Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Rev Camb Philos Soc ; 99(3): 837-863, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38217090

RESUMEN

For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.


Asunto(s)
Bacterias Gramnegativas , Sistemas de Secreción Tipo III , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Bacterias Gramnegativas/fisiología , Animales , Humanos , Interacciones Huésped-Patógeno , Infecciones por Bacterias Gramnegativas/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
2.
PNAS Nexus ; 2(7): pgad235, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37529551

RESUMEN

Iron is an essential element involved in various metabolic processes. The ferritin family of proteins forms nanocage assembly and is involved in iron oxidation, storage, and mineralization. Although several structures of human ferritins and bacterioferritins have been solved, there is still no complete structure that shows both the trapped Fe-biomineral cluster and the nanocage. Furthermore, whereas the mechanism of iron trafficking has been explained using various approaches, structural details on the biomineralization process (i.e. the formation of the mineral itself) are generally lacking. Here, we report the cryo-electron microscopy (cryo-EM) structures of apoform and biomineral bound form (holoforms) of the Streptomyces coelicolor bacterioferritin (ScBfr) nanocage and the subunit crystal structure. The holoforms show different stages of Fe-biomineral accumulation inside the nanocage, in which the connections exist in two of the fourfold channels of the nanocage between the C-terminal of the ScBfr monomers and the Fe-biomineral cluster. The mutation and truncation of the bacterioferritin residues involved in these connections significantly reduced the iron and phosphate binding in comparison with those of the wild type and together explain the underlying mechanism. Collectively, our results represent a prototype for the bacterioferritin nanocage, which reveals insight into its biomineralization and the potential channel for bacterioferritin-associated iron trafficking.

3.
ACS Catal ; 13(7): 4949-4959, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066048

RESUMEN

Terpene synthases (TPSs), known gatekeepers of terpenoid diversity, are the main targets for enzyme engineering attempts. To this end, we have determined the crystal structure of Agrocybe pediades linalool synthase (Ap.LS), which has been recently reported to be 44-fold and 287-fold more efficient than bacterial and plant counterparts, respectively. Structure-based molecular modeling followed by in vivo as well as in vitro tests confirmed that the region of 60-69aa and Tyr299 (adjacent to the motif "WxxxxxRY") are essential for maintaining Ap.LS specificity toward a short-chain (C10) acyclic product. Ap.LS Y299 mutants (Y299A, Y299C, Y299G, Y299Q, and Y299S) yielded long-chain (C15) linear or cyclic products. Molecular modeling based on the Ap.LS crystal structure indicated that farnesyl pyrophosphate in the binding pocket of Ap.LS Y299A has less torsion strain energy compared to the wild-type Ap.LS, which can be partially attributed to the larger space in Ap.LS Y299A for better accommodation of the longer chain (C15). Linalool/nerolidol synthase Y298 and humulene synthase Y302 mutations also produced C15 cyclic products similar to Ap.LS Y299 mutants. Beyond the three enzymes, our analysis confirmed that most microbial TPSs have asparagine at the position and produce mainly cyclized products (δ-cadinene, 1,8-cineole, epi-cubebol, germacrene D, ß-barbatene, etc.). In contrast, those producing linear products (linalool and nerolidol) typically have a bulky tyrosine. The structural and functional analysis of an exceptionally selective linalool synthase, Ap.LS, presented in this work provides insights into factors that govern chain length (C10 or C15), water incorporation, and cyclization (cyclic vs acyclic) of terpenoid biosynthesis.

4.
PLoS Biol ; 21(3): e3002023, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36917574

RESUMEN

Cas12a is a programmable nuclease for adaptive immunity against invading nucleic acids in CRISPR-Cas systems. Here, we report the crystal structures of apo Cas12a from Lachnospiraceae bacterium MA2020 (Lb2) and the Lb2Cas12a+crRNA complex, as well as the cryo-EM structure and functional studies of the Lb2Cas12a+crRNA+DNA complex. We demonstrate that apo Lb2Cas12a assumes a unique, elongated conformation, whereas the Lb2Cas12a+crRNA binary complex exhibits a compact conformation that subsequently rearranges to a semi-open conformation in the Lb2Cas12a+crRNA+DNA ternary complex. Notably, in solution, apo Lb2Cas12a is dynamic and can exist in both elongated and compact forms. Residues from Met493 to Leu523 of the WED domain undergo major conformational changes to facilitate the required structural rearrangements. The REC lobe of Lb2Cas12a rotates 103° concomitant with rearrangement of the hinge region close to the WED and RuvC II domains to position the RNA-DNA duplex near the catalytic site. Our findings provide insight into crRNA recognition and the mechanism of target DNA cleavage.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , División del ADN , ARN/química , ADN/química , Proteínas Bacterianas/metabolismo
5.
FEBS J ; 290(9): 2437-2448, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36259273

RESUMEN

Glutaminase catalyses the metabolic process called glutaminolysis. Cancer cells harness glutaminolysis to increase energy reserves under stressful conditions for rapid proliferation. Glutaminases are upregulated in many tumours. In humans, the kidney-type glutaminase (KGA) isoform is highly expressed in the kidney, brain, intestine, foetal liver, lymphocytes and in many tumours. Glutaminase inhibition is shown to be effective in controlling cancers. Previously, we and others reported the inhibition mechanism of KGA using various inhibitors that target the active and allosteric sites of the enzyme. Here, we report the identification of a novel allosteric site in KGA using the compound DDP through its complex crystal structure combined with mutational and hydrogen-deuterium exchange mass spectrometry studies. This allosteric site is located at the dimer interface, situated ~ 31 Å away from the previously identified allosteric site and ~ 32 Å away from the active site. Remarkably, the mechanism of inhibition is conserved, irrespective of which allosteric pocket is targeted, causing the same conformational changes in the key loop near the active site (Glu312-Pro329) and subsequent enzyme inactivation. Contrary to the previously identified allosteric site, the identified new allosteric site is primarily hydrophilic. This site could be effectively targeted for the synthesis of specific and potent water-soluble inhibitors of glutaminase, which will lead to the development of anticancer drugs.


Asunto(s)
Antineoplásicos , Glutaminasa , Humanos , Sitio Alostérico , Glutaminasa/genética , Glutaminasa/metabolismo , Riñón/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Mutación
6.
Res Microbiol ; 173(3): 103918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34906677

RESUMEN

This study reports the isolation of a new Chromobacterium haemolyticum strain named WI5 from a hydroponic farming facility. WI5 exhibited remarkable bacterial antagonistic properties, eliminating Salmonella, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus (initial inoculum load ∼105 CFU/ml) in dual-species co-culture biofilms. Antagonism was strictly contact-dependent and highly influenced by nutrient availability. Next, we identified a complete suite of putative Type VI secretion system (T6SS) genes in the WI5 genome, annotated the gene locus architecture, and determined the crystal structure of hallmark T6SS tube protein Hcp1, which revealed a hexameric ring structure with an outer and inner diameter of 77 and 45 Å, respectively. Structural comparison with homologs showed differences in the key loops connecting the ß-strands in which the conserved residues are located, suggesting a role of these residues in the protein function. The T6SS is well-known to facilitate interbacterial competition, and the putative T6SS characterized herein might be responsible for the remarkable antagonism by C. haemolyticum WI5. Collectively, these findings shed light on the nature of bacterial antagonism and a putative key virulence determinant of C. haemolyticum, which might aid in further understanding its potential ecological role in natural habitats.


Asunto(s)
Sistemas de Secreción Tipo VI , Proteínas Bacterianas/metabolismo , Chromobacterium/genética , Chromobacterium/metabolismo , Escherichia coli/genética , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia/genética
7.
Protein Sci ; 31(2): 470-484, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800067

RESUMEN

Kazal-type protease inhibitor specificity is believed to be determined by sequence of the reactive-site loop that make most, if not all, contacts with the serine protease. Here, we determined the complex crystal structure of Aedes aegypti trypsin inhibitor (AaTI) with µ-plasmin, and compared its reactivities with other Kazal-type inhibitors, infestin-1 and infestin-4. We show that the shortened 99-loop of plasmin creates an S2 pocket, which is filled by phenylalanine at the P2 position of the reactive-site loop of infestin-4. In contrast, AaTI and infestin-1 retain a proline at P2, rendering the S2 pocket unfilled, which leads to lower plasmin inhibitions. Furthermore, the protein scaffold of AaTI is unstable, due to an elongated Cys-V to Cys-VI region leading to a less compact hydrophobic core. Chimeric study shows that the stability of the scaffold can be modified by swapping of this Cys-V to Cys-VI region between AaTI and infestin-4. The scaffold instability causes steric clashing of the bulky P2 residue, leading to significantly reduced inhibition of plasmin by AaTI or infestin-4 chimera. Our findings suggest that surface loops of protease and scaffold stability of Kazal-type inhibitor are both necessary for specific protease inhibition, in addition to reactive site loop sequence. PDB ID code: 7E50.


Asunto(s)
Aedes , Secuencia de Aminoácidos , Animales , Fibrinolisina , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Tripsina , Inhibidores de Tripsina/química , Inhibidores de Tripsina/farmacología
8.
Protein Sci ; 30(12): 2445-2456, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34658092

RESUMEN

Metallocarboxypeptidases (MCPs) in the mosquito midgut play crucial roles in infection, as well as in mosquito dietary digestion, reproduction, and development. MCPs are also part of the digestive system of plant-feeding insects, representing key targets for inhibitor development against mosquitoes/mosquito-borne pathogens or as antifeedant molecules against plant-feeding insects. Notably, some non-mosquito insect B-type MCPs are primarily insensitive to plant protease inhibitors (PPIs) such as the potato carboxypeptidase inhibitor (PCI; MW 4 kDa), an inhibitor explored for cancer treatment and insecticide design. Here, we report the crystal structure of Aedes aegypti carboxypeptidase-B1 (CPBAe1)-PCI complex and compared the binding with that of PCI-insensitive CPBs. We show that PCI accommodation is determined by key differences in the active-site regions of MCPs. In particular, the loop regions α6-α7 (Leu242 -Ser250 ) and ß8-α8 (Pro269 -Pro280 ) of CPBAe1 are replaced by α-helices in PCI-insensitive insect Helicoverpa zea CPBHz. These α-helices protrude into the active-site pocket of CPBHz, restricting PCI insertion and rendering the enzyme insensitive. We further compared our structure with the only other PCI complex available, bovine CPA1-PCI. The potency of PCI against CPBAe1 (Ki  = 14.7 nM) is marginally less than that of bovine CPA1 (Ki  = 5 nM). Structurally, the above loop regions that accommodate PCI binding in CPBAe1 are similar to that of bovine CPA1, although observed changes in proteases residues that interact with PCI could account for the differences in affinity. Our findings suggest that PCI sensitivity is largely dictated by structural interference, which broadens our understanding of carboxypeptidase inhibition as a mosquito population/parasite control strategy.


Asunto(s)
Aedes/enzimología , Carboxipeptidasa B/química , Carboxipeptidasas A/química , Proteínas de Insectos/química , Inhibidores de Proteasas/química , Secuencia de Aminoácidos , Animales , Carboxipeptidasa B/antagonistas & inhibidores , Carboxipeptidasa B/genética , Carboxipeptidasa B/metabolismo , Carboxipeptidasas A/antagonistas & inhibidores , Carboxipeptidasas A/genética , Carboxipeptidasas A/metabolismo , Dominio Catalítico , Bovinos , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Cinética , Modelos Moleculares , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Especificidad por Sustrato
9.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34006635

RESUMEN

Spatiotemporal regulation of signaling cascades is crucial for various biological pathways, under the control of a range of scaffolding proteins. The BNIP-2 and Cdc42GAP Homology (BCH) domain is a highly conserved module that targets small GTPases and their regulators. Proteins bearing BCH domains are key for driving cell elongation, retraction, membrane protrusion, and other aspects of active morphogenesis during cell migration, myoblast differentiation, and neuritogenesis. We previously showed that the BCH domain of p50RhoGAP (ARHGAP1) sequesters RhoA from inactivation by its adjacent GAP domain; however, the underlying molecular mechanism for RhoA inactivation by p50RhoGAP remains unknown. Here, we report the crystal structure of the BCH domain of p50RhoGAP Schizosaccharomyces pombe and model the human p50RhoGAP BCH domain to understand its regulatory function using in vitro and cell line studies. We show that the BCH domain adopts an intertwined dimeric structure with asymmetric monomers and harbors a unique RhoA-binding loop and a lipid-binding pocket that anchors prenylated RhoA. Interestingly, the ß5-strand of the BCH domain is involved in an intermolecular ß-sheet, which is crucial for inhibition of the adjacent GAP domain. A destabilizing mutation in the ß5-strand triggers the release of the GAP domain from autoinhibition. This renders p50RhoGAP active, thereby leading to RhoA inactivation and increased self-association of p50RhoGAP molecules via their BCH domains. Our results offer key insight into the concerted spatiotemporal regulation of Rho activity by BCH domain-containing proteins.


Asunto(s)
Diferenciación Celular/genética , Proteínas Activadoras de GTPasa/ultraestructura , Morfogénesis/genética , Proteína de Unión al GTP cdc42/ultraestructura , Proteína de Unión al GTP rhoA/ultraestructura , Secuencia de Aminoácidos/genética , Proteínas Portadoras/genética , Proteínas Portadoras/ultraestructura , Línea Celular , Movimiento Celular/genética , Endocitosis/genética , Proteínas Activadoras de GTPasa/genética , Humanos , Unión Proteica/genética , Estructura Terciaria de Proteína , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rhoA/genética
10.
Protein Sci ; 30(6): 1210-1220, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33884665

RESUMEN

Dicer is a member of the ribonuclease III enzyme family and processes double-stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non-canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis. The structure of the catalytically active region (the catalytic RNase III domain and double-stranded RNA-binding domain 1 [dsRBD1]) of DCR1 showed that RNaseIII domain is structurally similar to yeast RNase III (Rnt1p) but uniquely presents dsRBD1 in a diagonal orientation, forming a catalytic core made of homodimer and large RNA-binding surface. The second dsRNA binding domain at C-terminus, which is absent in Rnt1, enhances the RNA cleavage activity. Although the cleavage pattern of PsDCR1 anchors an apical loop similar to Rnt1, the cleavage activity depended on the sequence motif at the lower stem, not the apical loop, of hairpin RNA. Through RNA sequencing and RNA mutations, we showed that RNA cleavage by PsDCR1 is determined by the stem-loop structure of the RNA substrate, suggesting the possibility that stem-loop RNA-guided gene silencing pathway exists in budding yeast.


Asunto(s)
Proteínas Fúngicas/química , Conformación de Ácido Nucleico , Multimerización de Proteína , ARN de Hongos/química , Ribonucleasa III/química , Saccharomycetales/enzimología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Saccharomycetales/genética , Relación Estructura-Actividad
11.
Biochemistry ; 60(19): 1564-1568, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33929828

RESUMEN

Group A Streptococcus (GAS, or Streptococcus pyogenes) is a leading human bacterial pathogen with diverse clinical manifestations, ranging from mild to life-threatening and to severe immune sequela. These diseases, combined, account for more than half a million deaths per year, globally. To accomplish its vast pathogenic potential, GAS expresses a multitude of virulent proteins, including the pivotal virulence factor ScpC. ScpC is a narrow-range surface-exposed subtilisin-like serine protease that cleaves the last 14 C-terminal amino acids of interleukin 8 (IL-8 or CXCL8) and impairs essential IL-8 signaling processes. As a result, neutrophil migration, bacterial killing, and the formation of neutrophil extracellular traps are strongly impaired. Also, ScpC has been identified as a potential vaccine candidate. ScpC undergoes an autocatalytic cleavage between Gln244 and Ser245, resulting in two polypeptide chains that assemble together forming the active protease. Previously, we reported that the region harboring the autocatalytic cleavage site, stretching from Gln213 to Asp272, is completely disordered. Here, we show that a deletion mutant (ScpCΔ60) of this region forms a single polypeptide chain, whose crystal structure we determined at 2.9 Å resolution. Moreover, we show that ScpCΔ60 is an active protease capable of cleaving its substrate IL-8 in a manner comparable to that of the wild type. These studies improve our understanding of the proteolytic activity of ScpC.


Asunto(s)
Péptido Hidrolasas/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas Bacterianas/metabolismo , Catálisis , Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas/ultraestructura , Proteolisis , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/patología , Subtilisinas/metabolismo , Subtilisinas/ultraestructura , Virulencia , Factores de Virulencia/metabolismo
12.
Biochem J ; 477(20): 3951-3962, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33000863

RESUMEN

Snake venoms are complex mixtures of enzymes and nonenzymatic proteins that have evolved to immobilize and kill prey animals or deter predators. Among them, three-finger toxins (3FTxs) belong to the largest superfamily of nonenzymatic proteins. They share a common structure of three ß-stranded loops extending like fingers from a central core containing all four conserved disulfide bonds. Most 3FTxs are monomers and through subtle changes in their amino acid sequences, they interact with different receptors, ion channels and enzymes to exhibit a wide variety of biological effects. The 3FTxs have further expanded their pharmacological space through covalent or noncovalent dimerization. Synergistic-type toxins (SynTxs) isolated from the deadly mamba venoms, although nontoxic, have been known to enhance the toxicity of other venom proteins. However, the details of three-dimensional structure and molecular mechanism of activity of this unusual class of 3FTxs are unclear. We determined the first three-dimensional structure of a SynTx isolated from Dendroaspis jamesoni jamesoni (Jameson's mamba) venom. The SynTx forms a unique homodimer that is held together by an interchain disulfide bond. The dimeric interface is elaborate and encompasses loops II and III. In addition to the inter-subunit disulfide bond, the hydrogen bonds and hydrophobic interactions between the monomers contribute to the dimer formation. Besides, two sulfate ions that mediate interactions between the monomers. This unique quaternary structure is evolved through noncovalent homodimers such as κ-bungarotoxins. This novel dimerization further enhances the diversity in structure and function of 3FTxs.


Asunto(s)
Dendroaspis/metabolismo , Venenos Elapídicos/química , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Cristalografía por Rayos X , Dimerización , Disulfuros/química , Venenos Elapídicos/aislamiento & purificación , Elapidae/metabolismo , Evolución Molecular , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas en Tándem
13.
Biochemistry ; 59(30): 2788-2795, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32657577

RESUMEN

Human neutrophil elastase (hNE) is a serine protease that plays a major role in defending the bacterial infection. However, elevated expression of hNE is reported in lung and breast cancer, among others. Moreover, hNE is a target for the treatment of cardiopulmonary diseases. Ecotin (ET) is a serine protease inhibitor present in many Gram-negative bacteria, and it plays a physiological role in inhibiting host proteases, including hNE. Despite this known interaction, the structure of the hNE-ET complex has not been reported, and the mechanism of ecotin inhibition is not available. We determined the structure of the hNE-ET complex by molecular replacement method. The structure of the hNE-ET complex revealed the presence of six interface regions comprising 50s, 60s, and 80s loops, between the ET dimer and two independent hNE monomers, which explains the high affinity of ecotin for hNE (12 pM). Notably, we observed a secondary binding site of hNE located 24 Å from the primary binding site. Comparison of the closely related trypsin-ecotin complex with our hNE-ET complex shows movement of the backbone atoms of the 80s and 50s loops by 4.6 Å, suggesting the flexibility of these loops in inhibiting a range of proteases. Through a detailed structural analysis, we demonstrate the flexibility of the hNE subsites to dock various side chains concomitant with inhibition, indicating the broad specificity of hNE against various inhibitors. These findings will aid in the design of chimeric inhibitors that target both sites of hNE and in the development of therapeutics for controlling hNE-mediated pathogenesis.


Asunto(s)
Dominio Catalítico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/química , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/farmacología , Sitios de Unión , Humanos , Modelos Moleculares , Homología Estructural de Proteína , Relación Estructura-Actividad
14.
RNA ; 26(3): 290-305, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31907208

RESUMEN

microRNAs (miRNAs), a class of small and endogenous molecules that control gene expression, are broadly involved in biological processes. Although a number of cofactors that assist or antagonize let-7 miRNA biogenesis are well-established, more auxiliary factors remain to be investigated. Here, we identified SYNCRIP (Synaptotagmin Binding Cytoplasmic RNA Interacting Protein) as a new player for let-7a miRNA. SYNCRIP interacts with pri-let-7a both in vivo and in vitro. Knockdown of SYNCRIP impairs, while overexpression of SYNCRIP promotes, the expression of let-7a miRNA. A broad miRNA profiling analysis revealed that silencing of SYNCRIP regulates the expression of a set of mature miRNAs positively or negatively. In addition, SYNCRIP is associated with microprocessor complex and promotes the processing of pri-let-7a. Strikingly, the terminal loop of pri-let-7a was shown to be the main contributor for its interaction with SYNCRIP. Functional studies demonstrated that the SYNCRIP RRM2-3 domain can promote the processing of pri-let-7a. Structure-based alignment of RRM2-3 with other RNA binding proteins identified the residues likely to participate in protein-RNA interactions. Taken together, these findings suggest the promising role that SYNCRIP plays in miRNA regulation, thus providing insights into the function of SYNCRIP in eukaryotic development.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/genética , MicroARNs/genética , Proteínas de Unión al ARN/genética , Regulación de la Expresión Génica/genética , Humanos , MicroARNs/química , Ribonucleósido Difosfato Reductasa/genética
15.
Nucleic Acids Res ; 48(3): 1531-1550, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31807785

RESUMEN

FKBP53 is one of the seven multi-domain FK506-binding proteins present in Arabidopsis thaliana, and it is known to get targeted to the nucleus. It has a conserved PPIase domain at the C-terminus and a highly charged N-terminal stretch, which has been reported to bind to histone H3 and perform the function of a histone chaperone. To better understand the molecular details of this PPIase with histone chaperoning activity, we have solved the crystal structures of its terminal domains and functionally characterized them. The C-terminal domain showed strong PPIase activity, no role in histone chaperoning and revealed a monomeric five-beta palm-like fold that wrapped over a helix, typical of an FK506-binding domain. The N-terminal domain had a pentameric nucleoplasmin-fold; making this the first report of a plant nucleoplasmin structure. Further characterization revealed the N-terminal nucleoplasmin domain to interact with H2A/H2B and H3/H4 histone oligomers, individually, as well as simultaneously, suggesting two different binding sites for H2A/H2B and H3/H4. The pentameric domain assists nucleosome assembly and forms a discrete complex with pre-formed nucleosomes; wherein two pentamers bind to a nucleosome.


Asunto(s)
Proteínas de Arabidopsis/ultraestructura , Histonas/genética , Chaperonas Moleculares/ultraestructura , Nucleoplasminas/química , Proteínas de Unión a Tacrolimus/ultraestructura , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Ensamble y Desensamble de Cromatina/genética , Cristalografía por Rayos X , Histonas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleoplasminas/genética , Nucleosomas/química , Nucleosomas/genética , Isomerasa de Peptidilprolil/genética , Unión Proteica/genética , Dominios Proteicos/genética , Pliegue de Proteína , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/genética
16.
Br J Pharmacol ; 177(8): 1822-1840, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31877243

RESUMEN

BACKGROUND AND PURPOSE: Animal toxins have contributed significantly to our understanding of the neurobiology of receptors and ion channels. We studied the venom of the coral snake Micrurus fulvius fulvius and identified and characterized the structure and pharmacology of a new homodimeric neurotoxin, fulditoxin, that exhibited novel pharmacology at nicotinic ACh receptors (nAChRs). EXPERIMENTAL APPROACH: Fulditoxin was isolated by chromatography, chemically synthesized, its structure determined by X-ray crystallography, and its pharmacological actions on nAChRs characterized by organ bath assays and two-electrode voltage clamp electrophysiology. KEY RESULTS: Fulditoxin's distinct 1.95-Å quaternary structure revealed two short-chain three-finger α-neurotoxins (α-3FNTxs) non-covalently bound by hydrophobic interactions and an ability to bind metal and form tetrameric complexes, not reported previously for three-finger proteins. Although fulditoxin lacked all conserved amino acids canonically important for inhibiting nAChRs, it produced postsynaptic neuromuscular blockade of chick muscle at nanomolar concentrations, comparable to the prototypical α-bungarotoxin. This neuromuscular blockade was completely reversible, which is unusual for snake α-3FNTxs. Fulditoxin, therefore, interacts with nAChRs by utilizing a different pharmacophore. Unlike short-chain α-3FNTxs that bind only to muscle nAChRs, fulditoxin utilizes dimerization to expand its pharmacological targets to include human neuronal α4ß2, α7, and α3ß2 nAChRs which it blocked with IC50 values of 1.8, 7, and 12 µM respectively. CONCLUSIONS AND IMPLICATIONS: Based on its distinct quaternary structure and unusual pharmacology, we named this new class of dimeric Micrurus neurotoxins represented by fulditoxin as Σ-neurotoxins, which offers greater insight into understanding the interactions between nAChRs and peptide antagonists.


Asunto(s)
Receptores Nicotínicos , Acetilcolina , Secuencia de Aminoácidos , Animales , Bungarotoxinas , Humanos , Neurotoxinas , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Venenos de Serpiente
17.
Protein Sci ; 28(5): 952-963, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30891862

RESUMEN

ß-Cardiotoxin is a novel member of the snake venom three-finger toxin (3FTX) family. This is the first exogenous protein to antagonize ß-adrenergic receptors and thereby causing reduction in heart rates (bradycardia) when administered into animals, unlike the conventional cardiotoxins as reported earlier. 3FTXs are stable all ß-sheet peptides with 60-80 amino acid residues. Here, we describe the three-dimensional crystal structure of ß-cardiotoxin together with the identification of a molten globule intermediate in the unfolding pathway of this protein. In spite of the overall structural similarity of this protein with conventional cardiotoxins, there are notable differences observed at the loop region and in the charge distribution on the surface, which are known to be critical for cytolytic activity of cardiotoxins. The molten globule intermediate state present in the thermal unfolding pathway of ß-cardiotoxin was however not observed during the chemical denaturation of the protein. Interestingly, circular dichroism (CD) and NMR studies revealed the presence of α-helical secondary structure in the molten globule intermediate. These results point to substantial conformational plasticity of ß-cardiotoxin, which might aid the protein in responding to the sometimes conflicting demands of structure, stability, and function during its biological lifetime.


Asunto(s)
Cardiotoxinas/química , Ophiophagus hannah/metabolismo , Venenos de Serpiente/metabolismo , Animales , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Venenos de Serpiente/química
18.
FEBS J ; 285(21): 4060-4070, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30194714

RESUMEN

The Type VI Secretion System (T6SS) provides enhanced virulence to Campylobacter jejuni and has been associated with a high incidence of bloody diarrhea. The hemolysin-coregulated protein (Hcp)-the hallmark of the T6SS-can act as a structural and effector protein. Unlike other T6SS-harboring bacteria, which possess multiple Hcp proteins each performing different functions, C. jejuni possesses only one Hcp protein, and its structural and functional role has not been elucidated previously. Here, we report the structure and functional studies of Hcp from C. jejuni. We found similarities between the hexameric ring structure of Hcp-Cj and that of Hcp3 from Pseudomonas aeruginosa. Through functional studies, we showed two roles for Hcp-Cj that is, in cytotoxicity toward HepG2 cells and in biofilm formation in C. jejuni. In structure-based mutational analyses, we showed that an Arg-to-Ala mutation at position 30 within the extended loop results in a significant decrease in cytotoxicity, suggesting a role for this loop in binding to the host cell. However, this mutation does not affect its biofilm formation function. Collectively, this study supports the dual role of Hcp-Cj as a structural and effector protein in C. jejuni.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Campylobacter jejuni/patogenicidad , Proliferación Celular , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Sistemas de Secreción Tipo VI/química , Sistemas de Secreción Tipo VI/metabolismo , Secuencia de Aminoácidos , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/metabolismo , Cristalografía por Rayos X , Proteínas Hemolisinas/genética , Células Hep G2 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Dominios Proteicos , Homología de Secuencia , Sistemas de Secreción Tipo VI/genética , Virulencia
19.
Cell Rep ; 24(8): 1996-2004, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134162

RESUMEN

The human protein arginine methyltransferase NDUFAF7 controls the assembly of the ∼1-MDa mitochondrial complex I (CI; the NADH ubiquinone oxidoreductase) by methylating its subunit NDUFS2. We determined crystal structures of MidA, the Dictyostelium ortholog of NDUFAF7. The MidA catalytic core domain resembles other eukaryotic methyltransferases. However, three large core loops assemble into a regulatory domain that is likely to control ligand selection. Binding of MidA to NDUFS2 is weakened by methylation, suggesting a mechanism for methylation-controlled substrate release. Structural and bioinformatic analyses support that MidA and NDUFAF7 and their role in CI assembly are conserved from bacteria to humans, implying that protein methylation already existed in proteobacteria. In vivo studies confirmed the critical role of the MidA methyltransferase activity for CI assembly, growth, and phototaxis of Dictyostelium. Collectively, our data elucidate the origin of protein arginine methylation and its use by MidA/NDUFAF7 to regulate CI assembly.


Asunto(s)
Arginina/metabolismo , Metiltransferasas/metabolismo , Humanos , Metilación , NADH Deshidrogenasa
20.
Biochem J ; 475(17): 2847-2860, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30049896

RESUMEN

Group A Streptococcus (GAS; Streptococcus pyogenes) causes a wide range of infections, including pharyngitis, impetigo, and necrotizing fasciitis, and results in over half a million deaths annually. GAS ScpC (SpyCEP), a 180-kDa surface-exposed, subtilisin-like serine protease, acts as an essential virulence factor that helps S. pyogenes evade the innate immune response by cleaving and inactivating C-X-C chemokines. ScpC is thus a key candidate for the development of a vaccine against GAS and other pathogenic streptococcal species. Here, we report the crystal structures of full-length ScpC wild-type, the inactive mutant, and the ScpC-AEBSF inhibitor complex. We show ScpC to be a multi-domain, modular protein consisting of nine structural domains, of which the first five constitute the PR + A region required for catalytic activity. The four unique C-terminal domains of this protein are similar to collagen-binding and pilin proteins, suggesting an additional role for ScpC as an adhesin that might mediate the attachment of S. pyogenes to various host tissues. The Cat domain of ScpC is similar to subtilisin-like proteases with significant difference to dictate its specificity toward C-X-C chemokines. We further show that ScpC does not undergo structural rearrangement upon maturation. In the ScpC-inhibitor complex, the bound inhibitor breaks the hydrogen bond between active-site residues, which is essential for catalysis. Guided by our structure, we designed various epitopes and raised antibodies capable of neutralizing ScpC activity. Collectively, our results demonstrate the structure, maturation process, inhibition, and substrate recognition of GAS ScpC, and reveal the presence of functional domains at the C-terminal region.


Asunto(s)
Proteínas Bacterianas/química , Serina Endopeptidasas/química , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/patogenicidad , Factores de Virulencia/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Dominios Proteicos , Serina Endopeptidasas/genética , Streptococcus pyogenes/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...