Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncogene ; 38(28): 5599-5611, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30967626

RESUMEN

The MST1R (RON) kinase is overexpressed in >80% of human pancreatic cancers, but its role in pancreatic carcinogenesis is unknown. In this study, we examined the relevance of Mst1r kinase to Kras driven pancreatic carcinogenesis using genetically engineered mouse models. In the setting of mutant Kras, Mst1r overexpression increased acinar-ductal metaplasia (ADM), accelerated the progression of pancreatic intraepithelial neoplasia (PanIN), and resulted in the accumulation of (mannose receptor C type 1) MRC1+, (arginase 1) Arg+ macrophages in the tumor microenvironment. Conversely, absence of a functional Mst1r kinase slowed PanIN initiation, resulted in smaller tumors, prolonged survival and a reduced tumor-associated macrophage content. Mst1r expression was associated with increased production of its ligand Mst1, and in orthotopic models, suppression of Mst1 expression resulted in reduced tumor size, changes in macrophage polarization and enhanced T cell infiltration. This study demonstrates the functional significance of Mst1r during pancreatic cancer initiation and progression. Further, it provides proof of concept that targeting Mst1r can modulate pancreatic cancer growth and the microenvironment. This study provides further rationale for targeting Mst1r as a therapeutic strategy.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Células Epiteliales/patología , Macrófagos/patología , Neoplasias Pancreáticas/patología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Carcinoma Ductal Pancreático/enzimología , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias Pancreáticas/enzimología , Prueba de Estudio Conceptual , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Microambiente Tumoral
2.
Nature ; 534(7607): 407-411, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27281208

RESUMEN

Pancreatic intraepithelial neoplasia is a pre-malignant lesion that can progress to pancreatic ductal adenocarcinoma, a highly lethal malignancy marked by its late stage at clinical presentation and profound drug resistance. The genomic alterations that commonly occur in pancreatic cancer include activation of KRAS2 and inactivation of p53 and SMAD4 (refs 2-4). So far, however, it has been challenging to target these pathways therapeutically; thus the search for other key mediators of pancreatic cancer growth remains an important endeavour. Here we show that the stem cell determinant Musashi (Msi) is a critical element of pancreatic cancer progression both in genetic models and in patient-derived xenografts. Specifically, we developed Msi reporter mice that allowed image-based tracking of stem cell signals within cancers, revealing that Msi expression rises as pancreatic intraepithelial neoplasia progresses to adenocarcinoma, and that Msi-expressing cells are key drivers of pancreatic cancer: they preferentially harbour the capacity to propagate adenocarcinoma, are enriched in circulating tumour cells, and are markedly drug resistant. This population could be effectively targeted by deletion of either Msi1 or Msi2, which led to a striking defect in the progression of pancreatic intraepithelial neoplasia to adenocarcinoma and an improvement in overall survival. Msi inhibition also blocked the growth of primary patient-derived tumours, suggesting that this signal is required for human disease. To define the translational potential of this work we developed antisense oligonucleotides against Msi; these showed reliable tumour penetration, uptake and target inhibition, and effectively blocked pancreatic cancer growth. Collectively, these studies highlight Msi reporters as a unique tool to identify therapy resistance, and define Msi signalling as a central regulator of pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Imagen Molecular , Proteínas del Tejido Nervioso/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas de Unión al ARN/genética , Animales , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Femenino , Eliminación de Gen , Genes Reporteros/genética , Humanos , Masculino , Ratones , Modelos Genéticos , Células Neoplásicas Circulantes/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacocinética , Oligonucleótidos Antisentido/uso terapéutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Tasa de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Neurobiol ; 53(3): 1461-1477, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25636685

RESUMEN

The energy-yielding pathways that provide the large amounts of metabolic energy required by inner ear sensorineural cells are poorly understood. Neuroglobin (Ngb) is a neuron-specific hemoprotein of the globin family, which is suggested to be involved in oxidative energy metabolism. Here, we present quantitative real-time reverse transcription PCR, in situ hybridization, immunohistochemical, and Western blot evidence that neuroglobin is highly expressed in the mouse and rat cochlea. For primary cochlea neurons, Ngb expression is limited to the subpopulation of type I spiral ganglion cells, those which innervate inner hair cells, while the subpopulation of type II spiral ganglion cells which innervate the outer hair cells do not express Ngb. We further investigated Ngb distribution in rat, mouse, and human auditory brainstem centers, and found that the cochlear nuclei and superior olivary complex (SOC) also express considerable amounts of Ngb. Notably, the majority of olivocochlear neurons, those which provide efferent innervation of outer hair cells as identified by neuronal tract tracing, were Ngb-immunoreactive. We also observed that neuroglobin in the SOC frequently co-localized with neuronal nitric oxide synthase, the enzyme responsible for nitric oxide production. Our findings suggest that neuroglobin is well positioned to play an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system, and provides the first evidence that Ngb signal differentiates the central projections of the inner and outer hair cells.


Asunto(s)
Tronco Encefálico/metabolismo , Cóclea/metabolismo , Globinas/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Adenosina Trifosfato/metabolismo , Anciano , Animales , Femenino , Globinas/genética , Globinas/fisiología , Humanos , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuroglobina , Óxido Nítrico Sintasa de Tipo I/análisis , Ratas , Ratas Sprague-Dawley , Ganglio Espiral de la Cóclea/metabolismo , Complejo Olivar Superior/metabolismo
4.
J Transl Med ; 12: 41, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24507750

RESUMEN

BACKGROUND: Gastrointestinal stromal tumor (GIST) is the most common sarcoma and its treatment with imatinib has served as the paradigm for developing targeted anti-cancer therapies. Despite this success, imatinib-resistance has emerged as a major problem and therefore, the clinical efficacy of other drugs has been investigated. Unfortunately, most clinical trials have failed to identify efficacious drugs despite promising in vitro data and pathological responses in subcutaneous xenografts. We hypothesized that it was feasible to develop orthotopic patient-derived xenografts (PDXs) from resected GIST that could recapitulate the genetic heterogeneity and biology of the human disease. METHODS: Fresh tumor tissue from three patients with pathologically confirmed GISTs was obtained immediately following tumor resection. Tumor fragments (4.2-mm3) were surgically xenografted into the liver, gastric wall, renal capsule, and pancreas of immunodeficient mice. Tumor growth was serially assessed with ultrasonography (US) every 3-4 weeks. Tumors were also evaluated with positron emission tomography (PET). Animals were sacrificed when they became moribund or their tumors reached a threshold size of 2500-mm3. Tumors were subsequently passaged, as well as immunohistochemically and histologically analyzed. RESULTS: Herein, we describe the first model for generating orthotopic GIST PDXs. We have successfully xenografted three unique KIT-mutated tumors into a total of 25 mice with an overall success rate of 84% (21/25). We serially followed tumor growth with US to describe the natural history of PDX growth. Successful PDXs resulted in 12 primary xenografts in NOD-scid gamma or NOD-scid mice while subsequent successful passages resulted in 9 tumors. At a median of 7.9 weeks (range 2.9-33.1 weeks), tumor size averaged 473 ± 695-mm³ (median 199-mm3, range 12.6-2682.5-mm³) by US. Furthermore, tumor size on US within 14 days of death correlated with gross tumor size on necropsy. We also demonstrated that these tumors are FDG-avid on PET imaging, while immunohistochemically and histologically the PDXs resembled the primary tumors. CONCLUSIONS: We report the first orthotopic model of human GIST using patient-derived tumor tissue. This novel, reproducible in vivo model of human GIST may enhance the study of GIST biology, biomarkers, personalized cancer treatments, and provide a preclinical platform to evaluate new therapeutic agents for GIST.


Asunto(s)
Tumores del Estroma Gastrointestinal/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Anciano , Animales , Demografía , Progresión de la Enfermedad , Femenino , Fluorodesoxiglucosa F18 , Tumores del Estroma Gastrointestinal/diagnóstico por imagen , Humanos , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Ultrasonografía
5.
Carcinogenesis ; 32(8): 1151-6, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21565828

RESUMEN

The RON receptor tyrosine kinase (RTK) is overexpressed in the majority of pancreatic cancers, yet its role in pancreatic cancer cell biology remains to be clarified. Recent work in childhood sarcoma identified RON as a mediator of resistance to insulin-like growth factor receptor (IGF1-R)-directed therapy. To better understand RON function in pancreatic cancer cells, we sought to identify novel RON interactants. Using multidimensional protein identification analysis, IGF-1R was identified and confirmed to interact with RON in pancreatic cancer cell lines. IGF-1 induces rapid phosphorylation of RON, but RON signaling did not activate IGF-1R indicating unidirectional signaling between these RTKs. We next demonstrate that IGF-1 induces pancreatic cancer cell migration that is RON dependent, as inhibition of RON signaling by either shRNA-mediated RON knockdown or by a RON kinase inhibitor abrogated IGF-1 induced wound closure in a scratch assay. In pancreatic cancer cells, unlike childhood sarcoma, STAT-3, rather than RPS6, is activated in response to IGF-1, in a RON-dependent manner. The current study defines a novel interaction between RON and IGF-1R and taken together, these two studies demonstrate that RON is an important mediator of IGF1-R signaling and that this finding is consistent in both human epithelial and mesenchymal cancers. These findings demand additional investigation to determine if IGF-1R independent RON activation is associated with resistance to IGF-1R-directed therapies in vivo and to identify suitable biomarkers of activated RON signaling.


Asunto(s)
Movimiento Celular/fisiología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Western Blotting , Adhesión Celular , Humanos , Inmunoprecipitación , Neoplasias Pancreáticas/genética , ARN Interferente Pequeño/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Células Tumorales Cultivadas , Cicatrización de Heridas
6.
Pancreas ; 39(3): 301-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20358644

RESUMEN

OBJECTIVES: The RON receptor mediates tumorigenic phenotypes in pancreatic cancer (PC), but no investigations currently have implicated RON signaling as a regulator of angiogenesis in PC. Angiogenesis is vital to oncogenesis, and vascular endothelial growth factor (VEGF) is the most well-characterized angiogenic protein. This study sought to determine the effect of RON stimulation on in vitro angiogenesis and VEGF production in PC cell lines. METHODS: Vascular endothelial growth factor levels from conditioned media of hepatocyte growth factor-like protein-stimulated BxPC-3 and FG cells were quantitated via enzyme-linked immunosorbent assay and likewise interrogated in the presence and absence of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase/AKT inhibitors. To determine in vitro angiogenesis, human microvascular endothelial cells were subsequently exposed to the same conditioned media to assay for microtubule formation. RESULTS: RON signaling resulted in a 52% and 34% increase in VEGF levels in BxPC-3 and FG cells, respectively. Vascular endothelial growth factor secretion was inhibited with MAPK or phosphatidylinositol-3-kinase blockade in BxPC-3 cells, but only MAPK inhibition resulted in decreased VEGF production in FG cells. BxPC-3 conditioned media induced tubule formation in human microvascular endothelial cells, which was abrogated by RON inhibition. CONCLUSIONS: RON signaling results in MAPK-mediated VEGF secretion by PC cells and promotion of microtubule formation. These findings suggest another mechanism by which RON signaling may promote PC progression.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Humanos , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neovascularización Patológica/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
7.
Virol J ; 4: 26, 2007 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-17349048

RESUMEN

BACKGROUND: Congenital cytomegalovirus (CMV) infection is the most common congenital viral infection in humans and the major nonhereditary cause of central nervous system (CNS) developmental disorders. Previous attempts to develop a murine CMV (MCMV) model of natural congenital human CMV (HCMV) infection have failed because MCMV does not cross the placenta in immunocompetent mice. RESULTS: In marked contrast with immunocompetent mice, C.B-17 SCID (severe combined immunodeficient) mice were found to be highly susceptible to natural MCMV transplacental transmission and congenital infection. Timed-pregnant SCID mice were intraperitoneally (IP) injected with MCMV at embryonic (E) stages E0-E7, and vertical MCMV transmission was evaluated using nested polymerase chain reaction (nPCR), in situ hybridization (ISH) and immunohistochemical (IHC) assays. SCID mouse dams IP injected at E0 with 102 PFU of MCMV died or resorbed their fetuses by E18. Viable fetuses collected at E18 from SCID mice IP injected with 102-104 PFU of MCMV at E7 did not demonstrate vertical MCMV transmission. Notably, transplacental MCMV transmission was confirmed in E18 fetuses from SCID mice IP injected with 103 PFU of MCMV at stages E3-E5. The maximum rate of transplacental MCMV transmission (53%) at E18 occurred when SCID mouse dams were IP injected with 103 PFU of MCMV at E4. Congenital infection was confirmed by IHC immunostaining of MCMV antigens in 26% of the MCMV nPCR positive E18 fetuses. Transplacental MCMV transmission was associated with intrauterine growth retardation and microcephaly. Additionally, E18 fetuses with MCMV nPCR positive brains had cerebral interleukin-1alpha (IL-1alpha) expression significantly upregulated and cerebral IL-1 receptor II (IL-1RII) transcription significantly downregulated. However, MCMV-induced changes in cerebral cytokine expression were not associated with any histological signs of MCMV infection or inflammation in the brain. CONCLUSION: Severe T- and B-cell immunodeficiencies in SCID mice significantly enhance the rate of natural MCMV transplacental transmission and congenital infection. During gestation MCMV exhibits a tissue tropism for the developing brain, and vertical MCMV transmission is correlated with fetal growth retardation and abnormal cerebral proinflammatory cytokine expression. These data confirm that natural vertical MCMV infection in SCID mice constitutes a useful new experimental rodent model of congenital HCMV infection.


Asunto(s)
Encéfalo/virología , Enfermedades Virales del Sistema Nervioso Central/congénito , Infecciones por Citomegalovirus/congénito , Modelos Animales de Enfermedad , Ratones SCID , Muromegalovirus/patogenicidad , Placenta/virología , Animales , Animales Recién Nacidos , Encéfalo/embriología , Enfermedades Virales del Sistema Nervioso Central/fisiopatología , Enfermedades Virales del Sistema Nervioso Central/transmisión , Enfermedades Virales del Sistema Nervioso Central/virología , Infecciones por Citomegalovirus/fisiopatología , Infecciones por Citomegalovirus/transmisión , Infecciones por Citomegalovirus/virología , Femenino , Enfermedades Fetales/virología , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Ratones , Muromegalovirus/fisiología , Embarazo , Organismos Libres de Patógenos Específicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA