Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-483032

RESUMEN

The emerging SARS-CoV-2 variants of concern (VOCs) exhibit enhanced transmission and immune escape, reducing the efficacy and effectiveness of the two FDA-approved mRNA vaccines. Here, we explored various strategies to develop novel mRNAs vaccines to achieve safer and wider coverage of VOCs. Firstly, we constructed a cohort of mRNAs that feature a furin cleavage mutation in the spike (S) protein of predominant VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2). Not present in the mRNA vaccines currently in use, the mutation abolished the cleavage between the S1 and S2 subunits, potentially enhancing the safety profile of the immunogen. Secondly, we systematically evaluated the induction of neutralizing antibodies (nAb) in vaccinated mice, and discovered that individual VOC mRNAs elicited strong neutralizing activity in a VOC-specific manner. Thirdly, the IgG produced in mice immunized with Beta-Furin and Washington (WA)-Furin mRNAs showed potent cross-reactivity with other VOCs, which was further corroborated by challenging vaccinated mice with the live virus of VOCs. However, neither WA-Furin nor Beta-Furin mRNA elicited strong neutralizing activity against the Omicron variant. Hence, we further developed an Omicron-specific mRNA vaccine that restored protection against the original and the sublineages of Omicron variant. Finally, to broaden the protection spectrum of the new Omicron mRNA vaccine, we tested the concept of bivalent immunogen. Instead of just fusing two RBDs head-to-tail, we for the first time constructed an mRNA-based chimeric immunogen by introducing the RBD of Delta variant into the entire S antigen of Omicron. The resultant chimeric mRNA was capable of inducing potent and broadly acting nAb against Omicron (both BA.1 and BA.2) and Delta, which paves the way to develop new vaccine candidate to target emerging variants in the future.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-476998

RESUMEN

The continual emergence of SARS-CoV-2 variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant, has rendered ineffective a number of previously EUA approved SARS-CoV-2 neutralizing antibody therapies. Furthermore, even those approved antibodies with neutralizing activity against Omicron are reportedly ineffective against the subset of Omicron variants that contain a R346K substitution, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. Following a campaign of antibody discovery based on the vaccination of Harbour H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of Spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against the Omicron and Omicron + R346K variants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for use in human clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...