Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Am Chem Soc ; 145(2): 800-810, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36599057

RESUMEN

Prodrugs have little or no pharmacological activity and are converted to active drugs in the body by enzymes, metabolic reactions, or through human-controlled actions. However, prodrugs promoting their chemical bioconversion without any of these processes have not been reported before. Here, we present an enzyme-independent prodrug activation mechanism by boron-based compounds (benzoxaboroles) targeting leucyl-tRNA synthetase (LeuRS), including an antibiotic that recently has completed phase II clinical trials to cure tuberculosis. We combine nuclear magnetic resonance spectroscopy and X-ray crystallography with isothermal titration calorimetry to show that these benzoxaboroles do not bind directly to their drug target LeuRS, instead they are prodrugs that activate their bioconversion by forming a highly specific and reversible LeuRS inhibition adduct with ATP, AMP, or the terminal adenosine of the tRNALeu. We demonstrate how the oxaborole group of the prodrugs cyclizes with the adenosine ribose at physiological concentrations to form the active molecule. This bioconversion mechanism explains the remarkably good druglike properties of benzoxaboroles showing efficacy against radically different human pathogens and fully explains the mechanism of action of these compounds. Thus, this adenosine-dependent activation mechanism represents a novel concept in prodrug chemistry that can be applied to improve the solubility, permeability and metabolic stability of challenging drugs.


Asunto(s)
Aminoacil-ARNt Sintetasas , Leucina-ARNt Ligasa , Profármacos , Humanos , Profármacos/farmacología , Adenosina/farmacología , Leucina-ARNt Ligasa/genética , Antibacterianos/farmacología
2.
Chem Rev ; 122(10): 9331-9356, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35446534

RESUMEN

Intrinsically disordered proteins are ubiquitous throughout all known proteomes, playing essential roles in all aspects of cellular and extracellular biochemistry. To understand their function, it is necessary to determine their structural and dynamic behavior and to describe the physical chemistry of their interaction trajectories. Nuclear magnetic resonance is perfectly adapted to this task, providing ensemble averaged structural and dynamic parameters that report on each assigned resonance in the molecule, unveiling otherwise inaccessible insight into the reaction kinetics and thermodynamics that are essential for function. In this review, we describe recent applications of NMR-based approaches to understanding the conformational energy landscape, the nature and time scales of local and long-range dynamics and how they depend on the environment, even in the cell. Finally, we illustrate the ability of NMR to uncover the mechanistic basis of functional disordered molecular assemblies that are important for human health.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Humanos , Proteínas Intrínsecamente Desordenadas/química , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Termodinámica
3.
Nature ; 602(7898): 695-700, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35173330

RESUMEN

Aromatic residues cluster in the core of folded proteins, where they stabilize the structure through multiple interactions. Nuclear magnetic resonance (NMR) studies in the 1970s showed that aromatic side chains can undergo ring flips-that is, 180° rotations-despite their role in maintaining the protein fold1-3. It was suggested that large-scale 'breathing' motions of the surrounding protein environment would be necessary to accommodate these ring flipping events1. However, the structural details of these motions have remained unclear. Here we uncover the structural rearrangements that accompany ring flipping of a buried tyrosine residue in an SH3 domain. Using NMR, we show that the tyrosine side chain flips to a low-populated, minor state and, through a proteome-wide sequence analysis, we design mutants that stabilize this state, which allows us to capture its high-resolution structure by X-ray crystallography. A void volume is generated around the tyrosine ring during the structural transition between the major and minor state, and this allows fast flipping to take place. Our results provide structural insights into the protein breathing motions that are associated with ring flipping. More generally, our study has implications for protein design and structure prediction by showing how the local protein environment influences amino acid side chain conformations and vice versa.


Asunto(s)
Proteínas , Tirosina , Cristalografía por Rayos X , Movimiento (Física) , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Tirosina/química , Tirosina/metabolismo , Dominios Homologos src
4.
Sci Adv ; 8(3): eabm4034, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35044811

RESUMEN

The processes of genome replication and transcription of SARS-CoV-2 represent important targets for viral inhibition. Betacoronaviral nucleoprotein (N) is a highly dynamic cofactor of the replication-transcription complex (RTC), whose function depends on an essential interaction with the amino-terminal ubiquitin-like domain of nsp3 (Ubl1). Here, we describe this complex (dissociation constant - 30 to 200 nM) at atomic resolution. The interaction implicates two linear motifs in the intrinsically disordered linker domain (N3), a hydrophobic helix (219LALLLLDRLNQL230) and a disordered polar strand (243GQTVTKKSAAEAS255), that mutually engage to form a bipartite interaction, folding N3 around Ubl1. This results in substantial collapse in the dimensions of dimeric N, forming a highly compact molecular chaperone, that regulates binding to RNA, suggesting a key role of nsp3 in the association of N to the RTC. The identification of distinct linear motifs that mediate an important interaction between essential viral factors provides future targets for development of innovative strategies against COVID-19.

5.
J Am Chem Soc ; 143(48): 20109-20121, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34817999

RESUMEN

Studying the conformational landscape of intrinsically disordered and partially folded proteins is challenging and only accessible to a few solution state techniques, such as nuclear magnetic resonance (NMR), small-angle scattering techniques, and single-molecule Förster resonance energy transfer (smFRET). While each of the techniques is sensitive to different properties of the disordered chain, such as local structural propensities, overall dimension, or intermediate- and long-range contacts, conformational ensembles describing intrinsically disordered proteins (IDPs) accurately should ideally respect all of these properties. Here we develop an integrated approach using a large set of FRET efficiencies and fluorescence lifetimes, NMR chemical shifts, and paramagnetic relaxation enhancements (PREs), as well as small-angle X-ray scattering (SAXS) to derive quantitative conformational ensembles in agreement with all parameters. Our approach is tested using simulated data (five sets of PREs and 15 FRET efficiencies) and validated experimentally on the example of the disordered domain of measles virus phosphoprotein, providing new insights into the conformational landscape of this viral protein that comprises transient structural elements and is more compact than an unfolded chain throughout its length. Rigorous cross-validation using FRET efficiencies, fluorescence lifetimes, and SAXS demonstrates the predictive nature of the calculated conformational ensembles and underlines the potential of this strategy in integrative dynamic structural biology.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Algoritmos , Transferencia Resonante de Energía de Fluorescencia , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
Biomolecules ; 11(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34439869

RESUMEN

Intrinsically disordered proteins (IDPs) can engage in promiscuous interactions with their protein targets; however, it is not clear how this feature is encoded in the primary sequence of the IDPs and to what extent the surface properties and the shape of the binding cavity dictate the binding mode and the final bound conformation. Here we show, using a combination of nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC), that the promiscuous interaction of the intrinsically disordered regulatory domain of the mitogen-activated protein kinase kinase MKK4 with p38α and JNK1 is facilitated by folding-upon-binding into two different conformations, despite the high sequence conservation and structural homology between p38α and JNK1. Our results support a model whereby the specific surface properties of JNK1 and p38α dictate the bound conformation of MKK4 and that enthalpy-entropy compensation plays a major role in maintaining comparable binding affinities for MKK4 towards the two kinases.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , MAP Quinasa Quinasa 4 , Proteína Quinasa 14 Activada por Mitógenos , Modelos Moleculares , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/química , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Cinética , MAP Quinasa Quinasa 4/química , MAP Quinasa Quinasa 4/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/química , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína
7.
Nucleic Acids Res ; 49(D1): D404-D411, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33305318

RESUMEN

The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Intrínsecamente Desordenadas/química , Humanos , Motor de Búsqueda , Proteína p53 Supresora de Tumor/química
8.
Proc Natl Acad Sci U S A ; 117(34): 20576-20585, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32788352

RESUMEN

Temperate bacteriophages can enter one of two life cycles following infection of a sensitive host: the lysogenic or the lytic life cycle. The choice between the two alternative life cycles is dependent upon a tight regulation of promoters and their cognate regulatory proteins within the phage genome. We investigated the genetic switch of TP901-1, a bacteriophage of Lactococcus lactis, controlled by the CI repressor and the modulator of repression (MOR) antirepressor and their interactions with DNA. We determined the solution structure of MOR, and we solved the crystal structure of MOR in complex with the N-terminal domain of CI, revealing the structural basis of MOR inhibition of CI binding to the DNA operator sites. 15N NMR Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion and rotating frame R1ρ measurements demonstrate that MOR displays molecular recognition dynamics on two different time scales involving a repacking of aromatic residues at the interface with CI. Mutations in the CI:MOR binding interface impair complex formation in vitro, and when introduced in vivo, the bacteriophage switch is unable to choose the lytic life cycle showing that the CI:MOR complex is essential for proper functioning of the genetic switch. On the basis of sequence alignments, we show that the structural features of the MOR:CI complex are likely conserved among a larger family of bacteriophages from human pathogens implicated in transfer of antibiotic resistance.


Asunto(s)
Bacteriófagos/fisiología , Lisogenia , Proteínas Represoras/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Genoma Bacteriano , Interacciones Huésped-Patógeno , Cinética , Lactococcus lactis/virología , Simulación de Dinámica Molecular , Regiones Operadoras Genéticas , Conformación Proteica , Proteínas Represoras/química , Proteínas Reguladoras y Accesorias Virales/química
9.
Nat Commun ; 11(1): 3656, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694517

RESUMEN

Avian influenza polymerase undergoes host adaptation in order to efficiently replicate in human cells. Adaptive mutants are localised on the C-terminal (627-NLS) domains of the PB2 subunit. In particular, mutation of PB2 residue 627 from E to K rescues polymerase activity in mammalian cells. A host transcription regulator ANP32A, comprising a long C-terminal intrinsically disordered domain (IDD), is responsible for this adaptation. Human ANP32A IDD lacks a 33 residue insertion compared to avian ANP32A, and this deletion restricts avian influenza polymerase activity. We used NMR to determine conformational ensembles of E627 and K627 forms of 627-NLS of PB2 in complex with avian and human ANP32A. Human ANP32A IDD transiently binds to the 627 domain, exploiting multivalency to maximise affinity. E627 interrupts the polyvalency of the interaction, an effect compensated by an avian-unique motif in the IDD. The observed binding mode is maintained in the context of heterotrimeric influenza polymerase, placing ANP32A in the immediate vicinity of known host-adaptive PB2 mutants.


Asunto(s)
Proteínas Aviares/ultraestructura , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Proteínas Nucleares/ultraestructura , Dominios Proteicos/genética , Proteínas de Unión al ARN/ultraestructura , ARN Polimerasa Dependiente del ARN/ultraestructura , Proteínas Virales/ultraestructura , Animales , Proteínas Aviares/metabolismo , Aves/virología , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Gripe Aviar/virología , Gripe Humana/virología , Mutación , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/metabolismo , Unión Proteica/genética , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Especificidad de la Especie , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
10.
Curr Opin Virol ; 41: 59-67, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32570195

RESUMEN

The measles virus replication complex represents a potentially important, but as yet relatively unexplored target for viral inhibition. Little is known about the molecular mechanisms that underpin replication and transcription in paramyxoviruses. In recent years it has become clear that conformational dynamics play an important role in paramyxoviral replication, and that a complete understanding of the viral cycle requires a description of the structural plasticity of the different components. Here, we review recent progress in this direction, covering the dynamics of the nucleocapsid assembly process, high resolution structure and dynamics of protein:RNA interactions, and the investigation of the role of intrinsic conformational disorder in pre-assembly nucleoprotein/phosphoprotein complexes. Finally, we discuss the role of viral factories in the form of phase-separated membraneless organelles formed by measles virus phospho and nucleoproteins that promote the assembly of nucleocapsid structures.


Asunto(s)
Virus del Sarampión/fisiología , Sarampión/virología , Nucleocápside/química , ARN Viral/genética , Replicación Viral , Animales , Humanos , Virus del Sarampión/química , Virus del Sarampión/genética , Nucleocápside/genética , Nucleocápside/metabolismo , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , ARN Viral/química , ARN Viral/metabolismo
11.
Sci Adv ; 6(14): eaaz7095, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270045

RESUMEN

Many viruses are known to form cellular compartments, also called viral factories. Paramyxoviruses, including measles virus, colocalize their proteomic and genomic material in puncta in infected cells. We demonstrate that purified nucleoproteins (N) and phosphoproteins (P) of measles virus form liquid-like membraneless organelles upon mixing in vitro. We identify weak interactions involving intrinsically disordered domains of N and P that are implicated in this process, one of which is essential for phase separation. Fluorescence allows us to follow the modulation of the dynamics of N and P upon droplet formation, while NMR is used to investigate the thermodynamics of this process. RNA colocalizes to droplets, where it triggers assembly of N protomers into nucleocapsid-like particles that encapsidate the RNA. The rate of encapsidation within droplets is enhanced compared to the dilute phase, revealing one of the roles of liquid-liquid phase separation in measles virus replication.


Asunto(s)
Virus del Sarampión/fisiología , Nucleocápside/metabolismo , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Espectroscopía de Resonancia Magnética , Sarampión/virología , Nucleoproteínas/química , Fosfoproteínas/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Viral , Proteínas Recombinantes , Termodinámica , Replicación Viral
12.
Biophys J ; 118(10): 2470-2488, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32348724

RESUMEN

The structural characterization of modular proteins containing long intrinsically disordered regions intercalated with folded domains is complicated by their conformational diversity and flexibility and requires the integration of multiple experimental approaches. Nipah virus (NiV) phosphoprotein, an essential component of the viral RNA transcription/replication machine and a component of the viral arsenal that hijacks cellular components and counteracts host immune responses, is a prototypical model for such modular proteins. Curiously, the phosphoprotein of NiV is significantly longer than the corresponding protein of other paramyxoviruses. Here, we combine multiple biophysical methods, including x-ray crystallography, NMR spectroscopy, and small angle x-ray scattering, to characterize the structure of this protein and provide an atomistic representation of the full-length protein in the form of a conformational ensemble. We show that full-length NiV phosphoprotein is tetrameric, and we solve the crystal structure of its tetramerization domain. Using NMR spectroscopy and small angle x-ray scattering, we show that the long N-terminal intrinsically disordered region and the linker connecting the tetramerization domain to the C-terminal X domain exchange between multiple conformations while containing short regions of residual secondary structure. Some of these transient helices are known to interact with partners, whereas others represent putative binding sites for yet unidentified proteins. Finally, using NMR spectroscopy and isothermal titration calorimetry, we map a region of the phosphoprotein, comprising residues between 110 and 140 and common to the V and W proteins, that binds with weak affinity to STAT1 and confirm the involvement of key amino acids of the viral protein in this interaction. This provides new, to our knowledge, insights into how the phosphoprotein and the nonstructural V and W proteins of NiV perform their multiple functions.


Asunto(s)
Virus Nipah , Fosfoproteínas , Conformación Proteica , Proteínas Virales , Replicación Viral
13.
J Am Chem Soc ; 141(44): 17817-17829, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31591893

RESUMEN

Intrinsically disordered proteins (IDPs) are flexible biomolecules whose essential functions are defined by their dynamic nature. Nuclear magnetic resonance (NMR) spectroscopy is ideally suited to the investigation of this behavior at atomic resolution. NMR relaxation is increasingly used to detect conformational dynamics in free and bound forms of IDPs under conditions approaching physiological, although a general framework providing a quantitative interpretation of these exquisitely sensitive probes as a function of experimental conditions is still lacking. Here, measuring an extensive set of relaxation rates sampling multiple-time-scale dynamics over a broad range of crowding conditions, we develop and test an integrated analytical description that accurately portrays the motion of IDPs as a function of the intrinsic properties of the crowded molecular environment. In particular we observe a strong dependence of both short-range and long-range motional time scales of the protein on the friction of the solvent. This tight coupling between the dynamic behavior of the IDP and its environment allows us to develop analytical expressions for protein motions and NMR relaxation properties that can be accurately applied over a vast range of experimental conditions. This unified dynamic description provides new insight into the physical behavior of IDPs, extending our ability to quantitatively investigate their conformational dynamics under complex environmental conditions, and accurately predicting relaxation rates reporting on motions on time scales up to tens of nanoseconds, both in vitro and in cellulo.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , MAP Quinasa Quinasa 4/química , Nucleoproteínas/química , Proteínas Virales/química , Animales , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular , Oocitos/química , Conformación Proteica , Dominios Proteicos , Virus Sendai/química , Xenopus laevis
14.
J Am Chem Soc ; 141(42): 16817-16828, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31550880

RESUMEN

Electrostatic interactions play important roles in the functional mechanisms exploited by intrinsically disordered proteins (IDPs). The atomic resolution description of long-range and local structural propensities that can both be crucial for the function of highly charged IDPs presents significant experimental challenges. Here, we investigate the conformational behavior of the δ subunit of RNA polymerase from Bacillus subtilis whose unfolded domain is highly charged, with 7 positively charged amino acids followed by 51 acidic amino acids. Using a specifically designed analytical strategy, we identify transient contacts between the two regions using a combination of NMR paramagnetic relaxation enhancements, residual dipolar couplings (RDCs), chemical shifts, and small-angle scattering. This strategy allows the resolution of long-range and local ensemble averaged structural contributions to the experimental RDCs, and reveals that the negatively charged segment folds back onto the positively charged strand, compacting the conformational sampling of the protein while remaining highly flexible in solution. Mutation of the positively charged region abrogates the long-range contact, leaving the disordered domain in an extended conformation, possibly due to local repulsion of like-charges along the chain. Remarkably, in vitro studies show that this mutation also has a significant effect on transcription activity, and results in diminished cell fitness of the mutated bacteria in vivo. This study highlights the importance of accurately describing electrostatic interactions for understanding the functional mechanisms of IDPs.


Asunto(s)
Bacillus subtilis/enzimología , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Electricidad Estática , Secuencia de Aminoácidos , Modelos Moleculares , Conformación Proteica
15.
Structure ; 27(10): 1537-1546.e4, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31402220

RESUMEN

Intrinsically disordered proteins (IDPs) underpin biological regulation and hence are highly desirable drug-development targets. NMR is normally the tool of choice for studying the conformational preferences of IDPs, but the association of regions with residual structure into partially collapsed states can lead to poor spectral quality. The bHLH-LZ domain of the oncoprotein Myc is an archetypal example of such behavior. To circumvent spectral limitations, we apply chemical denaturant titration (CDT)-NMR, which exploits the predictable manner in which chemical denaturants disrupt residual structure and the rapid exchange between conformers in IDP ensembles. The secondary structure propensities and tertiary interactions of Myc are determined for all bHLH-LZ residues, including those with poor NMR properties under native conditions. This reveals conformations that are not predictable using existing crystal structures. The CDT-NMR method also maps sites perturbed by the prototype Myc inhibitor, 10058-F4, to areas of residual structure.


Asunto(s)
Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sitios de Unión , Secuencias Hélice-Asa-Hélice , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Tiazoles/farmacología
16.
Proc Natl Acad Sci U S A ; 116(10): 4256-4264, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30787192

RESUMEN

Assembly of paramyxoviral nucleocapsids on the RNA genome is an essential step in the viral cycle. The structural basis of this process has remained obscure due to the inability to control encapsidation. We used a recently developed approach to assemble measles virus nucleocapsid-like particles on specific sequences of RNA hexamers (poly-Adenine and viral genomic 5') in vitro, and determined their cryoelectron microscopy maps to 3.3-Å resolution. The structures unambiguously determine 5' and 3' binding sites and thereby the binding-register of viral genomic RNA within nucleocapsids. This observation reveals that the 3' end of the genome is largely exposed in fully assembled measles nucleocapsids. In particular, the final three nucleotides of the genome are rendered accessible to the RNA-dependent RNA polymerase complex, possibly enabling efficient RNA processing. The structures also reveal local and global conformational changes in the nucleoprotein upon assembly, in particular involving helix α6 and helix α13 that form edges of the RNA binding groove. Disorder is observed in the bound RNA, localized at one of the two backbone conformational switch sites. The high-resolution structure allowed us to identify putative nucleobase interaction sites in the RNA-binding groove, whose impact on assembly kinetics was measured using real-time NMR. Mutation of one of these sites, R195, whose sidechain stabilizes both backbone and base of a bound nucleic acid, is thereby shown to be essential for nucleocapsid-like particle assembly.


Asunto(s)
Microscopía por Crioelectrón/métodos , Virus del Sarampión/química , Virus del Sarampión/metabolismo , Nucleocápside/química , Nucleocápside/metabolismo , Nucleocápside/ultraestructura , Ensamble de Virus , Sitios de Unión , Genoma Viral , Cinética , Imagen por Resonancia Magnética/métodos , Modelos Moleculares , Conformación Molecular , Proteínas de la Nucleocápside , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Nucleoproteínas/ultraestructura , Paramyxoviridae/química , Paramyxoviridae/ultraestructura , ARN Viral/química , ARN Viral/metabolismo , ARN Viral/ultraestructura , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura
17.
Curr Opin Struct Biol ; 54: 10-18, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30316104

RESUMEN

Advances in characterizing complexes of intrinsically disordered proteins (IDPs) have led to the discovery of a remarkably diverse interaction landscape that includes folding-upon-binding, highly dynamic complexes, multivalent interactions as well as regulatory switches controlled by post-translational modifications. Nuclear magnetic resonance (NMR) spectroscopy has in recent years made significant contributions to this field by describing the binding mechanisms and mapping conformational dynamics on multiple time scales. Importantly, this progress has been associated with specific methodological developments in NMR, for example in exchange techniques, allowing challenging biological systems to be studied at atomic resolution. In general, the level of dynamics observed in IDP complexes does not correlate with binding affinities, demonstrating the intricate relationship between conformational dynamics and IDP regulatory function.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Animales , Humanos , Fosforilación , Unión Proteica , Pliegue de Proteína
18.
Prog Nucl Magn Reson Spectrosc ; 109: 79-100, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30527137

RESUMEN

Over the last two decades, it has become increasingly clear that a large fraction of the human proteome is intrinsically disordered or contains disordered segments of significant length. These intrinsically disordered proteins (IDPs) play important regulatory roles throughout biology, underlining the importance of understanding their conformational behavior and interaction mechanisms at the molecular level. Here we review recent progress in the NMR characterization of the structure and dynamics of IDPs in various functional states and environments. We describe the complementarity of different NMR parameters for quantifying the conformational propensities of IDPs in their isolated and phosphorylated states, and we discuss the challenges associated with obtaining structural models of dynamic protein-protein complexes involving IDPs. In addition, we review recent progress in understanding the conformational behavior of IDPs in cell-like environments such as in the presence of crowding agents, in membrane-less organelles and in the complex environment of the human cell.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Humanos , Modelos Moleculares , Pliegue de Proteína
19.
Sci Adv ; 4(8): eaat7778, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30140745

RESUMEN

Measles virus genome encapsidation is essential for viral replication and is controlled by the intrinsically disordered phosphoprotein (P) maintaining the nucleoprotein in a monomeric form (N) before nucleocapsid assembly. All paramyxoviruses harbor highly disordered amino-terminal domains (PNTD) that are hundreds of amino acids in length and whose function remains unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we describe the structure and dynamics of the 90-kDa N0PNTD complex, comprising 450 disordered amino acids, at atomic resolution. NMR relaxation dispersion reveals the existence of an ultraweak N-interaction motif, hidden within the highly disordered PNTD, that allows PNTD to rapidly associate and dissociate from a specific site on N while tightly bound at the amino terminus, thereby hindering access to the surface of N. Mutation of this linear motif quenches the long-range dynamic coupling between the two interaction sites and completely abolishes viral transcription/replication in cell-based minigenome assays comprising integral viral replication machinery. This description transforms our understanding of intrinsic conformational disorder in paramyxoviral replication. The essential mechanism appears to be conserved across Paramyxoviridae, opening unique new perspectives for drug development against this family of pathogens.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Virus del Sarampión/fisiología , Sarampión/virología , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Humanos , Proteínas Intrínsecamente Desordenadas/química , Sarampión/metabolismo , Modelos Moleculares , Proteínas de la Nucleocápside , Nucleoproteínas/química , Fosfoproteínas/química , Unión Proteica , Conformación Proteica , Homología de Secuencia , Proteínas Virales/química , Difracción de Rayos X
20.
FEBS Lett ; 592(10): 1738-1750, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29683476

RESUMEN

Temperate bacteriophages are known for their bistability, which in TP901-1 is controlled by two proteins, CI and MOR. Clear 1 repressor (CI) is hexameric and binds three palindromic operator sites via an N-terminal helix-turn-helix domain (NTD). A dimeric form, such as the truncated CI∆58 investigated here, is necessary for high-affinity binding to DNA. The crystal structure of the dimerization region (CTD1 ) is determined here, showing that it forms a pair of helical hooks. This newly determined structure is used together with the known crystal structure of the CI-NTD and small angle X-ray scattering data, to determine the solution structure of CI∆58 in complex with a palindromic operator site, showing that the two NTDs bind on opposing sides of the DNA helix.


Asunto(s)
Bacteriófagos/metabolismo , ADN Viral/metabolismo , Proteínas Represoras/metabolismo , Proteínas Virales/metabolismo , Dicroismo Circular , Cristalografía por Rayos X , ADN Viral/química , Dimerización , Unión Proteica , Conformación Proteica , Proteínas Represoras/química , Dispersión del Ángulo Pequeño , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...