Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(21): 6417-6424, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38710072

RESUMEN

The functional properties of complex oxides, including magnetism and ferroelectricity, are closely linked to subtle structural distortions. Ultrafast optical excitations provide the means to manipulate structural features and ultimately to affect the functional properties of complex oxides with picosecond-scale precision. We report that the lattice expansion of multiferroic BiFeO3 following above-bandgap optical excitation leads to distortion of the oxygen octahedral rotation (OOR) pattern. The continuous coupling between OOR and strain was probed using time-resolved X-ray free-electron laser diffraction with femtosecond time resolution. Density functional theory calculations predict a relationship between the OOR and the elastic strain consistent with the experiment, demonstrating a route to employing this approach in a wider range of systems. Ultrafast control of the functional properties of BiFeO3 thin films is enabled by this approach because the OOR phenomena are related to ferroelectricity, and via the Fe-O-Fe bond angles, the superexchange interaction between Fe atoms.

2.
Membranes (Basel) ; 12(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36295773

RESUMEN

Uncontrollable Zn dendrite formations and parasitic side reactions on Zn electrodes induce poor cycling stability and safety issues, preventing the large-scale commercialization of Zn-ion batteries. Herein, to achieve uniform Zn deposition and suppress side reactions, an electrospun ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) copolymer, a P(VDF-TrFE) nanofiber layer, is introduced as an artificial solid-electrolyte interface on a Cu substrate acting as a current collector. The aligned molecular structure of ß-P(VDF-TrFE) can effectively suppress localized current density on the Cu surface, lead to uniform Zn deposition, and suppress side reactions by preventing direct contact between electrodes and aqueous electrolytes. The half-cell configuration formed by the newly fabricated electrode can achieve an average coulombic efficiency of 99.2% over 300 cycles without short-circuiting at a current density of 1 mA cm-2 and areal capacity of 1 mAh cm-2. Stable cycling stability is also maintained for 200 cycles at a current density of 0.5 A g-1 in a full-cell test using MnO2 as a cathode.

3.
Nano Lett ; 22(11): 4294-4300, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35612522

RESUMEN

Optical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO3. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser diffraction reveals high-wavevector subpicosecond-time scale stress generation following ultraviolet excitation of a BiFeO3 thin film. Stress generation includes a fast component with a 1/e rise time with an upper limit of 300 fs and longer-rise time components extending to 1.5 ps. The contributions of the fast and delayed components vary as a function of optical fluence, with a reduced a fast-component contribution at high fluence. The results provide insight into stress-generation mechanisms linked to the population of excited electrons and point to new directions in the application of nanoscale multiferroics and related ferroic complex oxides. The fast component of the stress indicates that structural parameters and properties of ferroelectric thin film materials can be optically modulated with 3 dB bandwidths of at least 0.5 THz.

4.
Nat Commun ; 13(1): 720, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132055

RESUMEN

The explosive demand for a wide range of data processing has sparked interest towards a new logic gate platform as the existing electronic logic gates face limitations in accurate and fast computing. Accordingly, optoelectronic logic gates (OELGs) using photodiodes are of significant interest due to their broad bandwidth and fast data transmission, but complex configuration, power consumption, and low reliability issues are still inherent in these systems. Herein, we present a novel all-in-one OELG based on the bipolar spectral photoresponse characteristics of a self-powered perovskite photodetector (SPPD) having a back-to-back p+-i-n-p-p+ diode structure. Five representative logic gates ("AND", "OR", "NAND", "NOR", and "NOT") are demonstrated with only a single SPPD via the photocurrent polarity control. For practical applications, we propose a universal OELG platform of integrated 8 × 8 SPPD pixels, demonstrating the 100% accuracy in five logic gate operations irrelevant to current variation between pixels.

5.
Nanomaterials (Basel) ; 11(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802969

RESUMEN

A graphene photodetector decorated with Bi2Te3 nanowires (NWs) with a high gain of up to 3 × 104 and wide bandwidth window (400-2200 nm) has been demonstrated. The photoconductive gain was improved by two orders of magnitude compared to the gain of a photodetector using a graphene/Bi2Te3 nanoplate junction. Additionally, the position of photocurrent generation was investigated at the graphene/Bi2Te3 NWs junction. Eventually, with low bandgap Bi2Te3 NWs and a graphene junction, the photoresponsivity improved by 200% at 2200 nm (~0.09 mA/W).

6.
Nanoscale ; 12(16): 8701-8705, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32270150

RESUMEN

Understanding the mechanism of thermal energy transport in a single nanotube (NT) is essential for successfully engineering nanostructured conducting polymers to apply to thermoelectrics or flexible electronic devices. We report the characterization of the in-plane thermal energy transport in a single poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) NT via direct measurement of the in-plane thermal conductivity (κ). We also demonstrate that the in-plane κ of PEDOT:PSS NT can be tuned within the range of 0.19 to 1.92 W·m-1·K-1 merely by changing the solvent used to treat the NTs in the post-fabrication stage. The in-plane thermal energy transport in a pristine NT, with its low in-plane κ, is primarily due to phonons; in a sulfuric acid-treated NT however, significant electronic contributions lead to a high in-plane κ. The present study will contribute to understanding the mechanism of thermal energy transport in highly disordered structures, such as conducting polymers, and to designing highly efficient polymer-based devices in which in-plane κ plays a pivotal role in determining the energy conversion efficiency.

7.
J Chem Phys ; 152(3): 034704, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968967

RESUMEN

The correlation between the structural phase transition (SPT) and oxygen vacancy in SrRuO3 (SRO) thin films was investigated by in situ X-ray diffraction (XRD) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In situ XRD shows that the SPT occurs from a monoclinic SRO phase to a tetragonal SRO phase near ∼200 °C, regardless of the pressure environment. On the other hand, significant core level shifts in both the Ru and Sr photoemission spectra are found under ultrahigh vacuum, but not under the oxygen pressure environment. The directions and behavior of the core level shift of Ru and Sr are attributed to the formation of oxygen vacancy across the SPT temperature of SRO. The analysis of in situ XRD and AP-XPS results provides an evidence for the formation of metastable surface oxide possibly due to the migration of internal oxygen atoms across the SPT temperature, indicating the close relationship between oxygen vacancy and SPT in SRO thin films.

8.
Phys Rev Lett ; 123(21): 217601, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809179

RESUMEN

Epitaxial oxide ferroelectric films exhibit emerging phenomena arising from complex domain configurations even at pseudoequilibrium, including the creation of domain states unfavored in nature and abrupt piezoelectric coefficients around morphotropic phase boundaries. The nanometer-sized domain configurations and their domain switching dynamics under external stimuli are directly linked to the ultrafast manipulation of ferroelectric thin films; however, complex domain switching dynamics under homogeneous electric fields has not been fully explored, especially at the nanosecond timescale. This Letter reports the nanosecond dynamics of ferroelastic-domain switching from the 90° to 180° direction using time-resolved x-ray microdiffraction under homogeneous electric fields onto an epitaxial Pb(Zr_{0.35},Ti_{0.65})O_{3} film capacitor. It is found that the application of electric fields induces spatially heterogeneous domain switching processes via intermediate domain structures with rotated polarization vectors. In addition, the domain switching time is shown to be inversely proportional to the magnitude of the applied electric field, and electric fields higher than 480 kV/cm are found to complete the ferroelastic switching within nanoseconds.

9.
Nanoscale ; 11(47): 22813-22819, 2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31750490

RESUMEN

As an alternative to silicon-based solar cells, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted much attention and achieved a comparable power conversion efficiency (PCE) to silicon-based ones, although the perovskite materials can absorb only visible light. Hence, the challenge remains to enhance the PCE utilizing near infrared (NIR) light in the solar light spectrum. One of the easiest ways to utilize the NIR is to incorporate NIR active materials in PSCs such as up-conversion nanoparticles (UCNPs); however, such a stratergy is not simple to adopt in PSCs due to the inherent vurnerability of perovskite materials towards moisture. In this work, we present NIR-utilizing PSCs by locating UCNPs within the PSC structure by a simple dry transfer method. A maximum PCE of 15.56% was obtained in the case of PSC having the UCNPs located between the hole transport layer (HTL) and gold (Au) top electrode, which is an 8.4% enhancement compared to the cell without the UCNPs. This enhancement came from the combined effects of NIR light utilization and the surface plasmon resonance (SPR) phenomenon originating from the Au top electrode, which was interfacing the UCNPs.

10.
RSC Adv ; 9(26): 14868-14875, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35516303

RESUMEN

As promising photo-absorbing materials for photovoltaics, organic-inorganic hybrid perovskite materials such as methylammonium lead iodide and formamidinium lead iodide, have attracted lots of attention from many researchers. Among the various factors to be considered for high power conversion efficiency (PCE) in perovskite solar cells (PSCs), increasing the grain size of perovskite is most important. However, it is difficult to obtain a highly crystalline perovskite film with large grain size by using the conventional hot-plate annealing method because heat is transferred unidirectionally from the bottom to the top. In this work, we presented radiative thermal annealing (RTA) to improve the structural and electrical properties of perovskite films. Owing to the omnidirectional heat transfer, swift and uniform nuclei formation was possible within the perovskite film. An average grain size of 500 nm was obtained, which is 5 times larger than that of the perovskite film annealed on a hot-plate. This perovskite film led to an enhancement of photovoltaic performance of PSCs. Both short-circuit current density and PCE of the PSCs prepared by RTA were improved by 10%, compared to those of PSCs prepared by hot-plate annealing.

11.
RSC Adv ; 9(21): 11595-11601, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35517019

RESUMEN

Among the conducting polymers, poly(3,4-ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been extensively investigated for organic thermoelectric device applications owing to its high electrical conductivity (σ), flexibility and easy processability. The thermoelectric (TE) power factor - a factor that determines the efficiency of a thermoelectric material, is very critical in developing high-efficiency thermoelectric devices. The TE power factor of PEDOT:PSS requires further enhancement in realizing efficient organic TE devices. Recently, we have reported a layer-by-layer deposition technique to deposit PEDOT:PSS and poly aniline-camphor sulfonic acid (PANI-CSA) forming a PEDOT:PSS/PANI-CSA multilayer (ML) thin film structure with an enhanced thermoelectric power factor up to 49 µW m-1 K-1. However, there exist several ambiguities regarding the parameters that control the TE power factor in (ML) thin films. In order to identify the parameters that control the TE power factor of ML thin films, PEDOT:PSS/PANI-CSA ML thin films have been deposited by varying the deposition conditions such as spin speed, the number of layers, solvent treatment, and thickness of each layer. A thermoelectric power factor up to 325 µW m-1 K-1 is achieved by properly optimizing the spin speed, number of layers, and the thickness of each layer in ML thin films. The enhanced thermoelectric power factor is the result of multiple factors such as stretching of PEDOT chains, structural conformation change from benzoid to quinoid, and excess PSS removal from the top of the PEDOT:PSS layer through solvent treatment and at the PEDOT:PSS/PANI-CSA interface. Our study provides the basis for realizing an enhanced thermoelectric power factor of organic thermoelectric multilayer structures consisting of ultra-thin polymer thin films similar to inorganic superlattices having 2D confinement.

12.
ACS Appl Mater Interfaces ; 10(48): 41471-41478, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30406659

RESUMEN

The direction of ferroelectric polarization is prescribed by the symmetry of the crystal structure. Therefore, rotation of the polarization direction is largely limited, despite the opportunity it offers in understanding important dielectric phenomena such as piezoelectric response near the morphotropic phase boundaries and practical applications such as ferroelectric memory. In this study, we report the observation of continuous rotation of ferroelectric polarization in order-disorder-type LiNbO3 thin films. The spontaneous polarization could be tilted from an out-of-plane to an in-plane direction in the thin film by controlling the Li vacancy concentration within the hexagonal lattice framework. Partial inclusion of monoclinic-like phase is attributed to the breaking of macroscopic inversion symmetry along different directions and the emergence of ferroelectric polarization along the in-plane direction.

13.
Phys Chem Chem Phys ; 20(23): 16176-16183, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29862403

RESUMEN

In ferroelectric (FE) polymer-semiconducting polymer blend based organic resistive random access memory devices (ReRAM), the carriers are injected into the semiconductor region of the blend because of the polarization originated internal electric field in the FE polymer. A higher concentration of semiconducting polymer in the FE polymer-semiconducting polymer blends usually generate a high leakage current and degrades the FE characteristics of the FE polymer resulting in a high OFF current and consequently a low ON/OFF ratio. In order to achieve a high ON/OFF ratio in the FE polymer/semiconducting polymer blends, the FE properties of the FE polymer should be preserved. In this study, organic ReRAMs based on ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and ZnO nanoparticle (NPs) blends exhibiting bipolar resistive switching and a high ON/OFF ratio were realized using a low-cost solution process. Unlike conventional ferroelectric polymer-semiconducting polymer blend systems where FE characteristics are suppressed in ReRAMs, our Au/P(VDF-TrFE)_ZnO NPs/n++Si devices retain the FE characteristics of the P(VDF-TrFE) polymers. Our devices switch between bi-stable resistance states via the ferroelectric-assisted filamentary conduction mechanism. Based on ex situ transmission electron microscopy and elemental mapping analyses, we found that the resistive switching occurs through the formation of conduction paths consisting of Zn-rich/F-deficient regions. The device fabricated at a blend ratio of 20 wt% ZnO NPs in P(VDF-TrFE) matrix exhibited optimal stable resistive switching behavior with an ON/OFF ratio of up to 2 × 107 and a retention time of 104 s.

14.
Sci Rep ; 6: 38724, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929103

RESUMEN

For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling.

15.
Phys Rev Lett ; 107(5): 055501, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21867078

RESUMEN

The nanosecond response of a PbTiO(3)/SrTiO(3) ferroelectric/dielectric superlattice to applied electric fields is closely linked to the dynamics of striped domains of the remnant polarization. The intensity of domain satellite reflections observed with time-resolved x-ray microdiffraction decays in 5-100 ns depending on the magnitude of the electric field. The piezoelectric response of the superlattice within stripe domains is strongly suppressed due to electromechanical clamping between adjacent regions of opposite polarization. Regions of the superlattice that have been switched into a uniform polarization state by the applied electric field, however, exhibit piezoelectricity during the course of the switching process. We propose a switching model different from previous models of the switching of superlattices, based instead on a spatially heterogeneous transformation between striped and uniform polarization states.

16.
Nano Lett ; 11(8): 3080-4, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21728277

RESUMEN

Domains of remnant polarization can be written into ferroelectrics with nanoscale precision using scanning probe nanolithography techniques such as piezoresponse force microscopy (PFM). Understanding the structural effects accompanying this process has been challenging due to the lack of appropriate structural characterization tools. Synchrotron X-ray nanodiffraction provides images of the domain structure written by PFM into an epitaxial Pb(Zr,Ti)O(3) thin film and simultaneously reveals structural effects arising from the writing process. A coherent scattering simulation including the superposition of the beams simultaneously diffracted by multiple mosaic blocks provides an excellent fit to the observed diffraction patterns. Domains in which the polarization is reversed from the as-grown state have a strain of up to 0.1% representing the piezoelectric response to unscreened surface charges. An additional X-ray microdiffraction study of the photon-energy dependence of the difference in diffracted intensity between opposite polarization states shows that this contrast has a crystallographic origin. The sign and magnitude of the intensity contrast between domains of opposite polarization are consistent with the polarization expected from PFM images and with the writing of domains through the entire thickness of the ferroelectric layer. The strain induced by writing provides a significant additional contribution to the increased free energy of the written domain state with respect to a uniformly polarized state.

17.
Phys Rev Lett ; 104(20): 207601, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20867066

RESUMEN

The origin of the functional properties of complex oxide superlattices can be resolved using time-resolved synchrotron x-ray diffraction into contributions from the component layers making up the repeating unit. The CaTiO3 layers of a CaTiO3/BaTiO3 superlattice have a piezoelectric response to an applied electric field, consistent with a large continuous polarization throughout the superlattice. The overall piezoelectric coefficient at large strains, 54 pm/V, agrees with first-principles predictions in which a tetragonal symmetry is imposed on the superlattice by the SrTiO3 substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...