Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38658168

RESUMEN

Hexanucleotide repeat expansions within the gene C9ORF72 are the most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This disease-causing expansion leads to a reduction in C9ORF72 expression levels in patients, suggesting loss of C9ORF72 function could contribute to disease. To further understand the consequences of C9ORF72 deficiency in vivo, we generated a c9orf72 mutant zebrafish line. Analysis of the adult female spinal cords revealed no appreciable neurodegenerative pathology such as loss of motor neurons or increased levels of neuroinflammation. However, detailed examination of adult female c9orf72-/- retinas showed prominent neurodegenerative features, including a decrease in retinal thickness, gliosis, and an overall reduction in neurons of all subtypes. Analysis of rod and cone cells within the photoreceptor layer showed a disturbance in their outer segment structure and rhodopsin mislocalization from rod outer segments to their cell bodies and synaptic terminals. Thus, C9ORF72 may play a previously unappreciated role in retinal homeostasis and suggests C9ORF72 deficiency can induce tissue specific neuronal loss.


Asunto(s)
Proteína C9orf72 , Retina , Pez Cebra , Animales , Femenino , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Retina/metabolismo , Retina/patología , Animales Modificados Genéticamente , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas/genética , Proteínas/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Médula Espinal/metabolismo , Médula Espinal/patología
2.
Methods Mol Biol ; 2636: 263-277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881306

RESUMEN

Larval zebrafish show axonal regrowth over a complex spinal injury site and recovery of function within days after injury. Here we describe a simple protocol to disrupt gene function in this model using acute injections of highly active synthetic gRNAs to rapidly detect loss-of-function phenotypes without the need for breeding.


Asunto(s)
Traumatismos de la Médula Espinal , Pez Cebra , Animales , Pez Cebra/genética , Fenotipo , Traumatismos de la Médula Espinal/genética , Axones , Larva/genética
3.
Dis Model Mech ; 16(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36951087

RESUMEN

Heterozygous variants in GBA1, encoding glucocerebrosidase (GCase), are the most common genetic risk factor for Parkinson's disease (PD). Moreover, sporadic PD patients also have a substantial reduction of GCase activity. Genetic variants of SMPD1 are also overrepresented in PD cohorts, whereas a reduction of its encoded enzyme (acid sphingomyelinase or ASM) activity is linked to an earlier age of PD onset. Despite both converging on the ceramide pathway, how the combined deficiencies of both enzymes might interact to modulate PD has yet to be explored. Therefore, we created a double-knockout (DKO) zebrafish line for both gba1 (or gba) and smpd1 to test for an interaction in vivo, hypothesising an exacerbation of phenotypes in the DKO line compared to those for single mutants. Unexpectedly, DKO zebrafish maintained conventional swimming behaviour and had normalised neuronal gene expression signatures compared to those of single mutants. We further identified rescue of mitochondrial Complexes I and IV in DKO zebrafish. Despite having an unexpected rescue effect, our results confirm ASM as a modifier of GBA1 deficiency in vivo. Our study highlights the need for validating how genetic variants and enzymatic deficiencies may interact in vivo.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedad de Parkinson , Animales , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Enfermedad de Parkinson/metabolismo , Fenotipo , alfa-Sinucleína/metabolismo , Mutación/genética
4.
Front Neurosci ; 16: 794653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35210987

RESUMEN

Ankyrin repeat and kinase domain containing 1 (ANKK1) is a member of the receptor-interacting protein serine/threonine kinase family, known to be involved in cell proliferation, differentiation and activation of transcription factors. Genetic variation within the ANKK1 locus is suggested to play a role in vulnerability to addictions. However, ANKK1 mechanism of action is still poorly understood. It has been suggested that ANKK1 may affect the development and/or functioning of dopaminergic pathways. To test this hypothesis, we generated a CRISPR-Cas9 loss of function ankk1 zebrafish line causing a 27 bp insertion that disrupts the ankk1 sequence introducing an early stop codon. We found that ankk1 transcript levels were significantly lower in ankk1 mutant (ankk127ins ) fish compared to their wild type (ankk1 +/+) siblings. In ankk1 +/+ adult zebrafish brain, ankk1 protein was detected in isocortex, hippocampus, basolateral amygdala, mesencephalon, and cerebellum, resembling the mammalian distribution pattern. In contrast, ankk1 protein was reduced in the brain of ankk127ins/27ins fish. Quantitative polymerase chain reaction analysis revealed an increase in expression of drd2b mRNA in ankk127ins at both larval and adult stages. In ankk1 +/+ adult zebrafish brain, drd2 protein was detected in cerebral cortex, cerebellum, hippocampus, and caudate homolog regions, resembling the pattern in humans. In contrast, drd2 expression was reduced in cortical regions of ankk127ins/27ins being predominantly found in the hindbrain. No differences in the number of cell bodies or axonal projections detected by anti-tyrosine hydroxylase immunostaining on 3 days post fertilization (dpf) larvae were found. Behavioral analysis revealed altered sensitivity to effects of both amisulpride and apomorphine on locomotion and startle habituation, consistent with a broad loss of both pre and post synaptic receptors. Ankk127ins mutants showed reduced sensitivity to the effect of the selective dopamine receptor antagonist amisulpride on locomotor responses to acoustic startle and were differentially sensitive to the effects of the non-selective dopamine agonist apomorphine on both locomotion and habituation. Taken together, our findings strengthen the hypothesis of a functional relationship between ANKK1 and DRD2, supporting a role for ANKK1 in the maintenance and/or functioning of dopaminergic pathways. Further work is needed to disentangle ANKK1's role at different developmental stages.

5.
J Neurosci ; 42(4): 702-716, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34876467

RESUMEN

The Parkinson's disease (PD) risk gene GTP cyclohydrolase 1 (GCH1) catalyzes the rate-limiting step in tetrahydrobiopterin (BH4) synthesis, an essential cofactor in the synthesis of monoaminergic neurotransmitters. To investigate the mechanisms by which GCH1 deficiency may contribute to PD, we generated a loss of function zebrafish gch1 mutant (gch1-/-), using CRISPR/Cas technology. gch1-/- zebrafish develop marked monoaminergic neurotransmitter deficiencies by 5 d postfertilization (dpf), movement deficits by 8 dpf and lethality by 12 dpf. Tyrosine hydroxylase (Th) protein levels were markedly reduced without loss of ascending dopaminergic (DAergic) neurons. L-DOPA treatment of gch1-/- larvae improved survival without ameliorating the motor phenotype. RNAseq of gch1-/- larval brain tissue identified highly upregulated transcripts involved in innate immune response. Subsequent experiments provided morphologic and functional evidence of microglial activation in gch1-/- The results of our study suggest that GCH1 deficiency may unmask early, subclinical parkinsonism and only indirectly contribute to neuronal cell death via immune-mediated mechanisms. Our work highlights the importance of functional validation for genome-wide association studies (GWAS) risk factors and further emphasizes the important role of inflammation in the pathogenesis of PD.SIGNIFICANCE STATEMENT Genome-wide association studies have now identified at least 90 genetic risk factors for sporadic Parkinson's disease (PD). Zebrafish are an ideal tool to determine the mechanistic role of genome-wide association studies (GWAS) risk genes in a vertebrate animal model. The discovery of GTP cyclohydrolase 1 (GCH1) as a genetic risk factor for PD was counterintuitive, GCH1 is the rate-limiting enzyme in the synthesis of dopamine (DA), mutations had previously been described in the non-neurodegenerative movement disorder dopa-responsive dystonia (DRD). Rather than causing DAergic cell death (as previously hypothesized by others), we now demonstrate that GCH1 impairs tyrosine hydroxylase (Th) homeostasis and activates innate immune mechanisms in the brain and provide evidence of microglial activation and phagocytic activity.


Asunto(s)
Encéfalo/enzimología , GTP Ciclohidrolasa/deficiencia , Homeostasis/fisiología , Inmunidad Innata/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/inmunología , Neuronas Dopaminérgicas/enzimología , Neuronas Dopaminérgicas/inmunología , GTP Ciclohidrolasa/genética , Predisposición Genética a la Enfermedad/genética , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/inmunología , Análisis de Secuencia de ARN/métodos , Tirosina 3-Monooxigenasa/antagonistas & inhibidores , Tirosina 3-Monooxigenasa/genética , Pez Cebra
6.
Dev Cell ; 56(11): 1617-1630.e6, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34033756

RESUMEN

Central nervous system injury re-initiates neurogenesis in anamniotes (amphibians and fishes), but not in mammals. Activation of the innate immune system promotes regenerative neurogenesis, but it is fundamentally unknown whether this is indirect through the activation of known developmental signaling pathways or whether immune cells directly signal to progenitor cells using mechanisms that are unique to regeneration. Using single-cell RNA-seq of progenitor cells and macrophages, as well as cell-type-specific manipulations, we provide evidence for a direct signaling axis from specific lesion-activated macrophages to spinal progenitor cells to promote regenerative neurogenesis in zebrafish. Mechanistically, TNFa from pro-regenerative macrophages induces Tnfrsf1a-mediated AP-1 activity in progenitors to increase regeneration-promoting expression of hdac1 and neurogenesis. This establishes the principle that macrophages directly communicate to spinal progenitor cells via non-developmental signals after injury, providing potential targets for future interventions in the regeneration-deficient spinal cord of mammals.


Asunto(s)
Histona Desacetilasa 1/genética , Neurogénesis/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Regeneración/genética , Médula Espinal/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Animales , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Macrófagos/citología , Macrófagos/metabolismo , RNA-Seq , Transducción de Señal/genética , Análisis de la Célula Individual , Médula Espinal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factor de Transcripción AP-1/genética , Pez Cebra/genética
7.
PLoS Genet ; 17(4): e1009515, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33914736

RESUMEN

Zebrafish exhibit robust regeneration following spinal cord injury, promoted by macrophages that control post-injury inflammation. However, the mechanistic basis of how macrophages regulate regeneration is poorly understood. To address this gap in understanding, we conducted a rapid in vivo phenotypic screen for macrophage-related genes that promote regeneration after spinal injury. We used acute injection of synthetic RNA Oligo CRISPR guide RNAs (sCrRNAs) that were pre-screened for high activity in vivo. Pre-screening of over 350 sCrRNAs allowed us to rapidly identify highly active sCrRNAs (up to half, abbreviated as haCRs) and to effectively target 30 potentially macrophage-related genes. Disruption of 10 of these genes impaired axonal regeneration following spinal cord injury. We selected 5 genes for further analysis and generated stable mutants using haCRs. Four of these mutants (tgfb1a, tgfb3, tnfa, sparc) retained the acute haCR phenotype, validating the approach. Mechanistically, tgfb1a haCR-injected and stable mutant zebrafish fail to resolve post-injury inflammation, indicated by prolonged presence of neutrophils and increased levels of il1b expression. Inhibition of Il-1ß rescues the impaired axon regeneration in the tgfb1a mutant. Hence, our rapid and scalable screening approach has identified functional regulators of spinal cord regeneration, but can be applied to any biological function of interest.


Asunto(s)
ARN Guía de Kinetoplastida/genética , Regeneración/genética , Regeneración de la Medula Espinal/genética , Factor de Crecimiento Transformador beta1/genética , Proteínas de Pez Cebra/genética , Animales , Axones/metabolismo , Axones/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Osteonectina/genética , Recuperación de la Función/genética , Médula Espinal/crecimiento & desarrollo , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Regeneración de la Medula Espinal/fisiología , Factor de Crecimiento Transformador beta3/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
8.
Sci Rep ; 11(1): 6617, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758225

RESUMEN

Recent evidence suggests neurogenesis is on-going throughout life but the relevance of these findings for neurodegenerative disorders such as Parkinson's disease (PD) is poorly understood. Biallelic PINK1 mutations cause early onset, Mendelian inherited PD. We studied the effect of PINK1 deficiency on adult neurogenesis of dopaminergic (DA) neurons in two complementary model systems. Zebrafish are a widely-used model to study neurogenesis in development and through adulthood. Using EdU analyses and lineage-tracing studies, we first demonstrate that a subset of ascending DA neurons and adjacent local-projecting DA neurons are each generated into adulthood in wild type zebrafish at a rate that decreases with age. Pink1-deficiency impedes DA neurogenesis in these populations, most significantly in early adult life. Pink1 already exerts an early effect on Th1+ progenitor cells rather than on differentiated DA neurons only. In addition, we investigate the effect of PINK1 deficiency in a human isogenic organoid model. Global neuronal differentiation in PINK1-deficient organoids and isogenic controls is similar, but PINK1-deficient organoids display impeded DA neurogenesis. The observation of impaired adult dopaminergic neurogenesis in Pink1 deficiency in two complementing model systems may have significant consequences for future therapeutic approaches in human PD patients with biallelic PINK1 mutations.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Neurogénesis/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Factores de Edad , Animales , Animales Modificados Genéticamente , Biomarcadores , Diferenciación Celular , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Mesencéfalo/metabolismo , Mesencéfalo/patología , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Pez Cebra
9.
Biol Open ; 9(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366533

RESUMEN

Understanding the molecular mechanisms that regulate secondary cell death after acute central nervous system (CNS) injury is critical for the development of effective neuroprotective drugs. Previous research has shown that neurotoxic processes including excitotoxicity, oxidative stress and neuroinflammation can cause secondary cell death. Nevertheless, clinical trials targeting these processes have been largely unsuccessful, suggesting that the signalling pathways underlying secondary cell death remain incompletely understood. Due to their suitability for live imaging and their amenability to genetic and pharmacological manipulation, larval zebrafish provide an ideal platform for studying the regulation of secondary cell death in vivo Here, we use RNA-seq gene expression profiling and compound screening to identify signalling pathways that regulate secondary cell death after acute neural injury in larval zebrafish. RNA-seq analysis of genes upregulated in cephalic mpeg1+ macrophage-lineage cells isolated from mpeg1:GFP transgenic larvae after neural injury suggested an involvement of cytokine and polyamine signalling in secondary cell death. Furthermore, screening a library of FDA approved compounds indicated roles for GABA, serotonin and dopamine signalling. Overall, our results highlight multiple signalling pathways that regulate secondary cell death in vivo, and thus provide a starting point for the development of novel neuroprotective treatments for patients with CNS injury.This article has an associated First Person interview with the two first authors of the paper.


Asunto(s)
Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Muerte Celular/genética , Susceptibilidad a Enfermedades , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Biomarcadores , Lesiones Encefálicas/patología , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Larva , Macrófagos/metabolismo , Neuronas/metabolismo , RNA-Seq , Transducción de Señal , Traumatismos de la Médula Espinal/patología , Transcriptoma , Pez Cebra
10.
Biol Open ; 8(10)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31548178

RESUMEN

The loss of dopaminergic neurons (DA) is a pathological hallmark of sporadic and familial forms of Parkinson's disease (PD). We have previously shown that inhibiting mitochondrial calcium uniporter (mcu) using morpholinos can rescue DA neurons in the PTEN-induced putative kinase 1 (pink1)-/- zebrafish model of PD. In this article, we show results from our studies in mcu knockout zebrafish, which was generated using the CRISPR/Cas9 system. Functional assays confirmed impaired mitochondrial calcium influx in mcu -/- zebrafish. We also used in vivo calcium imaging and fluorescent assays in purified mitochondria to investigate mitochondrial calcium dynamics in a pink1 -/- zebrafish model of PD. Mitochondrial morphology was evaluated in DA neurons and muscle fibers using immunolabeling and transgenic lines, respectively. We observed diminished mitochondrial area in DA neurons of pink1 -/- zebrafish, while deletion of mcu restored mitochondrial area. In contrast, the mitochondrial volume in muscle fibers was not restored after inactivation of mcu in pink1 -/- zebrafish. Mitochondrial calcium overload coupled with depolarization of mitochondrial membrane potential leads to mitochondrial dysfunction in the pink1 -/- zebrafish model of PD. We used in situ hybridization and immunohistochemical labeling of DA neurons to evaluate the effect of mcu deletion on DA neuronal clusters in the ventral telencephalon of zebrafish brain. We show that DA neurons are rescued after deletion of mcu in pink1 -/- and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) zebrafish model of PD. Thus, inactivation of mcu is protective in both genetic and chemical models of PD. Our data reveal that regulating mcu function could be an effective therapeutic target in PD pathology.

11.
Elife ; 82019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31313988

RESUMEN

Previously we described direct cellular interactions between microglia and AKT1+ brain tumour cells in zebrafish (Chia et al., 2018). However, it was unclear how these interactions were initiated: it was also not clear if they had an impact on the growth of tumour cells. Here, we show that neoplastic cells hijack mechanisms that are usually employed to direct microglial processes towards highly active neurons and injuries in the brain. We show that AKT1+ cells possess dynamically regulated high intracellular Ca2+ levels. Using a combination of live imaging, genetic and pharmacological tools, we show that these Ca2+ transients stimulate ATP-mediated interactions with microglia. Interfering with Ca2+ levels, inhibiting ATP release and CRISPR-mediated mutation of the p2ry12 locus abolishes these interactions. Finally, we show that reducing the number of microglial interactions significantly impairs the proliferation of neoplastic AKT1 cells. In conclusion, neoplastic cells repurpose the endogenous neuron to microglia signalling mechanism via P2ry12 activation to promote their own proliferation.


Asunto(s)
Neoplasias Encefálicas/patología , Microglía/patología , Neuronas/patología , Transducción de Señal , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Comunicación Celular , Línea Celular Tumoral , Proliferación Celular , Microglía/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Pez Cebra
12.
Development ; 146(9)2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31076485

RESUMEN

Moderate or severe traumatic brain injury (TBI) causes widespread neuronal cell death. Microglia, the resident macrophages of the brain, react to injury by migrating to the lesion site, where they phagocytose cellular debris. Microglial phagocytosis can have both beneficial (e.g. debris clearance) and detrimental (e.g. respiratory burst, phagoptosis) consequences. Hence, whether the overall effect of microglial phagocytosis after brain injury in vivo is neuroprotective or neurotoxic is not known. Here, we establish a system with which to carry out dynamic real-time analyses of the mechanisms regulating cell death after brain injury in vivo We show that mechanical injury to the larval zebrafish brain induces distinct phases of primary and secondary cell death. Excitotoxicity contributes to secondary cell death in zebrafish, reflecting findings from mammals. Microglia arrive at the lesion site within minutes of injury, where they rapidly engulf dead cells. Importantly, the rate of secondary cell death is increased when the rapid removal of cellular debris by microglia is reduced pharmacologically or genetically. In summary, our results provide evidence that microglial debris clearance is neuroprotective after brain injury in vivo.


Asunto(s)
Lesiones Encefálicas/metabolismo , Muerte Celular/fisiología , Microglía/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Larva/citología , Larva/metabolismo , Macrófagos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fagocitosis/fisiología , Pez Cebra
13.
Neurobiol Dis ; 127: 563-569, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30981829

RESUMEN

Bi-allelic mutations in the glucocerebrosidase gene (GBA1) cause Gaucher's disease, the most common human lysosomal storage disease. We previously reported a marked increase in miR-155 transcript levels and early microglial activation in a zebrafish model of Gaucher's disease (gba1-/-). miR-155 is a master regulator of inflammation and has been implicated in a wide range of different neurodegenerative disorders. The observed miR-155 upregulation preceded the subsequent development of widespread pathology with marked neuroinflammation, closely resembling human Gaucher's disease pathology. We now report similar increases of miR-155 expression in mammalian models of GD, confirming that miR-155 upregulation is a shared feature in glucocerebrosidase (GCase) deficiency across different species. Using CRISPR/Cas9 mutagenesis we then generated a miR-155 mutant zebrafish line (miR-155-/-) with completely abolished miR-155 expression. Unexpectedly, loss of miR-155 did not mitigate either the reduced lifespan or the robust inflammatory phenotypes of gba1-/- mutant zebrafish. Our data demonstrate that neither neuroinflammation nor disease progression in GCase deficiency are dependent on miR-155 and suggest that miR-155 inhibition would not be a promising therapeutic target in Gaucher's disease.


Asunto(s)
Encefalitis/metabolismo , Enfermedad de Gaucher/metabolismo , MicroARNs/metabolismo , Degeneración Nerviosa/metabolismo , Animales , Animales Modificados Genéticamente , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Encefalitis/genética , Encefalitis/patología , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Ratones , MicroARNs/genética , Mutación , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Regulación hacia Arriba , Pez Cebra
14.
Nat Commun ; 9(1): 4670, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405119

RESUMEN

Spinal cord injury leads to a massive response of innate immune cells in non-regenerating mammals, but also in successfully regenerating zebrafish. However, the role of the immune response in successful regeneration is poorly defined. Here we show that inhibiting inflammation reduces and promoting it accelerates axonal regeneration in spinal-lesioned zebrafish larvae. Mutant analyses show that peripheral macrophages, but not neutrophils or microglia, are necessary for repair. Macrophage-less irf8 mutants show prolonged inflammation with elevated levels of Tnf-α and Il-1ß. Inhibiting Tnf-α does not rescue axonal growth in irf8 mutants, but impairs it in wildtype animals, indicating a pro-regenerative role of Tnf-α. In contrast, decreasing Il-1ß levels or number of Il-1ß+ neutrophils rescue functional regeneration in irf8 mutants. However, during early regeneration, interference with Il-1ß function impairs regeneration in irf8 and wildtype animals. Hence, inflammation is dynamically controlled by macrophages to promote functional spinal cord regeneration in zebrafish.


Asunto(s)
Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Regeneración Nerviosa , Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra/metabolismo , Animales , Axones/metabolismo , Colágeno Tipo XII/metabolismo , Microglía/metabolismo , Microglía/patología , Mutación/genética , Neutrófilos/metabolismo , Médula Espinal/patología , Pez Cebra/inmunología
15.
Cell Rep ; 23(10): 2976-2988, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874584

RESUMEN

While mitochondrial dysfunction is emerging as key in Parkinson's disease (PD), a central question remains whether mitochondria are actual disease drivers and whether boosting mitochondrial biogenesis and function ameliorates pathology. We address these questions using patient-derived induced pluripotent stem cells and Drosophila models of GBA-related PD (GBA-PD), the most common PD genetic risk. Patient neurons display stress responses, mitochondrial demise, and changes in NAD+ metabolism. NAD+ precursors have been proposed to ameliorate age-related metabolic decline and disease. We report that increasing NAD+ via the NAD+ precursor nicotinamide riboside (NR) significantly ameliorates mitochondrial function in patient neurons. Human neurons require nicotinamide phosphoribosyltransferase (NAMPT) to maintain the NAD+ pool and utilize NRK1 to synthesize NAD+ from NAD+ precursors. Remarkably, NR prevents the age-related dopaminergic neuronal loss and motor decline in fly models of GBA-PD. Our findings suggest NR as a viable clinical avenue for neuroprotection in PD and other neurodegenerative diseases.


Asunto(s)
Drosophila melanogaster/fisiología , Células Madre Pluripotentes Inducidas/patología , Mitocondrias/patología , NAD/metabolismo , Neuronas/metabolismo , Neuronas/patología , Niacinamida/análogos & derivados , Enfermedad de Parkinson/patología , Animales , Autofagia , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Estrés del Retículo Endoplásmico , Glucosilceramidasa/metabolismo , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Actividad Motora , Niacinamida/metabolismo , Enfermedad de Parkinson/fisiopatología , Compuestos de Piridinio , Respuesta de Proteína Desplegada
16.
Eur J Neurosci ; 45(4): 528-535, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27859782

RESUMEN

Mutations in PTEN-induced putative kinase 1 (PINK1) are a cause of early onset Parkinson's disease (PD). Loss of PINK1 function causes dysregulation of mitochondrial calcium homeostasis, resulting in mitochondrial dysfunction and neuronal cell death. We report that both genetic and pharmacological inactivation of the mitochondrial calcium uniporter (MCU), located in the inner mitochondrial membrane, prevents dopaminergic neuronal cell loss in pink1Y431 * mutant zebrafish (Danio rerio) via rescue of mitochondrial respiratory chain function. In contrast, genetic inactivation of the voltage dependent anion channel 1 (VDAC1), located in the outer mitochondrial membrane, did not rescue dopaminergic neurons in PINK1 deficient D. rerio. Subsequent gene expression studies revealed specific upregulation of the mcu regulator micu1 in pink1Y431 * mutant zebrafish larvae and inactivation of micu1 also results in rescue of dopaminergic neurons. The functional consequences of PINK1 deficiency and modified MCU activity were confirmed using a dynamic in silico model of Ca2+ triggered mitochondrial activity. Our data suggest modulation of MCU-mediated mitochondrial calcium homeostasis as a possible neuroprotective strategy in PINK1 mutant PD.


Asunto(s)
Canales de Calcio/genética , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Enfermedad de Parkinson/genética , Regulación hacia Arriba , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Pez Cebra
17.
Front Cell Neurosci ; 9: 410, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528138

RESUMEN

Astrocytes are key players in the progression of amyotrophic lateral sclerosis (ALS). Previously, gene expression profiling of astrocytes from the pre-symptomatic stage of the SOD1(G93A) model of ALS has revealed reduced lactate metabolism and altered trophic support. Here, we have performed microarray analysis of symptomatic and late-stage disease astrocytes isolated by laser capture microdissection (LCM) from the lumbar spinal cord of the SOD1(G93A) mouse to complete the picture of astrocyte behavior throughout the disease course. Astrocytes at symptomatic and late-stage disease show a distinct up-regulation of transcripts defining a reactive phenotype, such as those involved in the lysosome and phagocytic pathways. Functional analysis of hexosaminidase B enzyme activity in the spinal cord and of astrocyte phagocytic ability has demonstrated a significant increase in lysosomal enzyme activity and phagocytic activity in SOD1(G93A) vs. littermate controls, validating the findings of the microarray study. In addition to the increased reactivity seen at both stages, astrocytes from late-stage disease showed decreased expression of many transcripts involved in cholesterol homeostasis. Staining for the master regulator of cholesterol synthesis, SREBP2, has revealed an increased localization to the cytoplasm of astrocytes and motor neurons in late-stage SOD1(G93A) spinal cord, indicating that down-regulation of transcripts may be due to an excess of cholesterol in the CNS during late-stage disease possibly due to phagocytosis of neuronal debris. Our data reveal that SOD1(G93A) astrocytes are characterized more by a loss of supportive function than a toxic phenotype during ALS disease progression and future studies should focus upon restorative therapies.

18.
Hum Mol Genet ; 24(23): 6640-52, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26376862

RESUMEN

Autosomal recessively inherited glucocerebrosidase 1 (GBA1) mutations cause the lysosomal storage disorder Gaucher's disease (GD). Heterozygous GBA1 mutations (GBA1(+/-)) are the most common risk factor for Parkinson's disease (PD). Previous studies typically focused on the interaction between the reduction of glucocerebrosidase (enzymatic) activity in GBA1(+/-) carriers and alpha-synuclein-mediated neurotoxicity. However, it is unclear whether other mechanisms also contribute to the increased risk of PD in GBA1(+/-) carriers. The zebrafish genome does not contain alpha-synuclein (SNCA), thus providing a unique opportunity to study pathogenic mechanisms unrelated to alpha-synuclein toxicity. Here we describe a mutant zebrafish line created by TALEN genome editing carrying a 23 bp deletion in gba1 (gba1(c.1276_1298del)), the zebrafish orthologue of human GBA1. Marked sphingolipid accumulation was already detected at 5 days post-fertilization with accompanying microglial activation and early, sustained up-regulation of miR-155, a master regulator of inflammation. gba1(c.1276_1298del) mutant zebrafish developed a rapidly worsening phenotype from 8 weeks onwards with striking reduction in motor activity by 12 weeks. Histopathologically, we observed marked Gaucher cell invasion of the brain and other organs. Dopaminergic neuronal cell count was normal through development but reduced by >30% at 12 weeks in the presence of ubiquitin-positive, intra-neuronal inclusions. This gba1(c.1276_1298del) zebrafish line is the first viable vertebrate model sharing key pathological features of GD in both neuronal and non-neuronal tissue. Our study also provides evidence for early microglial activation prior to alpha-synuclein-independent neuronal cell death in GBA1 deficiency and suggests upregulation of miR-155 as a common denominator across different neurodegenerative disorders.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Neuronas/patología , Proteínas de Pez Cebra/genética , Pez Cebra , Animales , Muerte Celular , Enfermedad de Gaucher/patología , MicroARNs/genética , Microglía/metabolismo , Microglía/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Eliminación de Secuencia , Regulación hacia Arriba , Pez Cebra/genética , Pez Cebra/metabolismo , alfa-Sinucleína/metabolismo
19.
Ann Neurol ; 74(6): 837-47, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24027110

RESUMEN

OBJECTIVE: Loss of function mutations in PINK1 typically lead to early onset Parkinson disease (PD). Zebrafish (Danio rerio) are emerging as a powerful new vertebrate model to study neurodegenerative diseases. We used a pink1 mutant (pink(-/-) ) zebrafish line with a premature stop mutation (Y431*) in the PINK1 kinase domain to identify molecular mechanisms leading to mitochondrial dysfunction and loss of dopaminergic neurons in PINK1 deficiency. METHODS: The effect of PINK1 deficiency on the number of dopaminergic neurons, mitochondrial function, and morphology was assessed in both zebrafish embryos and adults. Genome-wide gene expression studies were undertaken to identify novel pathogenic mechanisms. Functional experiments were carried out to further investigate the effect of PINK1 deficiency on early neurodevelopmental mechanisms and microglial activation. RESULTS: PINK1 deficiency results in loss of dopaminergic neurons as well as early impairment of mitochondrial function and morphology in Danio rerio. Expression of TigarB, the zebrafish orthologue of the human, TP53-induced glycolysis and apoptosis regulator TIGAR, was markedly increased in pink(-/-) larvae. Antisense-mediated inactivation of TigarB gave rise to complete normalization of mitochondrial function, with resulting rescue of dopaminergic neurons in pink(-/-) larvae. There was also marked microglial activation in pink(-/-) larvae, but depletion of microglia failed to rescue the dopaminergic neuron loss, arguing against microglial activation being a key factor in the pathogenesis. INTERPRETATION: Pink1(-/-) zebrafish are the first vertebrate model of PINK1 deficiency with loss of dopaminergic neurons. Our study also identifies TIGAR as a promising novel target for disease-modifying therapy in PINK1-related PD.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Reguladoras de la Apoptosis/genética , Neuronas Dopaminérgicas/patología , Larva/genética , Larva/metabolismo , Microglía/metabolismo , Enfermedades Mitocondriales/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...