Frutas , Estudios Prospectivos
11.
Polymers (Basel) ; 13(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34771354

RESUMEN

The present work presents a new nanocomposite catalyst with rhenium nanostructures (ReNSs) for the catalytic hydrogenation of 4-nitrophenol and 4-nitroaniline. The catalyst, based on an anion exchange resin with functionality derived from 1,1'-carboimidazole, was obtained in the process involving anion exchange of ReO4- ions followed by their reduction with NaBH4. The amino functionality present in the resin played a primary role in the stabilization of the resultant ReNSs, consisting of ≈1% (w/w) Re in the polymer mass. The synthesized and capped ReNSs were amorphous and had the average size of 3.45 ± 1.85 nm. Then, the obtained catalyst was used in a catalytic reduction of 4-nitrophenol (4-NP) and 4-nitroaniline (4-NA). Following the pseudo-first-order kinetics, 5 mg of the catalyst led to a 90% conversion of 4-NP with the mass-normalized rate constant (km1) of 6.94 × 10-3 min-1 mg-1, while the corresponding value acquired for 4-NA was 7.2 × 10-3 min-1 mg-1, despite the trace amount of Re in the heterogenous catalyst. The obtained material was also conveniently reused.

12.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502164

RESUMEN

Plant pathogenic bacteria cause significant economic losses in the global food production sector. To secure an adequate amount of high-quality nutrition for the growing human population, novel approaches need to be undertaken to combat plant disease-causing agents. As the currently available methods to eliminate bacterial phytopathogens are scarce, we evaluated the effectiveness and mechanism of action of a non-thermal atmospheric pressure plasma (NTAPP). It was ignited from a dielectric barrier discharge (DBD) operation in a plasma pencil, and applied for the first time for eradication of Dickeya and Pectobacterium spp., inoculated either on glass spheres or mung bean seeds. Furthermore, the impact of the DBD exposure on mung bean seeds germination and seedlings growth was estimated. The observed bacterial inactivation rates exceeded 3.07 logs. The two-minute DBD exposure stimulated by 3-4% the germination rate of mung bean seeds and by 13.4% subsequent early growth of the seedlings. On the contrary, a detrimental action of the four-minute DBD subjection on seed germination and early growth of the sprouts was noted shortly after the treatment. However, this effect was no longer observed or reduced to 9.7% after the 96 h incubation period. Due to the application of optical emission spectrometry (OES), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), we found that the generated reactive oxygen and nitrogen species (RONS), i.e., N2, N2+, NO, OH, NH, and O, probably led to the denaturation and aggregation of DNA, proteins, and ribosomes. Furthermore, the cellular membrane disrupted, leading to an outflow of the cytoplasm from the DBD-exposed cells. This study suggests the potential applicability of NTAPPs as eco-friendly and innovative plant protection methods.


Asunto(s)
Enfermedades de las Plantas/prevención & control , Gases em Plasma/farmacología , Semillas/efectos de los fármacos , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/ultraestructura , Germinación/efectos de los fármacos , Humanos , Enfermedades de las Plantas/microbiología , Gases em Plasma/administración & dosificación , Plantones/efectos de los fármacos , Semillas/microbiología , Vigna/efectos de los fármacos , Vigna/microbiología
13.
Anal Chim Acta ; 1169: 338399, 2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34088364

RESUMEN

The newest achievements in the field of glow microdischarges generated in contact with a flowing liquid cathode (FLC) and a flowing liquid anode (FLA), used as the excitation sources for optical emission spectrometry (OES), were summarized herein. The design of recently reported discharge systems was compared and comprehensively discussed. A lot of effort was devoted to evaluate the effect of selected operating parameters, i.e., discharge voltage and current, sample flow rate, sample pH, jet-supporting gas flow rate, and discharge gap, on the microplasma stability and the intensity of measurable analytical signals. Furthermore, the influence of chemical modifiers, i.e., organic acids, alcohols, and surfactants, aimed at improving the sensitivity and reducing matrix effects, was referred to as well. Finally, the analytical performance and the application of these promising excitation sources for the elemental analysis of different-matrix samples were presented.

14.
Int J Mol Sci ; 22(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062832

RESUMEN

To the present day, no efficient plant protection method against economically important bacterial phytopathogens from the Pectobacteriaceae family has been implemented into agricultural practice. In this view, we have performed a multivariate optimization of the operating parameters of the reaction-discharge system, employing direct current atmospheric pressure glow discharge, generated in contact with a flowing liquid cathode (FLC-dc-APGD), for the production of a plasma-activated liquid (PAL) of defined physicochemical and anti-phytopathogenic properties. As a result, the effect of the operating parameters on the conductivity of PAL acquired under these conditions was assessed. The revealed optimal operating conditions, under which the PAL of the highest conductivity was obtained, were as follows: flow rate of the solution equaled 2.0 mL min-1, the discharge current was 30 mA, and the inorganic salt concentration (ammonium nitrate, NH4NO3) in the solution turned out to be 0.50% (m/w). The developed PAL exhibited bacteriostatic and bactericidal properties toward Dickeya solani IFB0099 and Pectobacterium atrosepticum IFB5103 strains, with minimal inhibitory and minimal bactericidal concentrations equaling 25%. After 24 h exposure to 25% PAL, 100% (1-2 × 106) of D. solani and P. atrosepticum cells lost viability. We attributed the antibacterial properties of PAL to the presence of deeply penetrating, reactive oxygen and nitrogen species (RONS), which were, in this case, OH, O, O3, H2O2, HO2, NH, N2, N2+, NO2-, NO3-, and NH4+. Putatively, the generated low-cost, eco-friendly, easy-to-store, and transport PAL, exhibiting the required antibacterial and physicochemical properties, may find numerous applications in the plant protection sector.


Asunto(s)
Antibacterianos/farmacología , Flores/crecimiento & desarrollo , Pectobacterium/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Agricultura , Antibacterianos/química , Presión Atmosférica , Líquidos Corporales/química , Flores/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Nitratos/farmacología , Pectobacterium/crecimiento & desarrollo , Pectobacterium/efectos de la radiación , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/química
15.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917790

RESUMEN

Breast cancer remains the most common type of cancer, occurring in middle-aged women, and often leads to patients' death. In this work, we applied a cold atmospheric pressure plasma (CAPP)-based reaction-discharge system, one that is unique in its class, for the production of CAPP-activated media (DMEM and Opti-MEM); it is intended for further uses in breast cancer treatment. To reach this aim, different volumes of DMEM or Opti-MEM were treated by CAPP. Prepared media were exposed to the CAPP treatment at seven different time intervals and examined in respect of their impact on cell viability and motility, and the induction of the apoptosis in human non-metastatic (MCF7) and metastatic (MDA-MB-231) breast cancer cell lines. As a control, the influence of CAPP-activated media on the viability and motility, and the type of the cell death of the non-cancerous human normal MCF10A cell line, was estimated. Additionally, qualitative and quantitative analyses of the reactive oxygen and nitrogen species (RONS), generated during the CAPP operation in contact with analyzed media, were performed. Based on the conducted research, it was found that 180 s (media activation time by CAPP) should be considered as the minimal toxic dose, which significantly decreases the cell viability and the migration of MDA-MB-231 cells, and also disturbs life processes of MCF7 cells. Finally, CAPP-activated media led to the apoptosis of analyzed cell lines, especially of the metastatic MDA-MB-231 cell line. Therefore, the application of the CAPP system may be potentially applied as a therapeutic strategy for the management of highly metastatic human breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Gases em Plasma/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medios de Cultivo/química , Femenino , Humanos , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
RSC Adv ; 11(61): 38596-38604, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-35493235

RESUMEN

Here we have presented a new method for the synthesis of Re nanostructures with defined optical, structural, and catalytic properties. The Re-based nanoparticles (NPs) were obtained using a reaction-discharge system that is unique in its class, because of its working in the high-throughput mode. Within this application, direct current atmospheric pressure glow discharge (dc-APGD) was used as a non-thermal atmospheric pressure plasma (NTAP) source, which led to the reduction of Re(vii) ions and the formation of Re nanostructures through the plasma-liquid interactions. The Re-based NPs were synthesized in a flow-mode reaction-discharge system, where their precursor solution was a flowing liquid anode (FLA) or a flowing liquid cathode (FLC). The resultant NPs were analyzed using UV/Vis absorption spectrophotometry and transmission electron microscopy (TEM), which were supported by selected area X-ray diffraction (SAED) and the energy dispersive X-ray spectroscopy (EDX). Additionally, the mechanism for the reduction of Re(vii) ions was explained by the differences in the concentrations of the selected reactive nitrogen species (RNS) and reactive oxygen species (ROS) produced by dc-APGD. It was found that the application of dc-APGD, operating in a FLA configuration (FLA-dc-APGD), resulted in the formation of ReNPs with Re0, while the use of dc-APGD operating in a FLC configuration (FLC-dc-APGD) led to the formation of Re oxide NPs. In the latter case, a much greater oxidizing environment was likely provided, therefore the RNS and ROS contributed to the formation of Re oxide nanostructures. The ReNPs with Re0 were characterized by a size of 6.02 ± 3.01 nm, and the Re oxide NPs were characterized by a size of 4.97 ± 3.82 nm. Both types of nanostructures were then employed in the catalytic hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Based on the results, both of the nanocatalysts effectively reduced 4-NP with an apparent rate constant (k app) of 2.6 × 10-3 s-1. At the same time, the catalytic activity was linked with the average size distribution of the Re nanostructures, as opposed to their morphology.

17.
Food Chem ; 336: 127635, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32763734

RESUMEN

A one-step, highly-efficiency, and low-cost cold atmospheric pressure plasma (CAPP)-based method for obtaining safe-to-consume beetroot juice (BRJ) with enhanced nutritional quality is presented. Three reaction-discharge systems with different CAPPs were studied to check how the composition and physicochemical properties changed during CAPP treatment of BRJ. To identify reactive species occur in gas phase of applied CAPP for BRJ treatment, optical emission spectrometry was used. Finally, the cytotoxicity of so-obtained BRJ to human epithelial colorectal adenocarcinoma (Caco-2) and human non-malignant intestine microvascular endothelial cells (HIMEC) was assessed. Based on the performed analyses it was found that controlled CAPP treatment of BRJ changes the fraction pattern of elements in addition to increase the content of phenolic compound presents in BRJ. Furthermore, the defined CAPP treatment of BRJ inhibits proliferation of Caco-2 cell lines, exhibiting non-cytotoxic effect for HIMEC non-malignant endothelial cells. As a result, safe-to-consume BRJ of improved nutritional quality was produced.


Asunto(s)
Beta vulgaris/química , Industria de Procesamiento de Alimentos/métodos , Jugos de Frutas y Vegetales , Gases em Plasma , Antioxidantes/química , Presión Atmosférica , Células CACO-2 , Carbohidratos/análisis , Células Endoteliales/efectos de los fármacos , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/toxicidad , Humanos , Metales/análisis , Valor Nutritivo , Fenoles/análisis , Pruebas de Toxicidad
18.
Sci Rep ; 10(1): 21166, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273520

RESUMEN

We present an optimized non-thermal atmospheric plasma (NTAP)-based reaction-discharge system that was applied for a continuous-flow treatment of apple juice (AJ). To optimize this system for a high-throughput production of AJ with ameliorated properties, the effect of several parameters was studied using design of experiments approach followed by the response surface methodology. Additionally, nutritional, physicochemical, microbiological and cytotoxic properties of resulting AJ were assessed. It was established that NTAP treatment of AJ led to rise in concentration of Ca, Fe, K, Mg, Na and Sr by 8-10% as well as Al, B, Ba, Cu, Mn and Zn by 11-15%. Additionally, the increased total phenolic content by ~ 11% in addition to the prolonged by up to 12 days shelf life of the product were observed. Moreover, it was found that the NTAP-treatment of AJ did not change the structure of organic compounds present in AJ, in addition to its °Brix value, color and ferric ion reducing antioxidant power. Furthermore, AJ subjected to NTAP did not show any cytotoxic activity towards non-malignant human intestinal epithelial cells but exhibited induced cell cytotoxicity in human colorectal adenocarcinoma cells. Our study provided arguments for future introduction of these types of preparations to the global market.

19.
Nanomaterials (Basel) ; 10(6)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492774

RESUMEN

Because cold atmospheric pressure plasma (CAPP)-based technologies are very useful tools in nanomaterials synthesis, in this work we have connected two unique in their classes approaches-a CAPP-based protocol and a green synthesis method in order to obtain stable-in-time gold nanoparticles (AuNPs). To do so, we have used an aqueous Gingko biloba leave extract and an aqueous Panax ginseng root extract (untreated or treated by CAPP) to produce AuNPs, suitable for catalytical uses. Firstly, we have adjusted the optical properties of resulted AuNPs, applying UV/Vis absorption spectrophotometry (UV/Vis). To reveal the morphology of Au nanostructures, transmission electron microscopy (TEM) in addition to energy dispersive X-ray scattering (EDX) and selected area X-ray diffraction (SAED) was utilized. Moreover, optical emission spectrometry (OES) in addition to a colorimetric method was used to identify and determine the concentration of selected RONS occurring at the liquid-CAPP interface. Additionally, attenuated total reflectance Fourier transform-infrared spectroscopy (ATR FT-IR) was applied to reveal the active compounds, which might be responsible for the AuNPs surface functionalization and stabilization. Within the performed research it was found that the smallest in size AuNPs were synthesized using the aqueous P. ginseng root extract, which was activated by direct current atmospheric pressure glow discharge (dc-APGD), generated in contact with a flowing liquid cathode (FLC). On the contrary, taking into account the aqueous G. biloba leave extract, the smallest in size AuNPs were synthesized when the untreated by CAPP aqueous G. biloba leave extract was involved in the Au nanostructures synthesis. For catalytical studies we have chosen AuNPs produced using the aqueous P. ginseng root extract activated by FLC-dc-APGD as well as AuNPs synthesized using the aqueous G. biloba leave extract also activated by FLC-dc-APGD. Those NPs were successfully used as homogenous catalysts for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP).

20.
Anal Bioanal Chem ; 412(18): 4211-4219, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32394037

RESUMEN

This work reports the use of hanging drop cathode-atmospheric pressure glow discharge (HDC-APGD) as a new method of sample introduction for inductively coupled plasma-optical emission spectrometry (ICP-OES). The developed arrangement was characterized by a low sample uptake (0.56 mL min-1) and the fact that the entire sample solution volume was consumed by the discharge. This resulted in a very high transport efficiency of analytes from the sample solution into the ICP torch (usually > 80%). Under the optimal operating conditions of HDC-APGD, intensities of emission lines of studied elements were, on average, 2 times higher as compared to those obtained with conventional pneumatic nebulization (PN). Moreover, in the case of I and Y, the observed signal enhancements were even higher, i.e., 6.2 and 6.1 times, respectively. It was also shown that in the case of B and some elements that are known to form different volatile species (Ag, Bi, Cd, Hg, Os, Pb, and Se), the presence of low molecular weight organic compounds in the sample solution, i.e., CH3OH, C2H5OH, HCOOH, CH3COOH, or HCHO, resulted in the additional enhancement of their signals. It was especially evident in the case of Hg for which a 8.6-fold signal enhancement in the presence of HCOOH was noticed. The system presented herein was distinguished from other competitive APGD-type discharges because it could be successfully used for the determination of a vast group of elements, including alkali metals, alkaline earth metals, transition metals, and non-metals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...