Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(8): 3985-3993, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-37969033

RESUMEN

High-energy-density lithium-ion batteries (LIBs) are essential to meet the requirements of emerging technologies for advanced power storage and enhanced device performance. The next generation of LIBs will require high-capacity anode materials that move beyond the lithium intercalation chemistry of conventional graphite electrodes. The use of two-dimensional (2D) bilayer structures offers immediate advantages in the development of LIBs. Herein, motivated by the recently synthesized 2D Cairo pentagon nickel diazenide (NiN2) material, we conduct a scrutiny of the intercalation process of lithium atoms in the interlayer gap of NiN2/NiN2 homostructure. Based on density functional theory (DFT), we demonstrate that the diffusion energy barrier of lithium move across the NiN2/NiN2 anode is relatively low, ranging from 0.058 to 0.52 eV, and the corresponding reversible capacity reaches a remarkable value of 499.0927 mA h g-1 per formula unit, surpassing that of graphite (372 mA h g-1). Furthermore, we investigate a 2D van der Waals (vdW) heterostructure composed of pre-strained structures of graphene and NiN2 for use as an anode material in LIBs. It is found that the introduction of graphene leads to improvements in both electrochemical activity and deformation characteristics. The presented results provide theoretical support for the potential of bilayer structures combining NiN2, suggesting them as promising candidates for the development of high-performance anode materials.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36920880

RESUMEN

Corrections to the article by König and Smith [Acta Cryst. (2022), B78, 643-664] are given.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 4): 643-664, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35975831

RESUMEN

Setting out from our recent publication [König & Smith (2021). Acta Cryst. B77, 861], we extend our analytic description of the regular cross sections of zincblende- and diamond-structure nanowires (NWires) by introducing cross section morphing to arbitrary convex shapes featuring linear interfaces as encountered in experiment. To this end, we provide add-on terms to the existing number series with their respective running indices for zinc-blende- (zb-) and diamond-structure NWire cross sections. Such add-on terms to all variables yield the required flexibility for cross section morphing, with main variables presented by the number of NWire atoms NWire(dWire[i]), bonds between NWire atoms Nbnd(dWire[i]) and interface bonds NIF(dWire[i]). Other basic geometric variables, such as the specific length of interface facets, as well as widths, heights and total area of the cross section, are given as well. The cross sections refer to the six high-symmetry zb NWires with low-index faceting frequently occurring in the bottom-up and top-down approaches of NWire processing. The fundamental insights into NWire structures revealed here offer a universal gauge and thus enable major advancements in data interpretation and the understanding of all zb- and diamond-structure-based NWires with arbitrary convex cross sections. We corroborate this statement with an exact description of irregular Si NWire cross sections and irregular InGaAs/GaAs core-shell NWire cross sections, where a radially changing unit-cell parameter can be included.


Asunto(s)
Nanocables , Diamante/química , Nanocables/química , Propiedades de Superficie , Zinc/química
4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 4): 665-677, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35975832

RESUMEN

Setting out from König & Smith [Acta Cryst. (2019), B75, 788-802; Acta Cryst. (2021), B77, 861], we present an analytic description of nominal wurtzite-structure nanowire (NWire) cross sections, focusing on the underlying geometric-crystallographic description and on the associated number theory. For NWires with diameter dWire[i], we predict the number of NWire atoms NWire[i], the bonds between these Nbnd[i] and NWire interface bonds NIF[i] for a slab of unit-cell length, along with basic geometric variables, such as the specific length of interface facets, as well as widths, heights and total area of the cross section. These areas, the ratios of internal bonds per NWire atom, of internal-to-interface bonds and of interface bonds per NWire atom present fundamental tools to interpret any spectroscopic data which depend on the diameter and cross section shape of NWires. Our work paves the way for a fourth publication which - in analogy to König & Smith [Acta Cryst. (2022). B78, 643-664] - will provide adaptive number series to allow for arbitrary morphing of nominal w-structure NWire cross sections treated herein.


Asunto(s)
Nanocables , Cristalografía , Nanocables/química , Análisis Espectral
5.
ACS Appl Mater Interfaces ; 13(17): 20479-20488, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33878265

RESUMEN

Impurity doping in silicon (Si) ultra-large-scale integration is one of the key challenges which prevent further device miniaturization. Using ultraviolet photoelectron spectroscopy and X-ray absorption spectroscopy in the total fluorescence yield mode, we show that the lowest unoccupied and highest occupied electronic states of ≤3 nm thick SiO2-coated Si nanowells shift by up to 0.2 eV below the conduction band and ca. 0.7 eV below the valence band edge of bulk silicon, respectively. This nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) provides the means for low-nanoscale intrinsic Si (i-Si) to be flooded by electrons from an external (bigger, metallic) reservoir, thereby getting highly electron- (n-) conductive. While our findings deviate from the behavior commonly believed to govern the properties of silicon nanowells, they are further confirmed by the fundamental energy gap as per nanowell thickness when compared against published experimental data. Supporting our findings further with hybrid density functional theory calculations, we show that other group IV semiconductors (diamond, Ge) do respond to the NESSIAS effect in accord with Si. We predict adequate nanowire cross-sections (X-sections) from experimental nanowell data with a recently established crystallographic analysis, paving the way to undoped ultrasmall silicon electronic devices with significantly reduced gate lengths, using complementary metal-oxide-semiconductor-compatible materials.

6.
Nanoscale ; 12(37): 19340-19349, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32940305

RESUMEN

Silicon nanocrystals (Si NCs) are attractive candidates for biomarkers in medical imaging. Building on recent work [McVey et al., J. Chem. Phys. Lett., 2015, 6/9, 1573; McVey et al., Nanoscale, 2018, 15600], we focus on interstitial (i-) doping of Si NCs by transition metals (TMs), and investigate the optoelectronic structure with Zn as example. Carrying out extensive ground and excited state calculations using density functional theory (DFT), we provide insight into the interdependencies of parameters which define photoluminescence (PL) properties as per TM element, their position, and their density within Si NCs of realistic size. For i-Zn in Si NCs, we predict a very high radiation efficiency with a wavelength located well above the range of auto-luminescence originating from human tissue and blood. We derive general guidelines for i-TM doping of Si NCs to arrive at a desired emission wavelength with maximum radiation efficiency. Moving on from this general description, we reveal the concept of using the plasmonic resonance of i-TM dopants in the microwave (µW) spectrum to trigger selective thermal apoptosis of tagged cells in vivo after cell marking, paving the way towards a theragnostics tool with minimum side effects.


Asunto(s)
Nanopartículas , Silicio , Humanos , Luminiscencia , Zinc
7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 5): 788-802, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830758

RESUMEN

Semiconductor nanowires (NWires) experience stress and charge transfer from their environment and impurity atoms. In response, the environment of a NWire experiences a NWire stress response which may lead to propagated strain and a change in the shape and size of the NWire cross section. Here, geometric number series are deduced for zincblende- (zb-) and diamond-structured NWires of diameter dWire to obtain the numbers of NWire atoms NWire(dWire[i]), bonds between NWire atoms Nbnd(dWire[i]) and interface bonds NIF(dWire[i]) for six high-symmetry zb NWires with the low-index faceting that occurs frequently in both bottom-up and top-down approaches of NWire processing. Along with these primary parameters, the specific lengths of interface facets, the cross-sectional widths and heights and the cross-sectional areas are presented. The fundamental insights into NWire structures revealed here offer a universal gauge and thus could enable major advancements in data interpretation and understanding of all zb- and diamond-structure-based NWires. This statement is underpinned with results from the literature on cross-section images from III-V core-shell NWire growth and on Si NWires undergoing self-limiting oxidation and etching. The massive breakdown of impurity doping due to self-purification is shown to occur for both Si NWires and Si nanocrystals (NCs) for a ratio of Nbnd/NWire = Nbnd/NNC = 1.94 ±â€…0.01 using published experimental data.

8.
Beilstein J Nanotechnol ; 9: 2255-2264, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202694

RESUMEN

Impurity doping of ultrasmall nanoscale (usn) silicon (Si) currently used in ultralarge scale integration (ULSI) faces serious miniaturization challenges below the 14 nm technology node such as dopant out-diffusion and inactivation by clustering in Si-based field-effect transistors (FETs). Moreover, self-purification and massively increased ionization energy cause doping to fail for Si nano-crystals (NCs) showing quantum confinement. To introduce electron- (n-) or hole- (p-) type conductivity, usn-Si may not require doping, but an energy shift of electronic states with respect to the vacuum energy between different regions of usn-Si. We show in theory and experiment that usn-Si can experience a considerable energy offset of electronic states by embedding it in silicon dioxide (SiO2) or silicon nitride (Si3N4), whereby a few monolayers (MLs) of SiO2 or Si3N4 are enough to achieve these offsets. Our findings present an alternative to conventional impurity doping for ULSI, provide new opportunities for ultralow power electronics and open a whole new vista on the introduction of p- and n-type conductivity into usn-Si.

9.
ACS Appl Mater Interfaces ; 10(36): 30495-30505, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30110151

RESUMEN

Al2O3 on Si is known to form an ultrathin interfacial SiO2 during deposition and subsequent annealing, which creates a negative fixed charge ( Qfix) that enables field-effect passivation and low surface recombination velocities in Si solar cells. Various concepts were suggested to explain the origin of this negative Qfix. In this study, we investigate Al-O monolayers (MLs) from atomic layer deposition (ALD) sandwiched between deliberately grown/deposited SiO2 films. We show that the Al atoms have an ultralow diffusion coefficient (∼4 × 10-18 cm2/s at 1000 °C), are deposited at a constant rate of ∼5 × 1014 Al atoms/(cm2 cycle) from the first ALD cycle, and are tetrahedral O-coordinated because the adjacent SiO2 imprints its tetrahedral near-order and bond length into the Al-O MLs. By variation in the tunnel-SiO2 thickness and the number of Al-O MLs, we demonstrate that the tetrahedral coordination alone is not sufficient for the formation of Qfix but that a SiO2/Al2O3 interface within a tunneling distance from the substrate must be present. The Al-induced acceptor states at these interfaces have energy levels slightly below the Si valence band edge and require charging by electrons from either the Si substrate or from Si/SiO2 dangling bonds to create a negative Qfix. Hence, tunneling imposes limitations for the SiO2 and Al2O3 layer thicknesses. In addition, Coulomb repulsion between the charged acceptor states results in an optimum number of Al-O MLs, i.e., separation of both interfaces. We achieve maximum negative Qfix of ∼5 × 1012 cm-2 (comparable to thick ALD-Al2O3 on Si) with ∼1.7 nm tunnel-SiO2 and just seven ALD-Al2O3 cycles (∼8 Å) after optimized annealing at 850 °C for 30 s. The findings are discussed in the context of a passivating, hole-selective tunnel contact for high-efficiency Si solar cells.

10.
Beilstein J Nanotechnol ; 9: 1501-1511, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977683

RESUMEN

Phosphorus- and boron-doped silicon nanocrystals (Si NCs) embedded in silicon oxide matrix can be fabricated by plasma-enhanced chemical vapour deposition (PECVD). Conventionally, SiH4 and N2O are used as precursor gasses, which inevitably leads to the incorporation of ≈10 atom % nitrogen, rendering the matrix a silicon oxynitride. Alternatively, SiH4 and O2 can be used, which allows for completely N-free silicon oxide. In this work, we investigate the properties of B- and P-incorporating Si NCs embedded in pure silicon oxide compared to silicon oxynitride by atom probe tomography (APT), low-temperature photoluminescence (PL), transient transmission (TT), and current-voltage (I-V) measurements. The results clearly show that no free carriers, neither from P- nor from B-doping, exist in the Si NCs, although in some configurations charge carriers can be generated by electric field ionization. The absence of free carriers in Si NCs ≤5 nm in diameter despite the presence of P- or B-atoms has severe implications for future applications of conventional impurity doping of Si in sub-10 nm technology nodes.

11.
Sci Rep ; 7(1): 8337, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827565

RESUMEN

Boron (B) doping of silicon nanocrystals requires the incorporation of a B-atom on a lattice site of the quantum dot and its ionization at room temperature. In case of successful B-doping the majority carriers (holes) should quench the photoluminescence of Si nanocrystals via non-radiative Auger recombination. In addition, the holes should allow for a non-transient electrical current. However, on the bottom end of the nanoscale, both substitutional incorporation and ionization are subject to significant increase in their respective energies due to confinement and size effects. Nevertheless, successful B-doping of Si nanocrystals was reported for certain structural conditions. Here, we investigate B-doping for small, well-dispersed Si nanocrystals with low and moderate B-concentrations. While small amounts of B-atoms are incorporated into these nanocrystals, they hardly affect their optical or electrical properties. If the B-concentration exceeds ~1 at%, the luminescence quantum yield is significantly quenched, whereas electrical measurements do not reveal free carriers. This observation suggests a photoluminescence quenching mechanism based on B-induced defect states. By means of density functional theory calculations, we prove that B creates multiple states in the bandgap of Si and SiO2. We conclude that non-percolated ultra-small Si nanocrystals cannot be efficiently B-doped.

12.
Sci Rep ; 7(1): 863, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28408757

RESUMEN

Phosphorus doping of silicon nanostructures is a non-trivial task due to problems with confinement, self-purification and statistics of small numbers. Although P-atoms incorporated in Si nanostructures influence their optical and electrical properties, the existence of free majority carriers, as required to control electronic properties, is controversial. Here, we correlate structural, optical and electrical results of size-controlled, P-incorporating Si nanocrystals with simulation data to address the role of interstitial and substitutional P-atoms. Whereas atom probe tomography proves that P-incorporation scales with nanocrystal size, luminescence spectra indicate that even nanocrystals with several P-atoms still emit light. Current-voltage measurements demonstrate that majority carriers must be generated by field emission to overcome the P-ionization energies of 110-260 meV. In absence of electrical fields at room temperature, no significant free carrier densities are present, which disproves the concept of luminescence quenching via Auger recombination. Instead, we propose non-radiative recombination via interstitial-P induced states as quenching mechanism. Since only substitutional-P provides occupied states near the Si conduction band, we use the electrically measured carrier density to derive formation energies of ~400 meV for P-atoms on Si nanocrystal lattice sites. Based on these results we conclude that ultrasmall Si nanovolumes cannot be efficiently P-doped.

13.
Sci Rep ; 7: 46703, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425460

RESUMEN

All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements.

14.
Sci Rep ; 5: 9702, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25997696

RESUMEN

Up to now, no consensus exists about the electronic nature of phosphorus (P) as donor for SiO2-embedded silicon nanocrystals (SiNCs). Here, we report on hybrid density functional theory (h-DFT) calculations of P in the SiNC/SiO2 system matching our experimental findings. Relevant P configurations within SiNCs, at SiNC surfaces, within the sub-oxide interface shell and in the SiO2 matrix were evaluated. Atom probe tomography (APT) and its statistical evaluation provide detailed spatial P distributions. For the first time, we obtain ionisation states of P atoms in the SiNC/SiO2 system at room temperature using X-ray absorption near edge structure (XANES) spectroscopy, eliminating structural artefacts due to sputtering as occurring in XPS. K energies of P in SiO2 and SiNC/SiO2 superlattices (SLs) were calibrated with non-degenerate P-doped Si wafers. results confirm measured core level energies, connecting and explaining XANES spectra with h-DFT electronic structures. While P can diffuse into SiNCs and predominantly resides on interstitial sites, its ionization probability is extremely low, rendering P unsuitable for introducing electrons into SiNCs embedded in SiO2. Increased sample conductivity and photoluminescence (PL) quenching previously assigned to ionized P donors originate from deep defect levels due to P.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...