Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Genes (Basel) ; 15(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38790254

RESUMEN

Pathogenic variants in the Crumbs homolog 1 (CRB1) gene lead to severe, childhood-onset retinal degeneration leading to blindness in early adulthood. There are no approved therapies, and traditional adeno-associated viral vector-based gene therapy approaches are challenged by the existence of multiple CRB1 isoforms. Here, we describe three CRB1 variants, including a novel, previously unreported variant that led to retinal degeneration. We offer a CRISPR-Cas-mediated DNA base editing strategy as a potential future therapeutic approach. This study is a retrospective case series. Clinical and genetic assessments were performed, including deep phenotyping by retinal imaging. In silico analyses were used to predict the pathogenicity of the novel variant and to determine whether the variants are amenable to DNA base editing strategies. Case 1 was a 24-year-old male with cone-rod dystrophy and retinal thickening typical of CRB1 retinopathy. He had a relatively preserved central outer retinal structure and a best corrected visual acuity (BCVA) of 60 ETDRS letters in both eyes. Genetic testing revealed compound heterozygous variants in exon 9: c.2843G>A, p.(Cys948Tyr) and a novel variant, c.2833G>A, p.(Gly945Arg), which was predicted to likely be pathogenic by an in silico analysis. Cases 2 and 3 were two brothers, aged 20 and 24, who presented with severe cone-rod dystrophy and a significant disruption of the outer nuclear layers. The BCVA was reduced to hand movements in both eyes in Case 2 and to 42 ETDRS letters in both eyes in Case 3. Case 2 was also affected with marked cystoid macular lesions, which are common in CRB1 retinopathy, but responded well to treatment with oral acetazolamide. Genetic testing revealed two c.2234C>T, p.(Thr745Met) variants in both brothers. As G-to-A and C-to-T variants, all three variants are amenable to adenine base editors (ABEs) targeting the forward strand in the Case 1 variants and the reverse strand in Cases 2 and 3. Available PAM sites were detected for KKH-nSaCas9-ABE8e for the c.2843G>A variant, nSaCas9-ABE8e and KKH-nSaCas9-ABE8e for the c.2833G>A variant, and nSpCas9-ABE8e for the c.2234C>T variant. In this case series, we report three pathogenic CRB1 variants, including a novel c.2833G>A variant associated with early-onset cone-rod dystrophy. We highlight the severity and rapid progression of the disease and offer ABEs as a potential future therapeutic approach for this devastating blinding condition.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas del Ojo , Edición Génica , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Humanos , Masculino , Edición Génica/métodos , Proteínas de la Membrana/genética , Adulto Joven , Proteínas del Ojo/genética , Proteínas del Tejido Nervioso/genética , Adulto , Distrofias de Conos y Bastones/genética , Distrofias de Conos y Bastones/patología , Femenino , Simulación por Computador , Terapia Genética/métodos , Estudios Retrospectivos
2.
Ophthalmic Genet ; 45(2): 201-206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37728066

RESUMEN

PURPOSE: Retinitis pigmentosa (RP) associated with biallelic variants in CDHR1 has rarely been reported, and detailed phenotyping data are not available. RP implies relative preservation of foveal cones, when compared to cone-rod dystrophy associated with biallelic null variants in CDHR1. We hypothesize that RP may occur in association with one or more hypomorphic CDHR1 alleles. MATERIALS AND METHODS: Retrospective report of a 48-year-old patient with CDHR1-associated RP with a hypomorphic missense variant c.562 G>A, p. (Gly188Ser) and a novel, unreported variant affecting a canonical splice acceptor site (c.784-1 G>C). Clinical examination, multimodal retinal imaging, electroretinography, visual field testing, and mesopic microperimetry were undertaken 8 years apart. Scotopic microperimetry was also performed. The DNA sequence context of the variants was examined to identify theoretical CRISPR-Cas9 base-editing strategies. RESULTS: The patient presented at 35 years with a 12-year history of nyctalopia. His best corrected visual acuity was 20/20. Clinical presentation, multimodal retinal imaging studies, electroretinography, and mesopic microperimetry were typical of a progressive rod-cone dystrophy (i.e. classic RP). There were no scotomas within the central field as would be expected at this age in CDHR1-associated cone-rod dystrophy. Scotopic microperimetry suggested some preservation of macular cone over rod function, although both were severely impaired. A suitable CRISPR adenine base editor was identified that could theoretically correct the missense variant c.562 G>A, p. (Gly188Ser). CONCLUSIONS: CDHR1-associated RP shows a relative preservation of cone function in the presence of a presumed hypomorphic allele and may be considered a hypomorphic disease phenotype. Further work is required to identify modifying factors that determine disease phenotype since macular dystrophy, with relative sparing of rods, may also occur with hypomorphic CDHR1 alleles.


Asunto(s)
Distrofias de Conos y Bastones , Retinitis Pigmentosa , Humanos , Proteínas Relacionadas con las Cadherinas , Distrofias de Conos y Bastones/genética , Electrorretinografía , Mutación , Proteínas del Tejido Nervioso/genética , Fenotipo , Retina , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Estudios Retrospectivos , Adulto
3.
Anim Genet ; 54(5): 606-612, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37438956

RESUMEN

Hemophilia A is the most common inherited coagulation factor disorder in dogs. It manifests as excessive bleeding resulting from pathogenic variants in the X-chromosomal F8 gene encoding coagulation factor VIII (FVIII) protein. In this study, we performed careful clinical phenotyping to confirm hemophilia A in two distinct Labrador Retriever (LR) pedigrees. Whole-genome sequencing on an affected dog from litter 1 identified a case-specific frameshift deletion variant in F8 predicted to cause a premature stop codon (c.2923_2924del, p.(E975Kfs*8)). This variant was hemizygous in all the affected males from litter 1 (n = 3), while all the unaffected LRs in the pedigree were heterozygous or wild-type (n = 22). Additionally, screened samples from 199 LRs were all found to be wild-type. As a result of this study, a gene test can now be developed to screen dogs before breeding to prevent further cases. However, it is important to note that the affected LR with decreased FVIII activity from litter 2 was wild-type for the identified deletion variant, and no segregating F8 variants were detected when this dog's DNA sample was whole-genome sequenced. Thus, the cause of decreased FVIII activity in this dog remains to be unraveled in future studies.


Asunto(s)
Enfermedades de los Perros , Hemofilia A , Masculino , Perros , Animales , Factor VIII/genética , Hemofilia A/genética , Hemofilia A/veterinaria , Mutación del Sistema de Lectura , Heterocigoto , Enfermedades de los Perros/genética
4.
Genes (Basel) ; 13(11)2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36421778

RESUMEN

TIMP3 mutations are associated with early-onset macular choroidal neovascularisation for which no treatment currently exists. CRISPR base editing, with its ability to irreversibly correct point mutations by chemical modification of nucleobases at DNA level, may be a therapeutic option. We report a bioinformatic analysis of potential therapeutic options in a patient presenting with Sorsby fundus dystrophy. Genetic testing in a 35-year-old gentleman with bilateral macular choroidal neovascularisation revealed the patient to be heterozygous for a TIMP3 variant c.610A>T, p.(Ser204Cys). Using a glycosylase base editor (GBE), another DNA-edit could be introduced that would revert the variant back to wild-type on amino acid level. Alternatively, the mutated residue could be changed to another amino acid that would be better tolerated, and for that, an available 'NG'-PAM site was found to be available for the SpCas9-based adenine base editor (ABE) that would introduce p.(Ser204Arg). In silico analyses predicted this variant to be non-pathogenic; however, a bystander edit, p.Ile205Thr, would be introduced. This case report highlights the importance of considering genetic testing in young patients with choroidal neovascularisation, particularly within the context of a strong family history of presumed wet age-related macular degeneration, and describes potential therapeutic options.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular Húmeda , Masculino , Humanos , Adulto , Neovascularización Coroidal/genética , Heterocigoto , Aminoácidos/genética
5.
Genes (Basel) ; 13(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893064

RESUMEN

Retinitis pigmentosa (RP) is the most common group of inherited retinal degenerations and pathogenic variants in the Rhodopsin (RHO) gene are major cause for autosomal dominant RP (adRP). Despite extensive attempts to treat RHO-associated adRP, standardized curative treatment is still lacking. Recently developed base editors offer an exciting opportunity to correct pathogenic single nucleotide variants and are currently able to correct all transition variants and some transversion variants. In this study, we analyzed previously reported pathogenic RHO variants (n = 247) for suitable PAM sites for currently available base editors utilizing the Streptococcus pyogenes Cas9 (SpCas9), Staphylococcus aureus Cas9 (SaCas9) or the KKH variant of SaCas9 (KKH-SaCas9) to assess DNA base editing as a treatment option for RHO-associated adRP. As a result, 55% of all the analyzed variants could, in theory, be corrected with base editors, however, PAM sites were available for only 32% of them and unwanted bystander edits were predicted for the majority of the designed guide RNAs. As a conclusion, base editing offers exciting possibilities to treat RHO-associated adRP in the future, but further research is needed to develop base editing constructs that will provide available PAM sites for more variants and that will not introduce potentially harmful bystander edits.


Asunto(s)
Edición Génica , Retinitis Pigmentosa , Rodopsina , ADN/genética , Genes Dominantes , Humanos , Mutación , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Rodopsina/genética , Staphylococcus aureus/genética
6.
Genes (Basel) ; 12(12)2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34946856

RESUMEN

Mutations in the Crumbs homolog 1 (CRB1) gene cause both autosomal recessive retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). Since three separate CRB1 isoforms are expressed at meaningful levels in the human retina, base editing shows promise as a therapeutic approach. This retrospective analysis aims to summarise the reported pathogenic CRB1 variants and investigate their amenability to treatment with currently available DNA base editors. Pathogenic single nucleotide variants (SNVs) were extracted from the Leiden open-source variation database (LOVD) and ClinVar database and coded by mutational consequence. They were then analyzed for their amenability to currently available DNA base editors and available PAM sites from a selection of different Cas proteins. Of a total of 1115 unique CRB1 variants, 69% were classified as pathogenic SNVs. Of these, 62% were amenable to currently available DNA BEs. Adenine base editors (ABEs) alone have the potential of targeting 34% of pathogenic SNVs; 19% were amenable to a CBE while GBEs could target an additional 9%. Of the pathogenic SNVs targetable with a DNA BE, 87% had a PAM site for a Cas protein. Of the 33 most frequently reported pathogenic SNVs, 70% were targetable with a base editor. The most common pathogenic variant was c.2843G>A, p.Cys948Arg, which is targetable with an ABE. Since 62% of pathogenic CRB1 SNVs are amenable to correction with a base editor and 87% of these mutations had a suitable PAM site, gene editing represents a promising therapeutic avenue for CRB1-associated retinal degenerations.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Proteínas del Ojo/genética , Edición Génica/métodos , Genotipo , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Retinitis Pigmentosa/patología , Bases de Datos Genéticas , Proteínas del Ojo/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Estudios Retrospectivos
7.
Genes (Basel) ; 12(11)2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34828377

RESUMEN

Canine progressive retinal atrophy (PRA) describes a group of hereditary diseases characterized by photoreceptor cell death in the retina, leading to visual impairment. Despite the identification of multiple PRA-causing variants, extensive heterogeneity of PRA is observed across and within dog breeds, with many still genetically unsolved. This study sought to elucidate the causal variant for a distinct form of PRA in the Shetland sheepdog, using a whole-genome sequencing approach. Filtering variants from a single PRA-affected Shetland sheepdog genome compared to 176 genomes of other breeds identified a single nucleotide variant in exon 11 of the Bardet-Biedl syndrome-2 gene (BBS2) (c.1222G>C; p.Ala408Pro). Genotyping 1386 canids of 155 dog breeds, 15 cross breeds and 8 wolves indicated the c.1222G>C variant was only segregated within Shetland sheepdogs. Out of 505 Shetland sheepdogs, seven were homozygous for the variant. Clinical history and photographs for three homozygotes indicated the presence of a novel phenotype. In addition to PRA, additional clinical features in homozygous dogs support the discovery of a novel syndromic PRA in the breed. The development and utilization of a diagnostic DNA test aim to prevent the mutation from becoming more prevalent in the breed.


Asunto(s)
Enfermedades de los Perros/genética , Mutación Missense , Proteínas/genética , Degeneración Retiniana/veterinaria , Animales , Perros , Femenino , Hibridación Genética , Masculino , Fenotipo , Degeneración Retiniana/genética , Secuenciación Completa del Genoma , Lobos
8.
J Comp Pathol ; 185: 30-44, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34119229

RESUMEN

American Cocker Spaniels (ACSs) develop aural ceruminous gland hyperplasia and ectasia more often than dogs of other breeds. Data on the cause and development of these breed characteristic histopathological changes are lacking. We performed video-otoscopic examinations and dermatological work-up on 28 ACSs, obtained aural biopsies from each dog and assessed the statistical associations between the presence of ceruminous gland hyperplasia and ectasia and disease history, clinical or microbiological findings and underlying cause of otitis externa (OE). Histological lesions of ceruminous gland hyperplasia and ectasia were observed in aural biopsies from 6/13 clinically healthy ears and 13/15 ears with OE from 19/28 examined dogs. Nine of 28 dogs had histologically normal ceruminous glands (odds ratio [OR] 6.2, 95% confidence interval [CI] 1.1-36.6). Bacterial growth in microbiological culture of aural exudate (OR 14.1, 95% CI 2.1-95.3) was associated with ceruminous glandular changes, whereas previous history of OE, cutaneous findings or underlying allergies were not. Pedigree analysis and a genome-wide association study (GWAS) were performed on 18 affected and eight unaffected dogs based on histopathological diagnosis. While the GWAS indicated a tentative, but not statistically significant, association of ceruminous gland hyperplasia and ectasia with chromosome 31, a larger cohort is needed to confirm this preliminary result. Based on our results, ceruminous gland hyperplasia and ectasia may also precede clinical signs of OE in ACSs and a genetic aetiological component is likely Further studies with larger cohorts are warranted to verify our preliminary results.


Asunto(s)
Glándulas Apocrinas/patología , Enfermedades de los Perros , Otitis Externa , Animales , Cruzamiento , Dilatación Patológica/veterinaria , Enfermedades de los Perros/genética , Perros , Oído/patología , Estudio de Asociación del Genoma Completo/veterinaria , Hiperplasia/veterinaria , Otitis Externa/veterinaria , Estados Unidos
9.
Hum Genet ; 140(11): 1569-1579, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33606121

RESUMEN

Retinitis pigmentosa (RP) is a blinding eye disease affecting nearly two million people worldwide. Dogs are affected with a similar illness termed progressive retinal atrophy (PRA). Lapponian herders (LHs) are affected with several types of inherited retinal dystrophies, and variants in PRCD and BEST1 genes have been associated with generalized PRA and canine multifocal retinopathy 3 (cmr3), respectively. However, all retinal dystrophy cases in LHs are not explained by these variants, indicating additional genetic causes of disease in the breed. We collected DNA samples from 10 PRA affected LHs, with known PRCD and BEST1 variants excluded, and 34 unaffected LHs. A genome-wide association study identified a locus on CFA20 (praw = 2.4 × 10-7, pBonf = 0.035), and subsequent whole-genome sequencing of an affected LH revealed a missense variant, c.3176G>A, in the intraflagellar transport 122 (IFT122) gene. The variant was also found in Finnish Lapphunds, in which its clinical relevancy needs to be studied further. The variant interrupts a highly conserved residue, p.(R1059H), in IFT122 and likely impairs its function. Variants in IFT122 have not been associated with retinal degeneration in mammals, but the loss of ift122 in zebrafish larvae impaired opsin transport and resulted in progressive photoreceptor degeneration. Our study establishes a new spontaneous dog model to study the role of IFT122 in RP biology, while the affected breed will benefit from a genetic test for a recessive condition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Enfermedades de los Perros/genética , Mutación Missense , Degeneración Retiniana/veterinaria , Retinitis Pigmentosa/genética , Animales , Cruzamiento , Perros , Femenino , Genes Recesivos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Linaje , Células Fotorreceptoras de Vertebrados/patología , Polimorfismo de Nucleótido Simple , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Transcriptoma , Secuenciación Completa del Genoma
10.
PLoS Genet ; 16(11): e1009059, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33151924
11.
PLoS Genet ; 16(3): e1008659, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150541

RESUMEN

Retinitis pigmentosa (RP) is the leading cause of blindness with nearly two million people affected worldwide. Many genes have been implicated in RP, yet in 30-80% of the RP patients the genetic cause remains unknown. A similar phenotype, progressive retinal atrophy (PRA), affects many dog breeds including the Miniature Schnauzer. We performed clinical, genetic and functional experiments to identify the genetic cause of PRA in the breed. The age of onset and pattern of disease progression suggested that at least two forms of PRA, types 1 and 2 respectively, affect the breed, which was confirmed by genome-wide association study that implicated two distinct genomic loci in chromosomes 15 and X, respectively. Whole-genome sequencing revealed a fully segregating recessive regulatory variant in type 1 PRA. The associated variant has a very recent origin based on haplotype analysis and lies within a regulatory site with the predicted binding site of HAND1::TCF3 transcription factor complex. Luciferase assays suggested that mutated regulatory sequence increases expression. Case-control retinal expression comparison of six best HAND1::TCF3 target genes were analyzed with quantitative reverse-transcriptase PCR assay and indicated overexpression of EDN2 and COL9A2 in the affected retina. Defects in both EDN2 and COL9A2 have been previously associated with retinal degeneration. In summary, our study describes two genetically different forms of PRA and identifies a fully penetrant variant in type 1 form with a possible regulatory effect. This would be among the first reports of a regulatory variant in retinal degeneration in any species, and establishes a new spontaneous dog model to improve our understanding of retinal biology and gene regulation while the affected breed will benefit from a reliable genetic testing.


Asunto(s)
Enfermedades de los Perros/genética , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Animales , Estudios de Casos y Controles , Colágeno Tipo IX/genética , Colágeno Tipo IX/metabolismo , Perros , Endotelina-2/genética , Endotelina-2/metabolismo , Femenino , Mutación del Sistema de Lectura/genética , Estudio de Asociación del Genoma Completo/métodos , Haplotipos/genética , Masculino , Modelos Animales , Mutación/genética , Linaje , Fenotipo , Retina/metabolismo , Retinitis Pigmentosa/metabolismo
12.
Genes (Basel) ; 10(5)2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117272

RESUMEN

Canine progressive retinal atrophies (PRA) are genetically heterogeneous diseases characterized by retinal degeneration and subsequent blindness. PRAs are untreatable and affect multiple dog breeds, significantly impacting welfare. Three out of seven Giant Schnauzer (GS) littermates presented with PRA around four years of age. We sought to identify the causal variant to improve our understanding of the aetiology of this form of PRA and to enable development of a DNA test. Whole genome sequencing of two PRA-affected full-siblings and both unaffected parents was performed. Variants were filtered based on those segregating appropriately for an autosomal recessive disorder and predicted to be deleterious. Successive filtering against 568 canine genomes identified a single nucleotide variant in the gene encoding NECAP endocytosis associated 1 (NECAP1): c.544G>A (p.Gly182Arg). Five thousand one hundred and thirty canids of 175 breeds, 10 cross-breeds and 3 wolves were genotyped for c.544G>A. Only the three PRA-affected GS were homozygous (allele frequency in GS, excluding proband family = 0.015). In addition, we identified heterozygotes belonging to Spitz and Dachshund varieties, demonstrating c.544G>A segregates in other breeds of German origin. This study, in parallel with the known retinal expression and role of NECAP1 in clathrin mediated endocytosis (CME) in synapses, presents NECAP1 as a novel candidate gene for retinal degeneration in dogs and other species.


Asunto(s)
Subunidades alfa de Complejo de Proteína Adaptadora/genética , Enfermedades de los Perros/genética , Retina/patología , Degeneración Retiniana/genética , Animales , Atrofia/genética , Atrofia/patología , Cruzamiento , Enfermedades de los Perros/patología , Perros , Endocitosis/genética , Mutación del Sistema de Lectura , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Degeneración Retiniana/patología , Sinapsis/genética , Sinapsis/patología , Secuenciación Completa del Genoma
14.
Cell Rep ; 23(9): 2643-2652, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29847795

RESUMEN

Maternally skewed transmission of traits has been associated with genomic imprinting and oocyte-derived mRNA. We report canine congenital eye malformations, caused by an amino acid deletion (K12del) near the N terminus of retinol-binding protein (RBP4). The disease is only expressed when both dam and offspring are deletion homozygotes. RBP carries vitamin A (retinol) from hepatic stores to peripheral tissues, including the placenta and developing eye, where it is required to synthesize retinoic acid. Gestational vitamin A deficiency is a known risk factor for ocular birth defects. The K12del mutation disrupts RBP folding in vivo, decreasing its secretion from hepatocytes to serum. The maternal penetrance effect arises from an impairment in the sequential transfer of retinol across the placenta, via RBP encoded by maternal and fetal genomes. Our results demonstrate a mode of recessive maternal inheritance, with a physiological basis, and they extend previous observations on dominant-negative RBP4 alleles in humans.


Asunto(s)
Perros/genética , Oftalmopatías/congénito , Oftalmopatías/veterinaria , Genes Recesivos , Herencia Materna/genética , Proteínas Plasmáticas de Unión al Retinol/genética , Secuencia de Aminoácidos , Animales , Emparejamiento Base/genética , Oftalmopatías/sangre , Oftalmopatías/genética , Femenino , Sitios Genéticos , Genotipo , Células HeLa , Humanos , Masculino , Microftalmía/sangre , Microftalmía/genética , Linaje , Fenotipo , Prealbúmina/metabolismo , Pliegue de Proteína , Proteínas Plasmáticas de Unión al Retinol/química , Eliminación de Secuencia , Vitamina A/sangre
15.
PLoS Genet ; 14(4): e1007361, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29708978

RESUMEN

Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare.


Asunto(s)
Enfermedades de los Perros/genética , Perros/genética , Animales , Cruzamiento , Bases de Datos Genéticas , Enfermedades de los Perros/epidemiología , Femenino , Frecuencia de los Genes , Genes Recesivos , Predisposición Genética a la Enfermedad , Pruebas Genéticas/veterinaria , Variación Genética , Vigor Híbrido , Masculino , Epidemiología Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Prevalencia , Especificidad de la Especie
16.
Proc Natl Acad Sci U S A ; 115(19): 4897-4902, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29686089

RESUMEN

A rural environment and farming lifestyle are known to provide protection against allergic diseases. This protective effect is expected to be mediated via exposure to environmental microbes that are needed to support a normal immune tolerance. However, the triangle of interactions between environmental microbes, host microbiota, and immune system remains poorly understood. Here, we have studied these interactions using a canine model (two breeds, n = 169), providing an intermediate approach between complex human studies and artificial mouse model studies. We show that the skin microbiota reflects both the living environment and the lifestyle of a dog. Remarkably, the prevalence of spontaneous allergies is also associated with residential environment and lifestyle, such that allergies are most common among urban dogs living in single-person families without other animal contacts, and least common among rural dogs having opposite lifestyle features. Thus, we show that living environment and lifestyle concurrently associate with skin microbiota and allergies, suggesting that these factors might be causally related. Moreover, microbes commonly found on human skin tend to dominate the urban canine skin microbiota, while environmental microbes are rich in the rural canine skin microbiota. This in turn suggests that skin microbiota is a feasible indicator of exposure to environmental microbes. As short-term exposure to environmental microbes via exercise is not associated with allergies, we conclude that prominent and sustained exposure to environmental microbiotas should be promoted by urban planning and lifestyle changes to support health of urban populations.


Asunto(s)
Exposición a Riesgos Ambientales , Hipersensibilidad , Microbiota/inmunología , Piel , Animales , Perros , Femenino , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Masculino , Ratones , Piel/inmunología , Piel/microbiología , Planificación Social , Remodelación Urbana
17.
PLoS One ; 12(8): e0183021, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28813472

RESUMEN

The domestic dog segregates a significant number of inherited progressive retinal diseases, several of which mirror human retinal diseases and which are collectively termed progressive retinal atrophy (PRA). In 2014, a novel form of PRA was reported in the Swedish Vallhund breed, and the disease was mapped to canine chromosome 17. The causal mutation was not identified, but expression analyses of the retinas of affected Vallhunds demonstrated a 6-fold increased expression of the MERTK gene compared to unaffected dogs. Using 24 retinopathy cases and 97 controls with no clinical signs of retinopathy, we replicated the chromosome 17 association in Swedish Vallhunds from the UK and aimed to elucidate the causal variant underlying this association using whole genome sequencing (WGS) of an affected dog. This revealed a 6-8 kb insertion in intron 1 of MERTK that was not present in WGS of 49 dogs of other breeds. Sequencing and BLASTN analysis of the inserted segment was consistent with the insertion comprising a full-length intact LINE-1 retroelement. Testing of the LINE-1 insertion for association with retinopathy in the UK set of 24 cases and 97 controls revealed a strong statistical association (P-value 6.0 x 10-11) that was subsequently replicated in the original Finnish study set (49 cases and 89 controls (P-value 4.3 x 10-19). In a pooled analysis of both studies (73 cases and 186 controls), the LINE-1 insertion was associated with a ~20-fold increased risk of retinopathy (odds ratio 23.41, 95% confidence intervals 10.99-49.86, P-value 1.3 x 10-27). Our study adds further support for regulatory disruption of MERTK in Swedish Vallhund retinopathy; however, further work is required to establish a functional overexpression model. Future work to characterise the mechanism by which this intronic mutation disrupts gene regulation will further improve the understanding of MERTK biology and its role in retinal function.


Asunto(s)
Intrones , Elementos de Nucleótido Esparcido Largo , Mutagénesis Insercional , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Enfermedades de la Retina/genética , Animales , Perros , Finlandia , Estudio de Asociación del Genoma Completo , Genotipo , Polimorfismo de Nucleótido Simple , Reino Unido
18.
G3 (Bethesda) ; 7(7): 2327-2335, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28533336

RESUMEN

Progressive retinal atrophy is a common cause of blindness in the dog and affects >100 breeds. It is characterized by gradual vision loss that occurs due to the degeneration of photoreceptor cells in the retina. Similar to the human counterpart retinitis pigmentosa, the canine disorder is clinically and genetically heterogeneous and the underlying cause remains unknown for many cases. We use a positional candidate gene approach to identify putative variants in the Hungarian Puli breed using genotyping data of 14 family-based samples (CanineHD BeadChip array, Illumina) and whole-genome sequencing data of two proband and two parental samples (Illumina HiSeq 2000). A single nonsense SNP in exon 2 of BBS4 (c.58A > T, p.Lys20*) was identified following filtering of high quality variants. This allele is highly associated (PCHISQ = 3.425e-14, n = 103) and segregates perfectly with progressive retinal atrophy in the Hungarian Puli. In humans, BBS4 is known to cause Bardet-Biedl syndrome which includes a retinitis pigmentosa phenotype. From the observed coding change we expect that no functional BBS4 can be produced in the affected dogs. We identified canine phenotypes comparable with Bbs4-null mice including obesity and spermatozoa flagella defects. Knockout mice fail to form spermatozoa flagella. In the affected Hungarian Puli spermatozoa flagella are present, however a large proportion of sperm are morphologically abnormal and <5% are motile. This suggests that BBS4 contributes to flagella motility but not formation in the dog. Our results suggest a promising opportunity for studying Bardet-Biedl syndrome in a large animal model.


Asunto(s)
Codón sin Sentido , Enfermedades de los Perros , Polimorfismo de Nucleótido Simple , Enfermedades de la Retina , Motilidad Espermática/genética , Cola del Espermatozoide/metabolismo , Alelos , Animales , Enfermedades de los Perros/genética , Enfermedades de los Perros/metabolismo , Enfermedades de los Perros/patología , Perros , Exones , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología
19.
PLoS One ; 11(8): e0161005, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27525650

RESUMEN

BACKGROUND: The growing number of identified genetic disease risk variants across dog breeds challenges the current state-of-the-art of population screening, veterinary molecular diagnostics, and genetic counseling. Multiplex screening of such variants is now technologically feasible, but its practical potential as a supportive tool for canine breeding, disease diagnostics, pet care, and genetics research is still unexplored. RESULTS: To demonstrate the utility of comprehensive genetic panel screening, we tested nearly 7000 dogs representing around 230 breeds for 93 disease-associated variants using a custom-designed genotyping microarray (the MyDogDNA® panel test). In addition to known breed disease-associated mutations, we discovered 15 risk variants in a total of 34 breeds in which their presence was previously undocumented. We followed up on seven of these genetic findings to demonstrate their clinical relevance. We report additional breeds harboring variants causing factor VII deficiency, hyperuricosuria, lens luxation, von Willebrand's disease, multifocal retinopathy, multidrug resistance, and rod-cone dysplasia. Moreover, we provide plausible molecular explanations for chondrodysplasia in the Chinook, cerebellar ataxia in the Norrbottenspitz, and familiar nephropathy in the Welsh Springer Spaniel. CONCLUSIONS: These practical examples illustrate how genetic panel screening represents a comprehensive, efficient and powerful diagnostic and research discovery tool with a range of applications in veterinary care, disease research, and breeding. We conclude that several known disease alleles are more widespread across different breeds than previously recognized. However, careful follow up studies of any unexpected discoveries are essential to establish genotype-phenotype correlations, as is readiness to provide genetic counseling on their implications for the dog and its breed.


Asunto(s)
Enfermedades de los Perros/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas , Mutación , Animales , Colágeno Tipo IV/genética , Perros , Enanismo/genética , Enanismo/veterinaria , Factor VII/genética , Asesoramiento Genético , Cadenas alfa de Integrinas/genética , Especificidad de la Especie , Ácido Úrico/orina , Urolitiasis/genética , Urolitiasis/veterinaria
20.
PLoS One ; 9(12): e114552, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25517981

RESUMEN

Progressive retinal degenerations are among the most common causes of blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) resembles human retinitis pigmentosa (RP) and is typically characterized by a progressive loss of rod photoreceptors followed by a loss of cone function. The disease gradually progress from the loss of night and day vision to a complete blindness. We have recently described a unique form of retinopathy characterized by the multifocal gray/brown discoloration and thinning of the retina in the Swedish Vallhund (SV) breed. We aimed to identify the genetic cause by performing a genome wide association analysis in a cohort of 18 affected and 10 healthy control dogs using Illumina's canine 22k SNP array. We mapped the disease to canine chromosome 17 (p = 7.7×10(-5)) and found a 6.1 Mb shared homozygous region in the affected dogs. A combined analysis of the GWAS and replication data with additional 60 dogs confirmed the association (p = 4.3×10(-8), OR = 11.2 for homozygosity). A targeted resequencing of the entire associated region in four cases and four controls with opposite risk haplotypes identified several variants in the coding region of functional candidate genes, such as a known retinopathy gene, MERTK. However, none of the identified coding variants followed a compelling case- or breed-specific segregation pattern. The expression analyses of four candidate genes in the region, MERTK, NPHP1, ANAPC1 and KRCC1, revealed specific upregulation of MERTK in the retina of the affected dogs. Collectively, these results indicate that the retinopathy is associated with overexpression of MERTK, however further investigation is needed to discover the regulatory mutation for the better understanding of the disease pathogenesis. Our study establishes a novel gain-of-function model for the MERTK biology and provides a therapy model for retinopathy MERTK inhibitors. Meanwhile, a marker-based genetic counseling can be developed to revise breeding programs.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteínas Tirosina Quinasas Receptoras/genética , Enfermedades de la Retina/veterinaria , Animales , Progresión de la Enfermedad , Enfermedades de los Perros/enzimología , Enfermedades de los Perros/genética , Perros , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/metabolismo , Enfermedades de la Retina/enzimología , Enfermedades de la Retina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...