Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 12(1): 44, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504301

RESUMEN

Microglia-mediated neuroinflammatory responses are recognized as a predominant factor during high intraocular pressure (IOP)-induced retinal and optic nerve injury along with potential therapeutic targets for the disease. Our previous research indicated that mesenchymal stem cell (MSC) treatment could reduce high IOP-induced neuroinflammatory responses through the TLR4 pathway in a rat model without apparent cell replacement and differentiation, suggesting that the anti-neuroinflammatory properties of MSCs are potentially mediated by paracrine signaling. This study aimed to evaluate the anti-neuroinflammatory effect of human adipose tissue-derived extracellular vesicles (ADSC-EVs) in microbead-induced ocular hypertension (OHT) animals and to explore the underlying mechanism since extracellular vesicles (EVs) are the primary transporters for cell secretory action. The anti-neuroinflammatory effect of ADSC-EVs on LPS-stimulated BV-2 cells in vitro and OHT-induced retinal and optic nerve injury in vivo was investigated. According to the in vitro research, ADSC-EV treatment reduced LPS-induced microglial activation and the TLR4/NF-κB proinflammatory cascade response axis in BV-2 cells, such as CD68, iNOS, TNF-α, IL-6, and IL-1ß, TLR4, p-38 MAPK, NF-κB. According to the in vivo data, intravitreal injection of ADSC-EVs promoted RGC survival and function, reduced microglial activation, microglial-derived neuroinflammatory responses, and TLR4/MAPK/NF-κB proinflammatory cascade response axis in the OHT mice. Our findings provide preliminary evidence for the RGC protective and microglia-associated neuroinflammatory reduction effects of ADSC-EVs by inhibiting the TLR4/MAPK/NF-κB proinflammatory cascade response in OHT mice, indicating the therapeutic potential ADSC-EVs or adjunctive therapy for glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Traumatismos del Nervio Óptico , Humanos , Ratas , Ratones , Animales , FN-kappa B/metabolismo , Microglía/metabolismo , Receptor Toll-Like 4/metabolismo , Células Ganglionares de la Retina/metabolismo , Lipopolisacáridos/farmacología , Hipertensión Ocular/metabolismo , Inflamación/metabolismo , Células Madre/metabolismo
2.
Neural Regen Res ; 19(10): 2310-2320, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488565

RESUMEN

JOURNAL/nrgr/04.03/01300535-202410000-00032/figure1/v/2024-02-06T055622Z/r/image-tiff Diabetic eye disease refers to a group of eye complications that occur in diabetic patients and include diabetic retinopathy, diabetic macular edema, diabetic cataracts, and diabetic glaucoma. However, the global epidemiology of these conditions has not been well characterized. In this study, we collected information on diabetic eye disease-related research grants from seven representative countries--the United States, China, Japan, the United Kingdom, Spain, Germany, and France--by searching for all global diabetic eye disease journal articles in the Web of Science and PubMed databases, all global registered clinical trials in the ClinicalTrials database, and new drugs approved by the United States, China, Japan, and EU agencies from 2012 to 2021. During this time period, diabetic retinopathy accounted for the vast majority (89.53%) of the 2288 government research grants that were funded to investigate diabetic eye disease, followed by diabetic macular edema (9.27%). The United States granted the most research funding for diabetic eye disease out of the seven countries assessed. The research objectives of grants focusing on diabetic retinopathy and diabetic macular edema differed by country. Additionally, the United States was dominant in terms of research output, publishing 17.53% of global papers about diabetic eye disease and receiving 22.58% of total citations. The United States and the United Kingdom led international collaborations in research into diabetic eye disease. Of the 415 clinical trials that we identified, diabetic macular edema was the major disease that was targeted for drug development (58.19%). Approximately half of the trials (49.13%) pertained to angiogenesis. However, few drugs were approved for ophthalmic (40 out of 1830; 2.19%) and diabetic eye disease (3 out of 1830; 0.02%) applications. Our findings show that basic and translational research related to diabetic eye disease in the past decade has not been highly active, and has yielded few new treatment methods and newly approved drugs.

3.
Stem Cell Res ; 73: 103263, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38011758

RESUMEN

X-linked retinoschisis (XLRS) is one of the most common retinal genetic diseases with progressive visual impairment in childhood affecting males. It is manifested with macular and/or peripheral schisis in neural retinas with no effective treatment. Previously, we successfully generated a human-induced pluripotent stem cell (iPSC) line from an XLRS patient carrying the hemizygous RS1 c. 304C > T (p.R102W) mutation. Here, we corrected the c.304C > T mutation in the RS1 gene using CRISPR/Cas9 technology to generate an isogenic control. This cell line is valuable for the study of XLRS.


Asunto(s)
Células Madre Pluripotentes Inducidas , Retinosquisis , Masculino , Humanos , Retinosquisis/genética , Retinosquisis/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Retina/metabolismo , Línea Celular , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo
4.
Invest Ophthalmol Vis Sci ; 64(13): 3, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788001

RESUMEN

Purpose: Diabetic retinopathy (DR) is a common complication of diabetes and has a high prevalence. Dysregulation of circadian rhythmicity is associated with the development of DR. This research aimed to investigate rhythmical transcriptome alterations in the retina of diabetic mice. Methods: C57BL/6J mice were used to establish a diabetes model by intraperitoneal injection of streptozotocin (STZ). After 12 weeks, retinas were collected continuously at 4-hour intervals over 1 day. Total RNA was extracted from normal and STZ-treated retinas and RNA sequencing was performed. Meta2d algorithm, Kyoto Encyclopedia of Genes, Phase Set Enrichment Analysis, and time-series cluster analysis were used to identify, analyze and annotate the composition, phase, and molecular functions of rhythmic transcripts in retinas. Results: The retina exhibited powerful transcriptome rhythmicity. STZ-induced diabetes markedly modified the transcriptome characteristics of the circadian transcriptome in the retina, including composition, phase, and amplitude. Moreover, the diabetic mice led to re-organized temporal and clustering enrichment pathways in space and time and affected core clock machinery. Conclusions: Diabetes impairs the circadian rhythm of the transcriptomic profile of retinas. This study offers new perspectives on the negative effects of diabetes on the retina, which may provide important information for the development of new treatments for DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Ratones , Animales , Transcriptoma , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Ratones Endogámicos C57BL , Retina/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Ritmo Circadiano/genética
5.
J Transl Med ; 21(1): 451, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420234

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) development is associated with disturbances in the gut microbiota and related metabolites. Butyric acid is one of the short-chain fatty acids (SCFAs), which has been found to possess a potential antidiabetic effect. However, whether butyrate has a role in DR remains elusive. This study aimed to investigate the effect and mechanism of sodium butyrate supplementation on DR. METHODS: C57BL/6J mice were divided into three groups: Control group, diabetic group, and diabetic with butyrate supplementation group. Type 1 diabetic mouse model was induced by streptozotocin. Sodium butyrate was administered by gavage to the experimental group daily for 12 weeks. Optic coherence tomography, hematoxylin-eosin, and immunostaining of whole-mount retina were used to value the changes in retinal structure. Electroretinography was performed to assess the retinal visual function. The tight junction proteins in intestinal tissue were evaluated using immunohistochemistry. 16S rRNA sequencing and LC-MS/MS were performed to determine the alteration and correlation of the gut microbiota and systemic SCFAs. RESULTS: Butyrate decreased blood glucose, food, and water consumption. Meanwhile, it alleviated retinal thinning and activated microglial cells but improved electroretinography visual function. Additionally, butyrate effectively enhanced the expression of ZO-1 and Occludin proteins in the small intestine. Crucially, only butyric acid, 4-methylvaleric acid, and caproic acid were significantly decreased in the plasma of diabetic mice and improved after butyrate supplementation. The deeper correlation analysis revealed nine genera strongly positively or negatively correlated with the above three SCFAs. Of note, all three positively correlated genera, including norank_f_Muribaculaceae, Ileibacterium, and Dubosiella, were significantly decreased in the diabetic mice with or without butyrate treatment. Interestingly, among the six negatively correlated genera, Escherichia-Shigella and Enterococcus were increased, while Lactobacillus, Bifidobacterium, Lachnospiraceae_NK4A136_group, and unclassified_f_Lachnospiraceae were decreased after butyrate supplementation. CONCLUSION: Together, these findings demonstrate the microbiota regulating and diabetic therapeutic effects of butyrate, which can be used as a potential food supplement alternative to DR medicine.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Microbioma Gastrointestinal , Animales , Ratones , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Retinopatía Diabética/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , ARN Ribosómico 16S , Cromatografía Liquida , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/uso terapéutico
6.
Methods Mol Biol ; 2678: 183-189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37326714

RESUMEN

Chromatin immunoprecipitation (ChIP) is one of the most widely used methods for investigating interactions between proteins and DNA sequences. ChIP plays an important role in the transcriptional regulation study, which can locate the target genes of transcription factors and cofactors or monitor the sequence-specific genomic regions of histone modification. To analyze the interaction between transcription factors and several candidate genes, ChIP coupled with quantitative PCR (ChIP-PCR) assay is a basic tool. With the development of next-generation sequencing technology, ChIP-coupled sequencing (ChIP-seq) can provide the protein-DNA interaction information in a genome-wide dimension, which helps a lot in identifying new target genes. This chapter describes a protocol for performing ChIP-seq of transcription factors from retinal tissues.


Asunto(s)
ADN , Factores de Transcripción , Animales , Ratones , ADN/genética , Factores de Transcripción/metabolismo , Inmunoprecipitación de Cromatina/métodos , Reacción en Cadena de la Polimerasa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Cromatina/genética
7.
Stem Cell Res ; 64: 102911, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36103774

RESUMEN

Retinitis pigmentosa (RP) is one of the most common inherited retinal diseases characterized by nyctalopia, progressive vision loss and visual field contraction. we previously generated an induced pluripotent stem cell line (CSUASOi004-A) from a RP patient with heterozygous PRPF6 c.2699 G>A (p.R900H) mutation. Here we corrected the PRPF6 c.2699 G>A mutation genetically using CRISPR/Cas9 technology to generate an isogenic control (CSUASOi004-A-1), which can provide a valuable resource in the research of the disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Retinitis Pigmentosa , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Heterocigoto , Mutación/genética , Retina/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Factores de Transcripción/genética
8.
Microvasc Res ; 139: 104239, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34520774

RESUMEN

With the dramatic rise in the aging population, researching age-related macular degeneration (AMD), especially the severe form neovascular AMD (nAMD), has become more important than ever. In this study, we found that collagen type X was increased in retina-choroid tissue of mice with laser-induced choroidal neovascularization (CNV) based on immunohistofluorescence. RNA sequencing and bioinformatic analyses were performed to compare the retina-choroid tissue complex of the CNV mouse model to normal controls. Collagen type X alpha 1 chain (Col10a1) was among the most significantly upregulated genes, and the results were validated with an animal model at the mRNA and protein levels by quantitative real-time polymerase chain reaction (qPCR) and western blotting, respectively. COL10A1 was also upregulated in human retinal microvascular endothelial cells (HRMECs), human umbilical vein endothelial cells (HUVECs), RPE19 cells and RF/6A cells under hypoxic conditions. Next, in vitro and in vivo experiments were performed to study the effect of COL10A1 on neovascularization. siRNA knockdown of COL10A1 suppressed the proliferation and tube formation ability of HRMECs under hypoxic conditions. Snail family transcriptional repressor 1 (SNAIL1) and angiopoietin-2 (ANGPT2) were downregulated in COL10A1 knockdown HRMECs under hypoxic conditions and thus were potential downstream genes. Significant decreases in CNV leakage and CNV lesion area, as assessed by fundus fluorescein angiography (FFA) and immunofluorescence of choroidal flat mounts, respectively, were observed in a mouse model intravitreally injected with anti-collagen X monoclonal antibody (mAb) compared to the controls. In conclusion, COL10A1 promotes CNV formation and may represent a new candidate target for the treatment and diagnosis of nAMD and other neovascular diseases.


Asunto(s)
Coroides/irrigación sanguínea , Neovascularización Coroidal/metabolismo , Colágeno Tipo X/metabolismo , Células Endoteliales/metabolismo , Degeneración Macular/metabolismo , Neovascularización Fisiológica , Angiopoyetina 2/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Hipoxia de la Célula , Línea Celular , Neovascularización Coroidal/genética , Neovascularización Coroidal/patología , Neovascularización Coroidal/prevención & control , Colágeno Tipo X/antagonistas & inhibidores , Colágeno Tipo X/genética , Colágeno Tipo X/inmunología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Degeneración Macular/prevención & control , Masculino , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Transducción de Señal , Factores de Transcripción de la Familia Snail/metabolismo
9.
J Inflamm Res ; 14: 5901-5918, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795498

RESUMEN

PURPOSE: Retinal inflammation is involved in the pathogenesis of several retinal diseases. As one of the core clock genes, Nr1d1 has been reported to suppress inflammation in many diseases. We investigated whether pharmacological activation of Nr1d1 can inhibit retinal inflammation and delineated the mechanisms of Nr1d1 in alleviating microglia activation. METHODS: Lipopolysaccharide (LPS) induced mice models were used to examine the effects of SR9009 (agonist of NR1D1) treatment on inflammatory phenotypes in vivo. Anti-inflammatory effects of Nr1d1 and associated mechanisms were investigated in the BV2 microglia cell line, and in primary retinal microglia in vitro. RESULTS: SR9009 treatment alleviated LPS-induced inflammatory cell infiltration, elevated cytokine levels and morphological changes of the microglia in mice models. In LPS-stimulated BV2 cells and primary retinal microglia, SR9009 suppressed cytokine expressions by inhibiting the NF-κB signaling pathway. Moreover, SR9009 treatment increased the levels of the M2 phenotype marker (CD206) and the proportions of ramified microglia. Suppression of Nr1d1 with siRNA reversed the inhibitory effects of SR9009 on cytokine production in BV2 cells. RNA-seq analysis showed that genes that were upregulated following Nr1d1 knockdown were enriched in inflammatory-associated biological processes. Subsequently, ChIP-seq of NR1D1 in BV2 was performed, and the results were integrated with RNA-seq results using the Binding and Expression Target Analysis (BETA) tool. Luciferase assays, electrophoretic mobility shift assay (EMSA), qPCR and Western blotting assays revealed that NR1D1 binds the promoter of Hmga2 to suppress its transcription. Notably, overexpressed Hmga2 in activated microglia could partly abolish the anti-inflammatory effects of Nr1d1. CONCLUSION: The clock gene Nr1d1 protects against retinal inflammation and microglia activation in part by suppressing Hmga2 transcription.

10.
Front Cell Infect Microbiol ; 11: 646348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816351

RESUMEN

The pathogenesis of type 2 diabetes mellitus (T2DM) is commonly associated with altered gut bacteria. However, whether the microbial dysbiosis that exists in human diabetic patients with or without retinopathy is different remains largely unknown. Here, we collected clinical information and fecal samples from 75 participants, including 25 diabetic patients without retinopathy (DM), 25 diabetic patients with retinopathy (DR), and 25 healthy controls (HC). The gut microbial composition in the three groups was analyzed using 16S ribosomal RNA (rRNA) gene sequencing. Microbial structure and composition differed in the three groups. The α and ß diversities in both the DM and DR groups were reduced compared with those in the HC group. Blautia was the most abundant genus, especially in the DM group. In addition, increased levels of Bifidobacterium and Lactobacillus and decreased levels of Escherichia-Shigella, Faecalibacterium, Eubacterium_hallii_group and Clostridium genera were observed in the DM and DR groups compared with the HC group. Furthermore, a biomarker set of 25 bacterial families, which could distinguish patients in the DR group from those in the DM and HC groups was identified, with the area under the curve values ranging from 0.69 to 0.85. Of note, Pasteurellaceae, which was increased in DM and decreased in DR compared with HC, generated a high AUC (0.74) as an individual predictive biomarker. Moreover, 14 family biomarkers were associated with fasting blood glucose levels or diabetes, with most of them being negatively correlated. In summary, our study establishes compositional alterations of gut microbiota in DM and DR, suggesting the potential use of gut microbiota as a non-invasive biomarker for clinical and differential diagnosis, as well as identifying potential therapeutic targets of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Microbioma Gastrointestinal , Disbiosis , Heces , Humanos , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA