Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739166

RESUMEN

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Down , Neurogénesis , Animales , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/patología , Síndrome de Down/metabolismo , Síndrome de Down/complicaciones , Síndrome de Down/genética , Neurogénesis/efectos de los fármacos , Ratones , Femenino , Embarazo , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/efectos de los fármacos , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Quinasas DyrK , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Masculino , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/patología
2.
Eur J Med Chem ; 265: 116098, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38171148

RESUMEN

Overexpression of the chromosome 21 DYRK1A gene induces morphological defects and cognitive impairments in individuals with Down syndrome (DS) and in DS mice models. Aging neurons of specific brain regions of patients with Alzheimer's disease, DS and Pick's disease have increased DYRK1A immunoreactivity suggesting a possible association of DYRK1A with neurofibrillary tangle pathology. Epigallocatechin-3-gallate (EGCG) displays appreciable inhibition of DYRK1A activity and, contrary to all other published inhibitors, EGCG is a non-competitive inhibitor of DYRK1A. Prenatal exposure to green tea polyphenols containing EGCG protects from brain defects induced by overexpression of DYRK1A. In order to produce more robust and possibly more active analogues of the natural compound EGCG, here we synthetized new EGCG-like molecules with several structural modifications to the EGCG skeleton. We replaced the ester boun of EGCG with a more resistant amide bond. We also replaced the oxygen ring by a methylene group. And finally, we positioned a nitrogen atom within this ring. The selected compound was shown to maintain the non-competitive property of EGCG and to correct biochemical and behavioral defects present in a DS mouse model. In addition it showed high stability and specificity.


Asunto(s)
Catequina/análogos & derivados , Síndrome de Down , Humanos , Femenino , Embarazo , Ratones , Animales , Síndrome de Down/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Ratones Transgénicos , Cognición
3.
Reproduction ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38063330

RESUMEN

Down syndrome (DS), or Trisomy 21, is the most common chromosomal disorder in humans. Men with DS are infertile. The DYRK1A gene on Hsa21 is involved in several features of DS. Overexpression of the homolog dyrk1A disrupts primordial germ cell migration in zebrafish, and overexpression of Dyrk1A impairs gonadotropic axis function and the early stages of spermatogenesis in the mouse. Other genes on Hsa21 might be involved in the pathogenesis of infertility in DS. We investigated the Dp(16)1Yey mouse model of DS, which features segmental duplication of chromosome Mmu16 (orthologous to a large part of Hsa21 and carrying Dyrk1A and 112 other genes). Using an immunohistochemical assay for the spermatogonial marker STRA8, we observed spermatogonial depletion in the Dp(16)1Yey mouse. This was correlated with low mRNA expression of GFR1 (a marker of the self-renewal stem cell pool) in an RT-qPCR assay and low protein expression of PLZF (a marker of differentiating stem cells) in a slot-blot assay. Spermatogenesis was present but impaired, with a low sperm count, low protamine-1 expression, a low testis weight, and a low seminiferous tubule diameter. Low circulating luteinizing hormone and follicle-stimulating hormone levels and an elevated testis anti-Müllerian hormone level (as measured in ELISAs) revealed the presence of hypogonadotropic hypogonadism. The Dp(16)1Yey mouse model of DS recapitulates observations made in zebrafish and mice overexpressing DYRK1A homologs. The presence of an excess of Mmu16 material perturbs spermatogenesis and the gonadotropic axis. More generally, DYRK1A's role in human infertility (outside DS) remains to be characterized.

4.
Cell Mol Life Sci ; 80(12): 370, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989807

RESUMEN

Individuals with Down syndrome (DS) have a higher prevalence of obesity compared to the general population. Conventionally, this has been attributed to endocrine issues and lack of exercise. However, deficits in neural reward responses and dopaminergic disturbances in DS may be contributing factors. To investigate this, we focused on a mouse model (Ts65Dn) bearing some triplicated genes homologous to trisomy 21. Through detailed meal pattern analysis in male Ts65Dn mice, we observed an increased preference for energy-dense food, pointing towards a potential "hedonic" overeating behavior. Moreover, trisomic mice exhibited higher scores in compulsivity and inflexibility tests when limited access to energy-dense food and quinine hydrochloride adulteration were introduced, compared to euploid controls. Interestingly, when we activated prelimbic-to-nucleus accumbens projections in Ts65Dn male mice using a chemogenetic approach, impulsive and compulsive behaviors significantly decreased, shedding light on a promising intervention avenue. Our findings uncover a novel mechanism behind the vulnerability to overeating and offer potential new pathways for tackling obesity through innovative interventions.


Asunto(s)
Síndrome de Down , Trisomía , Humanos , Masculino , Ratones , Animales , Síndrome de Down/genética , Modelos Animales de Enfermedad , Corteza Prefrontal , Hiperfagia/genética , Obesidad/genética
5.
J Cell Mol Med ; 27(15): 2228-2238, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37415307

RESUMEN

Down syndrome is the most common chromosomal abnormality in humans. Patients with Down syndrome have hematologic disorders, including mild to moderate thrombocytopenia. In case of Down syndrome, thrombocytopenia is not associated with bleeding, and it remains poorly characterized regarding molecular mechanisms. We investigated the effects of overexpression of Dyrk1A, an important factor contributing to some major Down syndrome phenotypes, on platelet number and bleeding in mice. Mice overexpressing Dyrk1A have a decrease in platelet number by 20%. However, bleeding time was found to be reduced by 50%. The thrombocytopenia and the decreased bleeding time observed were not associated to an abnormal platelet receptors expression, to a defect of platelet activation by ADP, thrombin or convulxin, to the presence of activated platelets in the circulation or to an abnormal half-life of the platelets. To propose molecular mechanisms explaining this discrepancy, we performed a network analysis of Dyrk1A interactome and demonstrated that Dyrk1A, fibronectin and fibrinogen interact indirectly through two distinct clusters of proteins. Moreover, in mice overexpressing Dyrk1A, increased plasma fibronectin and fibrinogen levels were found, linked to an increase of the hepatic fibrinogen production. Our results indicate that overexpression of Dyrk1A in mice induces decreased bleeding consistent with increased plasma fibronectin and fibrinogen levels, revealing a new role of Dyrk1A depending on its indirect interaction with these two proteins.


Asunto(s)
Síndrome de Down , Trombocitopenia , Animales , Humanos , Ratones , Plaquetas/metabolismo , Síndrome de Down/metabolismo , Fibrinógeno/metabolismo , Fibronectinas/metabolismo , Hemorragia/metabolismo , Trombocitopenia/metabolismo , Quinasas DyrK
6.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36499613

RESUMEN

The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3ß and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic ß-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas tau/metabolismo , Insulina/metabolismo , Encéfalo/metabolismo
7.
Genet Med ; 24(10): 2004-2013, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35951014

RESUMEN

PURPOSE: Although some caregivers are using epigallocatechin gallate (EGCG) off label in hopes of improving cognition in young adults with Down syndrome (DS), nothing is known about its safety, tolerability, and efficacy in the DS pediatric population. We aimed to evaluate safety and tolerability of a dietary supplement containing EGCG and if EGCG improves cognitive and functional performance. METHODS: A total of 73 children with DS (aged 6-12 years) were randomized. Participants received 0.5% EGCG (10 mg/kg daily dose) or placebo for 6 months with 3 months follow up after treatment discontinuation. RESULTS: In total, 72 children were treated and 66 completed the study. A total of 38 participants were included in the EGCG group and 35 in the placebo group. Of 72 treated participants, 62 (86%) had 229 treatment-emergent adverse events (AEs). Of 37 participants in the EGCG group, 13 (35%) had 18 drug-related treatment-emergent AEs and 12 of 35 (34%) from the placebo group had 22 events. In the EGCG group, neither severe AEs nor increase in the incidence of AEs related to safety biomarkers were observed. Cognition and functionality were not improved compared with placebo. Secondary efficacy outcomes in girls point to a need for future work. CONCLUSION: The use of EGCG is safe and well-tolerated in children with DS, but efficacy results do not support its use in this population.


Asunto(s)
Catequina , Síndrome de Down , Catequina/efectos adversos , Catequina/análogos & derivados , Niño , Cognición , Suplementos Dietéticos , Método Doble Ciego , Síndrome de Down/tratamiento farmacológico , Femenino , Humanos , Masculino
8.
Biomedicines ; 10(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740400

RESUMEN

Down syndrome (DS) is a complex genetic condition due to an additional copy of human chromosome 21, which results in the deregulation of many genes. In addition to the intellectual disability associated with DS, adults with DS also have an ultrahigh risk of developing early onset Alzheimer's disease dementia. DYRK1A, a proline-directed serine/threonine kinase, whose gene is located on chromosome 21, has recently emerged as a promising plasma biomarker in patients with sporadic Alzheimer's disease (AD). The protein DYRK1A is truncated in symptomatic AD, the increased truncated form being associated with a decrease in the level of full-length form. Activity-dependent neuroprotective protein (ADNP), a key protein for the brain development, has been demonstrated to be a useful marker for symptomatic AD and disease progression. In this study, we evaluated DYRK1A and ADNP in CSF and plasma of adults with DS and explored the relationship between these proteins. We used mice models to evaluate the effect of DYRK1A overexpression on ADNP levels and then performed a dual-center cross-sectional human study in adults with DS in Barcelona (Spain) and Paris (France). Both cohorts included adults with DS at different stages of the continuum of AD: asymptomatic AD (aDS), prodromal AD (pDS), and AD dementia (dDS). Non-trisomic controls and patients with sporadic AD dementia were included for comparison. Full-form levels of DYRK1A were decreased in plasma and CSF in adults with DS and symptomatic AD (pDS and dDS) compared to aDS, and in patients with sporadic AD compared to controls. On the contrary, the truncated form of DYRK1A was found to increase both in CSF and plasma in adults with DS and symptomatic AD and in patients with sporadic AD with respect to aDS and controls. ADNP levels showed a more complex structure. ADNP levels increased in aDS groups vs. controls, in agreement with the increase in levels found in the brains of mice overexpressing DYRK1A. However, symptomatic individuals had lower levels than aDS individuals. Our results show that the comparison between full-length and truncated-form levels of DYRK1A coupled with ADNP levels could be used in trials targeting pathophysiological mechanisms of dementia in individuals with DS.

9.
Cells ; 11(11)2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35681432

RESUMEN

Cystathionine beta synthase (CBS) catalyzes the first step of the transsulfuration pathway from homocysteine to cystathionine, and its deficiency leads to hyperhomocysteinemia (HHcy) in humans and rodents. To date, scarce information is available about the HHcy effect on insulin secretion, and the link between CBS activity and the setting of type 2 diabetes is still unknown. We aimed to decipher the consequences of an inborn defect in CBS on glucose homeostasis in mice. We used a mouse model heterozygous for CBS (CBS+/-) that presented a mild HHcy. Other groups were supplemented with methionine in drinking water to increase the mild to intermediate HHcy, and were submitted to a high-fat diet (HFD). We measured the food intake, body weight gain, body composition, glucose homeostasis, plasma homocysteine level, and CBS activity. We evidenced a defect in the stimulated insulin secretion in CBS+/- mice with mild and intermediate HHcy, while mice with intermediate HHcy under HFD presented an improvement in insulin sensitivity that compensated for the decreased insulin secretion and permitted them to maintain a glucose tolerance similar to the CBS+/+ mice. Islets isolated from CBS+/- mice maintained their ability to respond to the elevated glucose levels, and we showed that a lower parasympathetic tone could, at least in part, be responsible for the insulin secretion defect. Our results emphasize the important role of Hcy metabolic enzymes in insulin secretion and overall glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Homocistinuria , Hiperhomocisteinemia , Animales , Cistationina betasintasa/metabolismo , Glucosa , Homeostasis , Homocisteína , Homocistinuria/metabolismo , Hiperhomocisteinemia/metabolismo , Ratones
10.
Nutrients ; 14(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35631180

RESUMEN

Plant-derived polyphenols flavonoids are increasingly being recognized for their medicinal potential. These bioactive compounds derived from plants are gaining more interest in ameliorating adverse health risks because of their low toxicity and few side effects. Among them, therapeutic approaches demonstrated the efficacy of catechins, a major group of flavonoids, in reverting several aspects of Down syndrome, the most common genomic disorder that causes intellectual disability. Down syndrome is characterized by increased incidence of developing Alzheimer's disease, obesity, and subsequent metabolic disorders. In this focused review, we examine the main effects of catechins on comorbidities linked with Down syndrome. We also provide evidence of catechin effects on DYRK1A, a dosage-sensitive gene encoding a protein kinase involved in brain defects and metabolic disease associated with Down syndrome.


Asunto(s)
Catequina , Síndrome de Down , Catequina/farmacología , Catequina/uso terapéutico , Comorbilidad , Suplementos Dietéticos , Humanos , Polifenoles
11.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163673

RESUMEN

Insulin-degrading enzyme (IDE) is a ubiquitously expressed metallopeptidase that degrades insulin and a large panel of amyloidogenic peptides. IDE is thought to be a potential therapeutic target for type-2 diabetes and neurodegenerative diseases, such as Alzheimer's disease. IDE catalytic chamber, known as a crypt, is formed, so that peptides can be enclosed and degraded. However, the molecular mechanism of the IDE function and peptide recognition, as well as its conformation changes, remains elusive. Our study elucidates IDE structural changes and explains how IDE conformational dynamics is important to modulate the catalytic cycle of IDE. In this aim, a free-substrate IDE crystallographic structure (PDB ID: 2JG4) was used to model a complete structure of IDE. IDE stability and flexibility were studied through molecular dynamics (MD) simulations to witness IDE conformational dynamics switching from a closed to an open state. The description of IDE structural changes was achieved by analysis of the cavity and its expansion over time. Moreover, the quasi-harmonic analysis of the hinge connecting IDE domains and the angles formed over the simulations gave more insights into IDE shifts. Overall, our results could guide toward the use of different approaches to study IDE with different substrates and inhibitors, while taking into account the conformational states resolved in our study.


Asunto(s)
Insulisina/química , Simulación de Dinámica Molecular , Humanos , Enlace de Hidrógeno , Termodinámica , Agua/química
12.
Genes (Basel) ; 12(11)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34828406

RESUMEN

Down syndrome (DS) is the most common chromosomal disorder. It is responsible for intellectual disability (ID) and several medical conditions. Although men with DS are thought to be infertile, some spontaneous paternities have been reported. The few studies of the mechanism of infertility in men with DS are now dated. Recent research in zebrafish has indicated that overexpression of DYRK1A (the protein primarily responsible for ID in DS) impairs gonadogenesis at the embryonic stage. To better ascertain DYRK1A's role in infertility in DS, we investigated the effect of DYRK1A overexpression in a transgenic mouse model. We found that overexpression of DYRK1A impairs fertility in transgenic male mice. Interestingly, the mechanism in mice differs slightly from that observed in zebrafish but, with disruption of the early stages of spermatogenesis, is similar to that seen in humans. Unexpectedly, we observed hypogonadotropic hypogonadism in the transgenic mice.


Asunto(s)
Hipogonadismo/genética , Infertilidad Masculina/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Espermatogénesis , Animales , Hipogonadismo/patología , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Testículo/embriología , Testículo/patología , Regulación hacia Arriba , Quinasas DyrK
13.
Comput Struct Biotechnol J ; 19: 2618-2625, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025948

RESUMEN

The recent breakthrough in the field of protein structure prediction shows the relevance of using knowledge-based based scoring functions in combination with a low-resolution 3D representation of protein macromolecules. The choice of not using all atoms is barely supported by any data in the literature, and is mostly motivated by empirical and practical reasons, such as the computational cost of assessing the numerous folds of the protein conformational space. Here, we present a comprehensive study, carried on a large and balanced benchmark of predicted protein structures, to see how different types of structural representations rank in either accuracy or calculation speed, and which ones offer the best compromise between these two criteria. We tested ten representations, including low-resolution, high-resolution, and coarse-grained approaches. We also investigated the generalization of the findings to other formalisms than the widely-used "potential of mean force" (PMF) method. Thus, we observed that representing protein structures by their ß carbons-combined or not with Cα-provides the best speed-accuracy trade-off, when using a "total information gain" scoring function. For statistical PMFs, using MARTINI backbone and side-chains beads is the best option. Finally, we also demonstrated the necessity of training the reference state on all atom types, and of including the Cα atoms of glycine residues, in a Cß-based representation.

14.
Biomedicines ; 9(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671490

RESUMEN

Down syndrome is a genetic disorder caused by the presence of a third copy of chromosome 21, associated with intellectual disabilities. Down syndrome is associated with anomalies of both the nervous and endocrine systems. Over the past decades, dramatic advances in Down syndrome research and treatment have helped to extend the life expectancy of these patients. Improved life expectancy is obviously a positive outcome, but it is accompanied with the need to address previously overlooked complications and comorbidities of Down syndrome, including obesity and diabetes, in order to improve the quality of life of Down syndrome patients. In this focused review, we describe the associations between Down syndrome and comorbidities, obesity and diabetes, and we discuss the understanding of proposed mechanisms for the association of Down syndrome with metabolic disorders. Drawing molecular mechanisms through which Type 1 diabetes and Type 2 diabetes could be linked to Down syndrome could allow identification of novel drug targets and provide therapeutic solutions to limit the development of metabolic and cognitive disorders.

15.
Comput Struct Biotechnol J ; 18: 2228-2236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32837711

RESUMEN

For three decades now, knowledge-based scoring functions that operate through the "potential of mean force" (PMF) approach have continuously proven useful for studying protein structures. Although these statistical potentials are not to be confused with their physics-based counterparts of the same name-i.e. PMFs obtained by molecular dynamics simulations-their particular success in assessing the native-like character of protein structure predictions has lead authors to consider the computed scores as approximations of the free energy. However, this physical justification is a matter of controversy since the beginning. Alternative interpretations based on Bayes' theorem have been proposed, but the misleading formalism that invokes the inverse Boltzmann law remains recurrent in the literature. In this article, we present a conceptually new method for ranking protein structure models by quality, which is (i) independent of any physics-based explanation and (ii) relevant to statistics and to a general definition of information gain. The theoretical development described in this study provides new insights into how statistical PMFs work, in comparison with our approach. To prove the concept, we have built interatomic distance-dependent scoring functions, based on the former and new equations, and compared their performance on an independent benchmark of 60,000 protein structures. The results demonstrate that our new formalism outperforms statistical PMFs in evaluating the quality of protein structural decoys. Therefore, this original type of score offers a possibility to improve the success of statistical PMFs in the various fields of structural biology where they are applied. The open-source code is available for download at https://gitlab.rpbs.univ-paris-diderot.fr/src/ig-score.

17.
Mol Neurobiol ; 57(7): 3195-3205, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32504418

RESUMEN

Alcoholism is a chronic relapsing disorder defined by loss of control over excessive consumption of ethanol despite damaging effects on the liver and brain. We previously showed that the overexpression in mice of Dyrk1A (TgDyrk1A, for dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1A) reduces the severity of alcohol mediated liver injury. Ethanol consumption has also been associated with increased brain glutamate concentration that led to therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Interestingly, mice overexpressing Dyrk1A (TgDyrk1A mice) present a reduction of glutamatergic brain transmission, which we propose could be protective against alcohol intake. To answer this question, we investigated the ethanol preference in TgDyrk1A mice using a two-bottle choice paradigm. TgDyrk1A mice showed a non-significant decrease of voluntary ethanol intake and ethanol preference compared with wild-type mice. At the peripheral level, mice overexpressing Dyrk1A show lower ethanol plasma levels, indicating a faster ethanol metabolism. At the end of the protocol, lasting 21 days, brains were extracted for protein analysis. Ethanol reduced levels of the synaptic protein PSD-95 and increased the glutamate decarboxylase GAD65, specifically in the cortex of TgDyrk1A mice. Our results suggest that overexpression of DYRK1A may cause different ethanol-induced changes in the brain.


Asunto(s)
Encéfalo/efectos de los fármacos , Conducta de Elección/fisiología , Etanol/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Sinapsis/metabolismo , Animales , Encéfalo/metabolismo , Conducta de Elección/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo , Glutamato Descarboxilasa/metabolismo , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Quinasas DyrK
18.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092951

RESUMEN

Epigallocatechin gallate (EGCG) is an inhibitor of DYRK1A, a serine/threonine kinase considered to be a major contributor of cognitive dysfunctions in Down syndrome (DS). Two clinical trials in adult patients with DS have shown the safety and efficacy to improve cognitive phenotypes using commercial green tea extract containing EGCG (45% content). In the present study, we performed a preclinical study using FontUp®, a new nutritional supplement with a chocolate taste specifically formulated for the nutritional needs of patients with DS and enriched with a standardized amount of EGCG in young mice overexpressing Dyrk1A (TgBACDyrk1A). This preparation is differential with previous one used, because its green tea extract has been purified to up 94% EGCG of total catechins. We analyzed the in vitro effect of green tea catechins not only for EGCG, but for others residually contained in FontUp®, on DYRK1A kinase activity. Like EGCG, epicatechin gallate was a noncompetitive inhibitor against ATP, molecular docking computations confirming these results. Oral FontUp® normalized brain and plasma biomarkers deregulated in TgBACDyrk1A, without negative effect on liver and cardiac functions. We compared the bioavailability of EGCG in plasma and brain of mice and have demonstrated that EGCG had well crossed the blood-brain barrier.


Asunto(s)
Encéfalo/efectos de los fármacos , Catequina/análogos & derivados , Síndrome de Down/dietoterapia , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Té/química , Animales , Antioxidantes/administración & dosificación , Antioxidantes/uso terapéutico , Disponibilidad Biológica , Biomarcadores/sangre , Biomarcadores/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Catequina/administración & dosificación , Catequina/efectos adversos , Catequina/química , Catequina/uso terapéutico , Suplementos Dietéticos , Síndrome de Down/sangre , Síndrome de Down/enzimología , Síndrome de Down/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Polifenoles/análisis , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Regulación hacia Arriba , Quinasas DyrK
19.
Front Neurol ; 10: 807, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417486

RESUMEN

Aging is one of the strongest risk factor for Alzheimer's disease (AD). However, several data suggest that dyslipidemia can either contribute or serve as co-factors in AD appearance. AD could be examined as a metabolic disorder mediated by peripheral insulin resistance. Insulin resistance is associated with dyslipidemia, which results in increased hepatic ceramide generation. Hepatic steatosis induces pro-inflammatory cytokine activation which is mediated by the increased ceramides production. Ceramides levels increased in cells due to perturbation in sphingolipid metabolism and upregulated expression of enzymes involved in ceramide synthesis. Cytotoxic ceramides and related molecules generated in liver promote insulin resistance, traffic through the circulation due to injury or cell death caused by local liver inflammation, and because of their hydrophobic nature, they can cross the blood-brain barrier and thereby exert neurotoxic responses as reducing insulin signaling and increasing pro-inflammatory cytokines. These abnormalities propagate a cascade of neurodegeneration associated with oxidative stress and ceramide generation, which potentiate brain insulin resistance, apoptosis, myelin degeneration, and neuro-inflammation. Therefore, excess of toxic lipids generated in liver can cause neurodegeneration. Elevated homocysteine level is also a risk factor for AD pathology and is narrowly associated with metabolic diseases and non-alcoholic fatty liver disease. The existence of a homocysteine/ceramides signaling pathway suggests that homocysteine toxicity could be partly mediated by intracellular ceramide accumulation due to stimulation of ceramide synthase. In this article, we briefly examined the role of homocysteine and ceramide metabolism linking metabolic diseases and non-alcoholic fatty liver disease to AD. We therefore analyzed the expression of mainly enzymes implicated in ceramide and sphingolipid metabolism and demonstrated deregulation of de novo ceramide biosynthesis and S1P metabolism in liver and brain of hyperhomocysteinemic mice.

20.
Front Neurol ; 10: 649, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293498

RESUMEN

Epidemiological data suggest an increased risk of developing Alzheimer's disease (AD) in individuals with type 2 diabetes (T2D). AD is anatomically associated with an early progressive accumulation of Aß leading to a gradual Tau hyperphosphorylation, which constitute the main characteristics of damaged brain in AD. Apart from these processes, mounting evidence suggests that specific features of diabetes, namely impaired glucose metabolism and insulin signaling in the brain, play a key role in AD. Moreover, several studies report a potential role of Aß and Tau in peripheral tissues such as pancreatic ß cells. Thus, it appears that several biological pathways associated with diabetes overlap with AD. The link between peripheral insulin resistance and brain insulin resistance with concomitant cognitive impairment may also potentially be mediated by a liver/pancreatic/brain axis, through the excessive trafficking of neurotoxic molecules across the blood-brain barrier. Insulin resistance incites inflammation and pro-inflammatory cytokine activation modulates the homocysteine cycle in T2D patients. Elevated plasma homocysteine level is a risk factor for AD pathology and is also closely associated with metabolic syndrome. We previously demonstrated a strong association between homocysteine metabolism and insulin via cystathionine beta synthase (CBS) activity, the enzyme implicated in the first step of the trans-sulfuration pathway, in Goto-Kakizaki (GK) rats, a spontaneous model of T2D, with close similarities with human T2D. CBS activity is also correlated with DYRK1A, a serine/threonine kinase regulating brain-derived neurotrophic factor (BDNF) levels, and Tau phosphorylation, which are implicated in a wide range of disease such as T2D and AD. We hypothesized that DYRK1A, BDNF, and Tau, could be among molecular factors linking T2D to AD. In this focused review, we briefly examine the main mechanisms linking AD to T2D and provide the first evidence that certain circulating AD biomarkers are found in diabetic GK rats. We propose that the spontaneous model of T2D in GK rat could be a suitable model to investigate molecular mechanisms linking T2D to AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...