Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Lasers Surg Med ; 56(4): 382-391, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570914

RESUMEN

BACKGROUND AND OBJECTIVES: Femtosecond laser trabeculotomy (FLT) creates aqueous humor outflow channels through the trabecular meshwork (TM) and is an emerging noninvasive treatment for open-angle glaucoma. The purpose of this study is to investigate the effect of pulse energy on outflow channel creation during FLT. MATERIALS AND METHODS: An FLT laser (ViaLase Inc.) was used to create outflow channels through the TM (500 µm wide by 200 µm high) in human cadaver eyes using pulse energies of 10, 15, and 20 µJ. Following treatment, tissues were fixed in 4% paraformaldehyde. The channels were imaged using optical coherence tomography (OCT) and assessed as full thickness, partial thickness, or not observable. RESULTS: Pulse energies of 15 and 20 µJ had a 100% success rate in creating full-thickness FLT channels as imaged by OCT. A pulse energy of 10 µJ resulted in no channels (n = 6), a partial-thickness channel (n = 2), and a full-thickness FLT channel (n = 2). There was a statistically significant difference in cutting widths between the 10 and 15 µJ groups (p < 0.0001), as well as between the 10 and 20 µJ groups (p < 0.0001). However, there was no statistically significant difference between the 15 and 20 µJ groups (p = 0.416). CONCLUSIONS: Fifteen microjoules is an adequate pulse energy to reliably create aqueous humor outflow channels during FLT in human cadaver eyes. OCT is a valuable tool when evaluating FLT.


Asunto(s)
Glaucoma de Ángulo Abierto , Trabeculectomía , Humanos , Trabeculectomía/métodos , Glaucoma de Ángulo Abierto/cirugía , Presión Intraocular , Rayos Láser , Cadáver
2.
Ocul Surf ; 31: 56-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042297

RESUMEN

PURPOSE: While changes in meibum quality are correlated with severity of meibomian gland dysfunction (MGD) and dry eye disease, little is known regarding the mechanics of meibum secretion. The purpose of this study was to develop a finite element model of meibum secretion and evaluate the effect of various factors that might impact meibum delivery to the ocular surface. METHODS: A finite element analysis in COMSOL 6.0 was used to simulate the flow of meibum within the gland's terminal excretory duct. Historical normal human meibum rheology data taken over the meibum melting range from fluid (35-40 °C) to solid (25-30 °C) were then used to calculate the minimum yield stress and plastic viscosity of meibum. The effects of meibum melting state, eyelid pressure and terminal duct diameter on meibum flow rates were then systematically investigated. RESULTS: The melting state of meibum from liquid to solid was associated with an increase in the minimum yield stress and plastic viscosity that caused an exponential decrease in meibum flow. Modeling also established that there was a linear correlation between meibum flow rate and eyelid pressure needed to express meibum and the 4th power of the terminal duct radius. CONCLUSIONS: Our results suggest that changes in the melting state of meibum from fluid to solid, as well as changes in the radius of the terminal excretory duct and the force exerted by the eyelid can lead to dramatic decreases in the flow of meibum. Together these findings suggest alternative mechanisms for meibomian gland obstruction.


Asunto(s)
Síndromes de Ojo Seco , Enfermedades de los Párpados , Disfunción de la Glándula de Meibomio , Humanos , Lágrimas , Glándulas Tarsales
3.
Ocul Surf ; 30: 150-159, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37683969

RESUMEN

Induced corneal collagen crosslinking and mechanical stiffening via ultraviolet-A photoactivation of riboflavin (UVA CXL) is now a common treatment for corneal ectasia and Keratoconus. Some effects of the procedure such as induced mechanical stiffening, corneal flattening, and cellular toxicity are well-known, but others remain more controversial. Authors report a variety of contradictory effects, and provide evidence based on individual results and observations. A full understanding of the effects of and mechanisms behind this procedure are essential to predicting its outcome. A growing interest in modifications to the standard UVA CXL protocol, such as transepithelial or accelerated UVA CXL, makes analyzing the literature as a whole more urgent. This review presents an analysis of both the agreed-upon and contradictory results reported and the various methods used to obtain them.


Asunto(s)
Córnea , Queratocono , Humanos , Rayos Ultravioleta , Colágeno , Riboflavina/farmacología , Riboflavina/uso terapéutico , Queratocono/tratamiento farmacológico , Reactivos de Enlaces Cruzados/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Sustancia Propia
4.
Sci Rep ; 13(1): 13861, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620338

RESUMEN

Iridocorneal angle (ICA) details particularly the trabecular meshwork (TM), Schlemm's canal (SC), and collector channels (CCs) play crucial roles in the regulation of the aqueous outflow in the eyes and are closely associated with glaucoma. Current clinical gonioscopy imaging provides no depth information, and studies of 3D high-resolution optical coherence tomography (OCT) imaging of these structures are limited. We developed a custom-built spectral-domain (SD-) OCT imaging system to fully characterize the angle details. Imaging of a human cadaver eye reveals the visibility of details in the TM/SC/CC region via a 'crossline' scanning and a series of image processing. This shows that ICA imaging can be used for preoperative glaucoma inspections in the clinical setting with the proposed prototype.


Asunto(s)
Glaucoma , Tomografía de Coherencia Óptica , Humanos , Glaucoma/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Donantes de Tejidos , Malla Trabecular/diagnóstico por imagen
5.
Ophthalmol Sci ; 3(4): 100313, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37363134

RESUMEN

Purpose: Pilot study to evaluate adverse events and intraocular pressure (IOP)-lowering of a novel, noninvasive glaucoma procedure, femtosecond laser, image-guided, high-precision trabeculotomy (FLIGHT). Design: Prospective, nonrandomized, single-center, interventional, single-arm clinical trial. Participants: Eighteen eyes from 12 patients with open-angle glaucoma. Methods: Eighteen eyes from 12 patients underwent FLIGHT, creating a single channel measuring 500-µm wide by 200-µm high through the trabecular meshwork and into Schlemm's canal. Adverse events, IOP, and other parameters were evaluated out to 24 months. Main Outcome Measures: Outcomes were the rates and types of adverse events and the rate of postprocedure best-corrected visual acuity loss (≥ 2 lines) compared with baseline. Efficacy outcomes were reduction in mean intraocular pressure (IOP) with respect to baseline and the percentage of eyes with a ≥ 20% reduction in IOP. Results: Eighteen eyes from 12 patients were enrolled in the study; 11 patients (17 eyes) returned at 24 months. There were no serious adverse events related to the laser treatment. Well-defined channels were clearly visible at 24 months by gonioscopy and anterior segment OCT, with no evidence of closure. At 24 months, the mean IOP was reduced by 34.6% from 22.3 ± 5.5 to 14.5 ± 2.6 mmHg (P < 5e-5), with an average of 2.0 ± 1.2 hypotensive medications compared with 2.2 ± 1.1 at baseline (P = 0.22). Fourteen out of the 17 study eyes (82.3%) achieved a ≥ 20% reduction in IOP at 24 months when compared with baseline. Conclusion: The FLIGHT system demonstrated a favorable safety profile in this initial pilot study, with no device-related serious adverse events. The channels appeared patent at 24 months, indicating medium-term durability. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

6.
Transl Vis Sci Technol ; 11(3): 28, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35333286

RESUMEN

Purpose: The purpose of this study was to investigate femtosecond laser trabeculotomy (FLT) in a clinically relevant manner (i.e., delivering the surgical laser beam through the cornea of the intact, human anterior segment to create channels from the anterior chamber into the Schlemm's canal) and to investigate the effect of this treatment on intraocular pressure in perfused human anterior segments. Methods: Perfused human anterior segments (15 eyes) received either FLT treatment (n = 8) or a sham-treatment (n = 7). Intraocular pressure (IOP) in the perfused samples was recorded before and after treatment. Spectral domain optical coherence tomography, second harmonic generation imaging, and transmission electron microscopy were used to investigate the FLT channels. Results: The FLT group (n = 7, 1 eye excluded) had a statistically significant reduction in mean IOP of 20.2% from baseline after treatment (5.06 ± 1.46 mm Hg to 4.04 ± 1.63 mm Hg; P < 0.0005), whereas the control group (n = 7) remained statistically unchanged (7.72 ± 3.45 mm Hg to 7.78 ± 3.51 mm Hg; P < 0.71). Imaging confirmed that the channels traversed the entire trabecular meshwork into the Schlemm's canal. Conclusions: This study has provided the first direct evidence supporting the feasibility of clinically applicable, noninvasive femtosecond laser trabeculotomy for the treatment of glaucoma. Various imaging modalities revealed minimal collateral damage to adjacent issues. Translational Relevance: This work demonstrates noninvasive femtosecond laser trabeculotomy in a laboratory setting that is clinically relevant.


Asunto(s)
Glaucoma , Trabeculectomía , Cadáver , Humanos , Rayos Láser , Malla Trabecular/cirugía , Trabeculectomía/métodos
7.
Transl Vis Sci Technol ; 10(9): 22, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34406341

RESUMEN

Purpose: This study investigated the initial feasibility of using femtosecond laser trabeculotomy (FLT) to create open channels through the trabecular meshwork into Schlemm's canal to lower intraocular pressure (IOP) in a perfused anterior segment model. Methods: Human anterior segments (12 eyes) were assigned to either treatment (n = 6) or sham treatment (n = 6) groups. Both groups were perfused until a baseline IOP was recorded upon which a direct FLT treatment or a sham treatment was administered. IOP was recorded before and after the treatment. Spectral domain optical coherence tomography and second harmonic generation imaging we used to investigate the FLT channels. Results: In the FLT group, there was a significant mean decrease in the IOP of 22% compared with the pre-FLT IOP (7.13 ± 2.95 mm Hg to 5.34 ± 1.62 mm Hg; P < 0.05). In the control group, the post-sham IOP remained relatively unchanged compared with the pre-sham IOP (6.39 ± 3.69 mm Hg to 6.67 ± 4.12 mm Hg). Conclusions: The results of this study indicate that FLT treatment can significantly decrease the IOP in a perfusion model and may provide a potential noninvasive treatment option for primary open angle glaucoma. Translational Relevance: Investigating the use of femtosecond lasers for photodisrupting the trabecular meshwork can lead to a clinically relevant alternative to current glaucoma procedures.


Asunto(s)
Glaucoma de Ángulo Abierto , Presión Intraocular , Glaucoma de Ángulo Abierto/cirugía , Humanos , Rayos Láser , Tonometría Ocular , Malla Trabecular
8.
Exp Eye Res ; 199: 108199, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32846150

RESUMEN

Ultraviolet A (UVA) light-based photoactivation of riboflavin (Rf) to induce corneal crosslinking (CXL) and mechanical stiffening is now a well-known treatment for corneal ectasia and Keratoconus that is being used in a topographically guided photorefractive intrastromal CXL (PiXL) procedure to treat low degrees of refractive errors. Alternative approaches for non-invasive treatment of refractive errors have also been proposed that use femtosecond lasers (FS) that provide much faster, more precise, and safer results than UVA CXL. One such treatment, nonlinear optical crosslinking (NLO CXL), has been able to replicate the effects of UVA CXL, while producing a smaller area of cellular damage and requiring a shorter procedure time. Unlike UVA CXL, the treatment volume of NLO CXL only occurs within the focal volume of the laser, which can be placed at any depth and scanned into any pattern for true topographically guided refractive correction. This review presents our experience with using FS lasers to photoactivate Rf and perform highly controlled corneal CXL that leads to mechanical stiffening and changes in corneal shape.


Asunto(s)
Colágeno/farmacología , Reactivos de Enlaces Cruzados/farmacología , Queratocono/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Refracción Ocular/efectos de los fármacos , Humanos , Queratocono/fisiopatología
9.
Transl Vis Sci Technol ; 9(6): 1, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32821498

RESUMEN

Purpose: This study describes a femtosecond laser (FS) approach to machine corneal epithelial microchannels for enhancing riboflavin (Rf) penetration into the cornea prior to corneal crosslinking (CXL). Methods: Using a 1030-nm FS laser with 5- to 10-µJ pulse energy, the corneal epithelium of slaughterhouse rabbit eyes was machined to create 2-µm-diameter by 25-µm-long microchannels at a density of 100 or 400 channels/mm2. Rf penetration through the microchannels was then determined by applying 1% Rf in phosphate-buffered saline for 30 minutes followed by removal of the cornea and extraction from the central stromal button. Stromal Rf concentrations were then compared to those obtained using standard epithelial debridement or 0.01% benzalkonium chloride (BAK) to disrupt the epithelial barrier. Results: Microchannels formed using a 5-µJ/pulse at a density of 400 channels/mm2 achieved a stromal Rf concentration that was 50% of that achieved by removal of the corneal epithelium and imbibing with 1% Rf. Stromal Rf levels were also equal to that of debrided corneas soaked with 0.5% Rf, threefold higher than those soaked with 0.1% Rf, and twofold higher than corneas soaked in BAK without epithelial debridement. Organ culture of treated corneas showed a normal corneal epithelium following FS machining while BAK-treated corneas showed extensive epithelial and stromal damage at 24 hours posttreatment. Conclusions: FS corneal epithelial machining can be used to enhance penetration of Rf into the stroma for corneal CXL. Translational Relevance: The creation of epithelial microchannels allows for stromal Rf concentrations high enough to perform true transepithelial crosslinking.


Asunto(s)
Epitelio Corneal , Fármacos Fotosensibilizantes , Animales , Córnea , Epitelio Corneal/cirugía , Rayos Láser , Conejos , Riboflavina
10.
Transl Vis Sci Technol ; 8(6): 35, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31890347

RESUMEN

PURPOSE: We have shown that nonlinear optical corneal crosslinking (NLO CXL) and stiffening can be achieved in ex vivo rabbit corneas using an 80-MHz, 760-nm femtosecond (FS) laser, however the required power was beyond the American National Standard Institute limit. The purpose of this study was to test the efficacy of amplified FS pulses to perform CXL to reduce power by increasing pulse energy. METHODS: A variable numerical aperture laser scanning delivery system was coupled to a 1030-nm laser with a noncollinear optical parametric amplifier to generate 760 nm, 50 to 150 kHz amplified FS pulses with 79.5-µm axial and 2.9-µm lateral two-photon focal volume. Ex vivo rabbit corneas received NLO CXL, and effectiveness was assessed by measuring collagen autofluorescence (CAF) and mechanical stiffening. NLO CXL was also performed in 14 live rabbits, and changes in corneal topography were measured using an Orbscan. RESULTS: Amplified pulses (0.3 µJ) generated significant CAF that increased logarithmically with decreasing scan speed; achieving equivalent CAF to UVA CXL at 15.5 mm/s. Indentation testing detected a 62% increase in stiffness compared to control, and corneal topography measurements revealed a significant decrease of 1.0 ± 0.8 diopter by 1 month (P < 0.05). CONCLUSIONS: These results show that NLO CXL using amplified pulses can produce corneal collagen CXL comparable to UVA CXL. TRANSLATIONAL RELEVANCE: NLO CXL using amplified pulses can produce corneal CXL comparable to UVA CXL, suggesting a potential clinical application in which NLO CXL can be used to perform personalized crosslinking for treatment of refractive errors and keratoconus.

11.
Exp Eye Res ; 177: 173-180, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30118656

RESUMEN

The purpose of this study was to measure collagen fiber crimping (CFC) using nonlinear optical imaging of second harmonic generated (SHG) signals to determine the effects of UVA-riboflavin induced corneal collagen crosslinking (UVA CXL) on collagen structure. Two groups, four rabbits each, were treated in the right eye with standard UVA CXL. In vivo confocal microscopy was performed at 1, 2, and 4 weeks after treatment for the first group and up to three months for the second group to measure epithelial/stromal thickness and corneal haze during recovery. Rabbits were sacrificed at one and three months, respectively, and their corneas fixed under pressure. Regions of crosslinking were identified by the presence of collagen autofluorescence (CAF) and then collagen structure was imaged using SHG microscopy. The degree of CFC was determined by measuring the percentage difference between the length of the collagen fiber and the linear distance traveled. CFC was measured in the central anterior and posterior CXL region, the peripheral non-crosslinked region in the same cornea, and the central cornea of the non-crosslinked contralateral eye. No change in corneal thickness was detected after one month, however the stromal thickness surpassed its original baseline thickness at three months by 25.9 µm. Corneal haze peaked at one month and then began to clear. Increased CAF was detected in all CXL corneas, localized to the anterior stroma and extending to 42.4 ±â€¯3.4% and 47.7 ±â€¯7.6% of the corneal thickness at one and three months. There was a significant (P < 0.05) reduction in CFC in the CAF region in all eyes averaging 1.007 ±â€¯0.006 and 1.009 ±â€¯0.005 in one and three month samples compared to 1.017 ±â€¯0.04 and 1.016 ±â€¯0.06 for controls. These results indicate that there is a significant reduction in collagen crimping following UVA CXL of approximately 1%. One possible explanation for this loss of crimping could be shortening of the collagen fibers over the CXL region.


Asunto(s)
Colágeno/química , Fármacos Fotosensibilizantes/farmacología , Riboflavina/farmacología , Rayos Ultravioleta , Animales , Sustancia Propia/efectos de los fármacos , Sustancia Propia/patología , Sustancia Propia/efectos de la radiación , Reactivos de Enlaces Cruzados , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/patología , Epitelio Corneal/efectos de la radiación , Conejos
12.
Exp Eye Res ; 175: 14-19, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29842851

RESUMEN

PURPOSE: Previous studies indicate that there is an axial gradient of collagen lamellar branching and anastomosing leading to regional differences in corneal tissue stiffness that may control corneal shape. To further test this hypothesis we have measured the axial material stiffness and quantified the collagen lamellar complexity in ectatic and mechanically weakened keratoconus corneas (KC). METHODS: Acoustic radiation force elastic microscopy (ARFEM) was used to probe the axial mechanical properties of the cone region of three donor KC buttons. 3 Dimensional second harmonic generation microscopy (3D-SHG) was used to qualitatively evaluate lamellar organization in 3 kC buttons and quantitatively measure lamellar branching point density (BPD) in a separate KC button that had been treated with epikeratophakia (Epi-KP). RESULTS: The mean elastic modulus for the KC corneas was 1.67 ±â€¯0.44 kPa anteriorly and 0.970 ±â€¯0.30 kPa posteriorly, substantially below that previously measured for normal human cornea. 3D-SHG of KC buttons showed a simplified collagen lamellar structure lacking noticeable angled lamellae in the region of the cone. BPD in the anterior, posterior, central and paracentral regions of the KC cornea were significantly lower than in the overlying Epi-KP lenticule. Additionally, BPD in the cone region was significantly lower than the adjacent paracentral region in the KC button. CONCLUSIONS: The KC cornea exhibits an axial gradient of mechanical stiffness and a BPD that appears substantially lower in the cone region compared to normal cornea. The findings reinforce the hypothesis that collagen architecture may control corneal mechanical stiffness and hence corneal shape.


Asunto(s)
Colágeno/metabolismo , Córnea/fisiopatología , Módulo de Elasticidad/fisiología , Queratocono/fisiopatología , Fenómenos Biomecánicos , Diagnóstico por Imagen de Elasticidad , Humanos , Imagenología Tridimensional , Donantes de Tejidos
13.
Prog Retin Eye Res ; 64: 65-76, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29398348

RESUMEN

Although the cornea is the major refractive element of the eye, the mechanisms controlling corneal shape and hence visual acuity remain unknown. To begin to address this question we have used multiphoton, non-linear optical microscopy to image second harmonic generated signals (SHG) from collagen to characterize the evolutionary and structural changes that occur in the collagen architecture of the corneal stroma. Our studies show that there is a progression in complexity of the stromal collagen organization from lower (fish and amphibians) to higher (birds and mammals) vertebrates, leading to increasing tissue stiffness that may control shape. In boney and cartilaginous fish, the cornea is composed of orthogonally arranged, rotating collagen sheets that extend from limbus to limbus with little or no interaction between adjacent sheets, a structural paradigm analogous to 'plywood'. In amphibians and reptiles, these sheets are broken down into broader lamellae that begin to show branching and anastomosing with adjacent lamellae, albeit maintaining their orthogonal, rotational organization. This paradigm is most complex in birds, which show the highest degree of lamellar branching and anastomosing, forming a 'chicken wire' like pattern most prominent in the midstroma. Mammals, on the other hand, diverged from the orthogonal, rotational organization and developed a random lamellar pattern with branching and anastomosing appearing highest in the anterior stroma, associated with higher mechanical stiffness compared to the posterior stroma.


Asunto(s)
Evolución Biológica , Sustancia Propia/anatomía & histología , Vertebrados/anatomía & histología , Animales , Fenómenos Biomecánicos , Colágeno/ultraestructura , Sustancia Propia/diagnóstico por imagen , Sustancia Propia/fisiología , Humanos , Microscopía Óptica no Lineal/métodos , Refracción Ocular/fisiología
14.
Biomed Opt Express ; 8(10): 4788-4797, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29082102

RESUMEN

The purpose of this study was to develop and test a nonlinear optical device to photoactivate riboflavin to produce spatially controlled collagen crosslinking and mechanical stiffening within the cornea. A nonlinear optical device using a variable numerical aperture objective was built and coupled to a Chameleon femtosecond laser. Ex vivo rabbit eyes were then saturated with riboflavin and scanned with various scanning parameters over a 4 mm area in the central cornea. Effectiveness of NLO CXL was assessed by evaluating corneal collagen auto fluorescence (CAF). To determine mechanical stiffening effects, corneas were removed from the eye and subjected to indentation testing using a 1 mm diameter probe and force transducer. NLO CXL was also compared to standard UVA CXL. The NLO CXL delivery device was able to induce a significant increase in corneal stiffness, comparable to the increase produced by standard UVA CXL.

15.
J Cataract Refract Surg ; 42(11): 1660-1665, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27956294

RESUMEN

PURPOSE: To determine whether riboflavin-induced collagen crosslinking (CXL) could be precisely achieved in the corneal stroma of ex vivo rabbit eyes using nonlinear optical excitation with a low numerical aperture lens and enlarged focal volume. SETTING: Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA. DESIGN: Experimental study. METHODS: The corneal epithelium was removed and the corneas were soaked in 0.5% riboflavin solution. Using a 0.1 numerical aperture objective, a theoretical excitation volume of 150 µm × 3 µm was generated using 1 W of 760 nm femtosecond laser light and raster scanned with 4.4 µm line separation at varying effective speeds over a 4.50 mm × 2.25 mm area. Corneal sections were examined for collagen autofluorescence. RESULTS: Collagen autofluorescence was enhanced 2.9 times compared with ultraviolet-A (UVA) CXL. Also, increasing speed was linearly associated with decreasing autofluorescence intensity. The slowest speed of 2.69 mm/s showed a mean of 182.97 µm ± 52.35 (SD) long autofluorescent scan lines axially in the central cornea compared with 147.84 ± 4.35 µm for UVA CXL. CONCLUSIONS: Decreasing dwell time was linearly associated with decreasing autofluorescence intensity, approaching that of UVA CXL at a speed of 8.9 mm/s. Using an effective speed of 8.9 mm/s, nonlinear optical CXL could be achieved over a 3.0 mm diameter area in fewer than 4 minutes. Further development of nonlinear optical CXL might result in safer, faster, and more effective CXL treatments. FINANCIAL DISCLOSURE: None of the authors has a financial or proprietary interest in any material or method mentioned.


Asunto(s)
Colágeno/análisis , Córnea/química , Sustancia Propia/química , Reactivos de Enlaces Cruzados/química , Animales , Colágeno/química , Fármacos Fotosensibilizantes , Conejos , Riboflavina , Rayos Ultravioleta
16.
Invest Ophthalmol Vis Sci ; 57(7): 3282-6, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27327584

RESUMEN

PURPOSE: The biomechanical properties of the cornea have an important role in determining the shape of the cornea and visual acuity. Since the cornea is a nonhomogeneous tissue, it is thought that the elastic properties vary throughout the cornea. We aim to measure a map of corneal elasticity across the cornea. METHODS: An acoustic radiation force elasticity microscope (ARFEM) was used to create a map of corneal elasticity in the human cornea. This ARFEM uses a low frequency, high intensity acoustic force to displace a femtosecond laser-generated microbubble, while using a high frequency, low intensity ultrasound to monitor the position of the microbubble within the cornea. From the displacement of the bubble and the magnitude of the acoustic radiation force, the local value of corneal elasticity is calculated in the direction of the displacement. Measurements were conducted at 6 locations, ranging from the central to peripheral cornea at anterior and posterior depths. RESULTS: The mean anterior elastic moduli were 4.2 ± 1.2, 3.4 ± 0.7, and 1.9 ± 0.7 kPa in the central, mid, and peripheral regions, respectively, while the posterior elastic moduli were 2.3 ± 0.7, 1.6 ± 0.3, and 2.9 ± 1.2 kPa in the same radial locations. CONCLUSIONS: We found that there is a unique distribution of elasticity axially and radially throughout the cornea.


Asunto(s)
Algoritmos , Simulación por Computador , Córnea/fisiología , Diagnóstico por Imagen de Elasticidad/métodos , Modelos Biológicos , Anciano de 80 o más Años , Cadáver , Córnea/diagnóstico por imagen , Módulo de Elasticidad/fisiología , Elasticidad , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Microscopía Acústica/métodos , Reproducibilidad de los Resultados
17.
J Refract Surg ; 31(3): 153-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25751830

RESUMEN

PURPOSE: To evaluate and compare the mechanical properties of anterior capsule opening performed with femtosecond laser capsulotomy at different energy settings in ex vivo porcine anterior lens capsule specimens. METHODS: Twenty-five fresh porcine eyes per group were included in the study. Femtosecond laser capsulotomy was performed with three different pulse energy levels: 2 µJ (low energy group), 5 µJ (intermediate energy group), and 10 µJ (high energy group). The capsule openings were stretched with universal testing equipment until they ruptured. The morphologic profile of the cut capsule edges was evaluated using scanning electron microscopy. RESULTS: The high energy group had significantly lower rupture force (108 ± 14 mN) compared to the intermediate energy group (118 ± 10 mN) (P < .05) and low energy group (119 ± 11 mN) (P < .05), but the difference between the intermediate energy and low energy groups was not significant (P = .9479). The high energy group had significantly lower circumference stretching ratio (144% ± 3%) compared to the intermediate energy group (148% ± 3%) (P < .05) and low energy group (148% ± 3%) (P < .05), but the difference between the intermediate energy group and low energy group was not significant (P = .9985). Scanning electron microscopy images showed that the edge was only serrated with low and intermediate energy, but additional signs of collagen melting and denaturation were observed at high energy. CONCLUSIONS: Anterior capsule openings created at a high energy level were slightly weaker and less extensible than those created at low or intermediate levels, possibly due to the increased thermal effect of photo-disruption.


Asunto(s)
Cápsula Anterior del Cristalino/fisiología , Elasticidad/fisiología , Capsulotomía Posterior/métodos , Animales , Cápsula Anterior del Cristalino/cirugía , Cápsula Anterior del Cristalino/ultraestructura , Fenómenos Biomecánicos , Microscopía Electrónica de Rastreo , Porcinos
18.
J Refract Surg ; 30(10): 660-4, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25291748

RESUMEN

PURPOSE: To evaluate and compare the mechanical properties of anterior capsule openings performed with the continuous curvilinear capsulorhexis (CCC) technique and femtosecond laser capsulotomy (FLC) in ex vivo porcine lens capsule specimens. METHODS: Fresh porcine eyes were included in the study (CCC group, n = 50; FLC group, n = 30). The capsule openings were stretched with universal testing equipment until they ruptured. The rupture force and circumference stretching ratio were evaluated. The morphologic profile of the cut capsule edges was evaluated using scanning electron microscopy (SEM). RESULTS: The average rupture force was higher in the CCC group (median: 155 mN; interquartile range [IQR]: 129 to 201 mN; range: 71 to 294 mN) than in the FLC group (median: 119 mN; IQR: 108 to 128 mN; range: 91 to 142 mN) (P < .01, Mann-Whitney U test). The average circumference stretching ratio in the CCC group was greater (median: 150%; IQR: 146% to 156%; range: 136% to 161%) than in the FLC group (median: 148%; IQR: 145% to 150%; range: 141% to 154%) (P = .0468, Mann-Whitney U test). When less than 71 mN, no capsular tear occurred in either group. When less than 91 mN, no capsular tear occurred in the FLC group, whereas at 91 mN, the probability of capsular tears was 9% for the CCC group. SEM examination found that the CCC group had smooth edges, whereas those of the FLC group were gently serrated. CONCLUSIONS: According to the current results in a porcine eye model, FLC had less average resistance to capsule tear than CCC, but the weakest openings were seen in the CCC group.


Asunto(s)
Cápsula Anterior del Cristalino/fisiología , Fenómenos Biomecánicos/fisiología , Capsulorrexis , Terapia por Láser , Animales , Cápsula Anterior del Cristalino/cirugía , Cápsula Anterior del Cristalino/ultraestructura , Microscopía Electrónica de Rastreo , Ruptura de la Cápsula Posterior del Ojo/fisiopatología , Estrés Mecánico , Porcinos
19.
J Biomed Opt ; 19(9): 98001, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25200394

RESUMEN

Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuriesin the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential useof laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ = 2.94 µm), titanium:sapphire femtosecond laser system (λ = 1700 nm), and Nd:glass femtosecond laser (λ = 1053 nm). Bovine samples were ablated at fluences of 8 to 18 J∕cm2 with the erbium:YAG laser, at a power of 300 ± 15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 µJ∕pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J∕cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.


Asunto(s)
Cartílago Articular/efectos de la radiación , Terapia por Láser/instrumentación , Rayos Láser , Animales , Cartílago Articular/patología , Cartílago Articular/fisiología , Bovinos
20.
Ultrasound Med Biol ; 40(7): 1671-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24726798

RESUMEN

To investigate the role of collagen structure in corneal biomechanics, measurement of localized corneal elasticity with minimal destruction to the tissue is necessary. We adopted the recently developed acoustic radiation force elastic microscopy (ARFEM) technique to measure localize biomechanical properties of the human cornea. In ARFEM, a low-frequency, high-intensity acoustic force is used to displace a femtosecond laser-generated microbubble, while high-frequency, low-intensity ultrasound is used to monitor the position of the microbubble within the cornea. Two ex vivo human corneas from a single donor were dehydrated to physiologic thickness, embedded in gelatin and then evaluated using the ARFEM technique. In the direction perpendicular to the corneal surface, ARFEM measurements provided elasticity values of E = 1.39 ± 0.28 kPa for the central anterior cornea and E = 0.71 ± 0.21 kPa for the central posterior cornea in pilot studies. The increased value of corneal elasticity in the anterior cornea correlates with the higher density of interweaving lamellae in this region.


Asunto(s)
Córnea/diagnóstico por imagen , Córnea/fisiología , Técnicas de Diagnóstico Oftalmológico , Diagnóstico por Imagen de Elasticidad/métodos , Pruebas de Dureza/métodos , Interpretación de Imagen Asistida por Computador/métodos , Microscopía Acústica/métodos , Algoritmos , Cadáver , Simulación por Computador , Módulo de Elasticidad/fisiología , Humanos , Técnicas In Vitro , Modelos Biológicos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...