Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 630(8018): 994-1002, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38926616

RESUMEN

Insertion sequence (IS) elements are the simplest autonomous transposable elements found in prokaryotic genomes1. We recently discovered that IS110 family elements encode a recombinase and a non-coding bridge RNA (bRNA) that confers modular specificity for target DNA and donor DNA through two programmable loops2. Here we report the cryo-electron microscopy structures of the IS110 recombinase in complex with its bRNA, target DNA and donor DNA in three different stages of the recombination reaction cycle. The IS110 synaptic complex comprises two recombinase dimers, one of which houses the target-binding loop of the bRNA and binds to target DNA, whereas the other coordinates the bRNA donor-binding loop and donor DNA. We uncovered the formation of a composite RuvC-Tnp active site that spans the two dimers, positioning the catalytic serine residues adjacent to the recombination sites in both target and donor DNA. A comparison of the three structures revealed that (1) the top strands of target and donor DNA are cleaved at the composite active sites to form covalent 5'-phosphoserine intermediates, (2) the cleaved DNA strands are exchanged and religated to create a Holliday junction intermediate, and (3) this intermediate is subsequently resolved by cleavage of the bottom strands. Overall, this study reveals the mechanism by which a bispecific RNA confers target and donor DNA specificity to IS110 recombinases for programmable DNA recombination.


Asunto(s)
ADN , ARN no Traducido , Recombinación Genética , Dominio Catalítico , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , Elementos Transponibles de ADN/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Multimerización de Proteína , Recombinasas/química , Recombinasas/genética , Recombinasas/metabolismo , ARN no Traducido/química , ARN no Traducido/genética , ARN no Traducido/metabolismo , ARN no Traducido/ultraestructura , Especificidad por Sustrato
2.
Nature ; 630(8018): 984-993, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38926615

RESUMEN

Genomic rearrangements, encompassing mutational changes in the genome such as insertions, deletions or inversions, are essential for genetic diversity. These rearrangements are typically orchestrated by enzymes that are involved in fundamental DNA repair processes, such as homologous recombination, or in the transposition of foreign genetic material by viruses and mobile genetic elements1,2. Here we report that IS110 insertion sequences, a family of minimal and autonomous mobile genetic elements, express a structured non-coding RNA that binds specifically to their encoded recombinase. This bridge RNA contains two internal loops encoding nucleotide stretches that base-pair with the target DNA and the donor DNA, which is the IS110 element itself. We demonstrate that the target-binding and donor-binding loops can be independently reprogrammed to direct sequence-specific recombination between two DNA molecules. This modularity enables the insertion of DNA into genomic target sites, as well as programmable DNA excision and inversion. The IS110 bridge recombination system expands the diversity of nucleic-acid-guided systems beyond CRISPR and RNA interference, offering a unified mechanism for the three fundamental DNA rearrangements-insertion, excision and inversion-that are required for genome design.


Asunto(s)
ADN , ARN no Traducido , Recombinación Genética , Emparejamiento Base , Secuencia de Bases , ADN/genética , ADN/metabolismo , Elementos Transponibles de ADN/genética , Mutagénesis Insercional/genética , Recombinasas/metabolismo , Recombinasas/genética , Recombinación Genética/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo
3.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38328150

RESUMEN

Genomic rearrangements, encompassing mutational changes in the genome such as insertions, deletions, or inversions, are essential for genetic diversity. These rearrangements are typically orchestrated by enzymes involved in fundamental DNA repair processes such as homologous recombination or in the transposition of foreign genetic material by viruses and mobile genetic elements (MGEs). We report that IS110 insertion sequences, a family of minimal and autonomous MGEs, express a structured non-coding RNA that binds specifically to their encoded recombinase. This bridge RNA contains two internal loops encoding nucleotide stretches that base-pair with the target DNA and donor DNA, which is the IS110 element itself. We demonstrate that the target-binding and donor-binding loops can be independently reprogrammed to direct sequence-specific recombination between two DNA molecules. This modularity enables DNA insertion into genomic target sites as well as programmable DNA excision and inversion. The IS110 bridge system expands the diversity of nucleic acid-guided systems beyond CRISPR and RNA interference, offering a unified mechanism for the three fundamental DNA rearrangements required for genome design.

4.
Cell Syst ; 14(12): 1087-1102.e13, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38091991

RESUMEN

Effective and precise mammalian transcriptome engineering technologies are needed to accelerate biological discovery and RNA therapeutics. Despite the promise of programmable CRISPR-Cas13 ribonucleases, their utility has been hampered by an incomplete understanding of guide RNA design rules and cellular toxicity resulting from off-target or collateral RNA cleavage. Here, we quantified the performance of over 127,000 RfxCas13d (CasRx) guide RNAs and systematically evaluated seven machine learning models to build a guide efficiency prediction algorithm orthogonally validated across multiple human cell types. Deep learning model interpretation revealed preferred sequence motifs and secondary features for highly efficient guides. We next identified and screened 46 novel Cas13d orthologs, finding that DjCas13d achieves low cellular toxicity and high specificity-even when targeting abundant transcripts in sensitive cell types, including stem cells and neurons. Our Cas13d guide efficiency model was successfully generalized to DjCas13d, illustrating the power of combining machine learning with ortholog discovery to advance RNA targeting in human cells.


Asunto(s)
Sistemas CRISPR-Cas , Aprendizaje Profundo , ARN , Humanos , Sistemas CRISPR-Cas/genética , ARN/genética , ARN Guía de Sistemas CRISPR-Cas , Transcriptoma
5.
PLoS Pathog ; 19(7): e1011351, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37410700

RESUMEN

Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1. Importantly, the TPR domain of KDM6A is required for recruitment of the histone methyltransferase KMT2D and histone deacetylase p300. Together this KDM6A-KMT2D-p300 complex localizes to the proximal and distal enhancers of ACE2 and regulates receptor expression. Notably, small molecule inhibition of p300 catalytic activity abrogates ACE2 and DPP4 expression and confers resistance to all major SARS-CoV-2 variants and MERS-CoV in primary human airway and intestinal epithelial cells. These data highlight the role for KDM6A-KMT2D-p300 complex activities in conferring diverse coronaviruses susceptibility and reveal a potential pan-coronavirus therapeutic target to combat current and emerging coronaviruses. One Sentence Summary: The KDM6A/KMT2D/EP300 axis promotes expression of multiple viral receptors and represents a potential drug target for diverse coronaviruses.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Histona Demetilasas/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo
6.
PLoS Biol ; 21(6): e3002097, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310920

RESUMEN

Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.


Asunto(s)
COVID-19 , Internalización del Virus , Animales , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/genética , COVID-19/metabolismo , Dipeptidil Peptidasa 4 , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Quinasas DyrK
7.
Nat Genet ; 54(8): 1078-1089, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879412

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2-host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism.


Asunto(s)
COVID-19 , Animales , COVID-19/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epigénesis Genética , Humanos , Ratones , Mucinas/genética , SARS-CoV-2
8.
BMC Biol ; 18(1): 177, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33234154

RESUMEN

BACKGROUND: Many biological processes, such as cancer metastasis, organismal development, and acquisition of resistance to cytotoxic therapy, rely on the emergence of rare sub-clones from a larger population. Understanding how the genetic and epigenetic features of diverse clones affect clonal fitness provides insight into molecular mechanisms underlying selective processes. While large-scale barcoding with NGS readout has facilitated cellular fitness assessment at the population level, this approach does not support characterization of clones prior to selection. Single-cell genomics methods provide high biological resolution, but are challenging to scale across large populations to probe rare clones and are destructive, limiting further functional analysis of important clones. RESULTS: Here, we develop CloneSifter, a methodology for tracking and enriching rare clones throughout their response to selection. CloneSifter utilizes a CRISPR sgRNA-barcode library that facilitates the isolation of viable cells from specific clones within the barcoded population using a sequence-specific retrieval reporter. We demonstrate that CloneSifter can measure clonal fitness of cancer cell models in vitro and retrieve targeted clones at abundance as low as 1 in 1883 in a heterogeneous cell population. CONCLUSIONS: CloneSifter provides a means to track and access specific and rare clones of interest across dynamic changes in population structure to comprehensively explore the basis of these changes.


Asunto(s)
Clonación de Organismos/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN/metabolismo , Células Cultivadas , Células Clonales
9.
Nat Protoc ; 14(7): 2259, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30349047

RESUMEN

In the published version of this paper, Step 64 of the Procedure reads, "Refer to Steps 37-39 for NGS analysis of the sgRNA distribution." This step should refer the reader to Steps 35-39. This text has not been corrected in the original paper.

10.
Cell ; 175(1): 212-223.e17, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241607

RESUMEN

CRISPR-Cas endonucleases directed against foreign nucleic acids mediate prokaryotic adaptive immunity and have been tailored for broad genetic engineering applications. Type VI-D CRISPR systems contain the smallest known family of single effector Cas enzymes, and their signature Cas13d ribonuclease employs guide RNAs to cleave matching target RNAs. To understand the molecular basis for Cas13d function and explain its compact molecular architecture, we resolved cryoelectron microscopy structures of Cas13d-guide RNA binary complex and Cas13d-guide-target RNA ternary complex to 3.4 and 3.3 Å resolution, respectively. Furthermore, a 6.5 Å reconstruction of apo Cas13d combined with hydrogen-deuterium exchange revealed conformational dynamics that have implications for RNA scanning. These structures, together with biochemical and cellular characterization, provide insights into its RNA-guided, RNA-targeting mechanism and delineate a blueprint for the rational design of improved transcriptome engineering technologies.


Asunto(s)
Sistemas CRISPR-Cas/genética , ARN Guía de Kinetoplastida/fisiología , Ribonucleasas/fisiología , Sistemas CRISPR-Cas/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Microscopía por Crioelectrón/métodos , Endonucleasas/metabolismo , Células HEK293 , Humanos , Conformación Molecular , ARN/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/ultraestructura , Ribonucleasas/metabolismo , Ribonucleasas/ultraestructura
11.
Cell ; 173(3): 665-676.e14, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29551272

RESUMEN

Class 2 CRISPR-Cas systems endow microbes with diverse mechanisms for adaptive immunity. Here, we analyzed prokaryotic genome and metagenome sequences to identify an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that we classify as type VI-D. Biochemical characterization and protein engineering of seven distinct orthologs generated a ribonuclease effector derived from Ruminococcus flavefaciens XPD3002 (CasRx) with robust activity in human cells. CasRx-mediated knockdown exhibits high efficiency and specificity relative to RNA interference across diverse endogenous transcripts. As one of the most compact single-effector Cas enzymes, CasRx can also be flexibly packaged into adeno-associated virus. We target virally encoded, catalytically inactive CasRx to cis elements of pre-mRNA to manipulate alternative splicing, alleviating dysregulated tau isoform ratios in a neuronal model of frontotemporal dementia. Our results present CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development.


Asunto(s)
Sistemas CRISPR-Cas , Biología Computacional/métodos , Ingeniería Genética/métodos , Ingeniería de Proteínas/métodos , ARN/análisis , Empalme Alternativo , Animales , Proteínas Bacterianas/metabolismo , Diferenciación Celular , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Lentivirus/genética , Ratones , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , Ruminococcus , Análisis de Secuencia de ARN , Transcriptoma
13.
Nature ; 548(7667): 343-346, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28792927

RESUMEN

Mammalian genomes contain thousands of loci that transcribe long noncoding RNAs (lncRNAs), some of which are known to carry out critical roles in diverse cellular processes through a variety of mechanisms. Although some lncRNA loci encode RNAs that act non-locally (in trans), there is emerging evidence that many lncRNA loci act locally (in cis) to regulate the expression of nearby genes-for example, through functions of the lncRNA promoter, transcription, or transcript itself. Despite their potentially important roles, it remains challenging to identify functional lncRNA loci and distinguish among these and other mechanisms. Here, to address these challenges, we developed a genome-scale CRISPR-Cas9 activation screen that targets more than 10,000 lncRNA transcriptional start sites to identify noncoding loci that influence a phenotype of interest. We found 11 lncRNA loci that, upon recruitment of an activator, mediate resistance to BRAF inhibitors in human melanoma cells. Most candidate loci appear to regulate nearby genes. Detailed analysis of one candidate, termed EMICERI, revealed that its transcriptional activation resulted in dosage-dependent activation of four neighbouring protein-coding genes, one of which confers the resistance phenotype. Our screening and characterization approach provides a CRISPR toolkit with which to systematically discover the functions of noncoding loci and elucidate their diverse roles in gene regulation and cellular function.


Asunto(s)
Resistencia a Antineoplásicos/genética , Sitios Genéticos/genética , Genoma Humano/genética , Indoles/farmacología , Melanoma/genética , ARN Largo no Codificante/genética , Sulfonamidas/farmacología , Activación Transcripcional/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Sitios Genéticos/efectos de los fármacos , Vía de Señalización Hippo , Humanos , Indoles/uso terapéutico , Melanoma/tratamiento farmacológico , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sulfonamidas/uso terapéutico , Sitio de Iniciación de la Transcripción , Vemurafenib
14.
Nat Protoc ; 12(4): 828-863, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28333914

RESUMEN

Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently, the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique, we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified by the screen, we further describe strategies for confirming the screening phenotype, as well as genetic perturbation, through analysis of indel rate and transcriptional activation. Beginning with library design, a genome-scale screen can be completed in 9-15 weeks, followed by 4-5 weeks of validation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes/métodos , Genómica/métodos , Activación Transcripcional , Animales , Biblioteca de Genes , Vectores Genéticos/genética , Humanos , Lentivirus/genética , Ratones , Fenotipo
15.
Science ; 353(6299): aaf5573, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27256883

RESUMEN

The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated genes (Cas) adaptive immune system defends microbes against foreign genetic elements via DNA or RNA-DNA interference. We characterize the class 2 type VI CRISPR-Cas effector C2c2 and demonstrate its RNA-guided ribonuclease function. C2c2 from the bacterium Leptotrichia shahii provides interference against RNA phage. In vitro biochemical analysis shows that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave single-stranded RNA targets carrying complementary protospacers. In bacteria, C2c2 can be programmed to knock down specific mRNAs. Cleavage is mediated by catalytic residues in the two conserved Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, mutations of which generate catalytically inactive RNA-binding proteins. These results broaden our understanding of CRISPR-Cas systems and suggest that C2c2 can be used to develop new RNA-targeting tools.


Asunto(s)
Inmunidad Adaptativa/genética , Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Endorribonucleasas/metabolismo , Leptotrichia/enzimología , ARN Guía de Kinetoplastida/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endorribonucleasas/química , Endorribonucleasas/genética , Escherichia coli/genética , Escherichia coli/inmunología , Escherichia coli/virología , Técnicas de Silenciamiento del Gen , Sitios Genéticos , Leptotrichia/genética , Leptotrichia/inmunología , Levivirus/inmunología , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , División del ARN
17.
Mol Cell ; 60(3): 385-97, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593719

RESUMEN

Microbial CRISPR-Cas systems are divided into Class 1, with multisubunit effector complexes, and Class 2, with single protein effectors. Currently, only two Class 2 effectors, Cas9 and Cpf1, are known. We describe here three distinct Class 2 CRISPR-Cas systems. The effectors of two of the identified systems, C2c1 and C2c3, contain RuvC-like endonuclease domains distantly related to Cpf1. The third system, C2c2, contains an effector with two predicted HEPN RNase domains. Whereas production of mature CRISPR RNA (crRNA) by C2c1 depends on tracrRNA, C2c2 crRNA maturation is tracrRNA independent. We found that C2c1 systems can mediate DNA interference in a 5'-PAM-dependent fashion analogous to Cpf1. However, unlike Cpf1, which is a single-RNA-guided nuclease, C2c1 depends on both crRNA and tracrRNA for DNA cleavage. Finally, comparative analysis indicates that Class 2 CRISPR-Cas systems evolved on multiple occasions through recombination of Class 1 adaptation modules with effector proteins acquired from distinct mobile elements.


Asunto(s)
Bacterias , Proteínas Bacterianas , Sistemas CRISPR-Cas/fisiología , Evolución Molecular , ARN Bacteriano , Ribonucleasas , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Estructura Terciaria de Proteína , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Recombinación Genética/fisiología , Ribonucleasas/genética , Ribonucleasas/metabolismo
18.
Nat Biotechnol ; 33(11): 1159-61, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26436575

RESUMEN

We have developed a CRISPR-based method that uses catalytically active Cas9 and distinct single guide (sgRNA) constructs to knock out and activate different genes in the same cell. These sgRNAs, with 14- to 15-bp target sequences and MS2 binding loops, can activate gene expression using an active Streptococcus pyogenes Cas9 nuclease, without inducing double-stranded breaks. We use these 'dead RNAs' to perform orthogonal gene knockout and transcriptional activation in human cells.


Asunto(s)
Proteínas Bacterianas/genética , Endonucleasas/genética , Técnicas de Inactivación de Genes/métodos , ARN Guía de Kinetoplastida/genética , Proteína 9 Asociada a CRISPR , Células HEK293 , Humanos
19.
Nature ; 517(7536): 583-8, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25494202

RESUMEN

Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.


Asunto(s)
Sistemas CRISPR-Cas/genética , Ingeniería Genética/métodos , Genoma Humano/genética , Melanoma/genética , Activación Transcripcional/genética , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Complementario/biosíntesis , ADN Complementario/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Biblioteca de Genes , Sitios Genéticos/genética , Pruebas Genéticas , Humanos , Indoles/farmacología , Melanoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , ARN no Traducido/biosíntesis , ARN no Traducido/genética , ARN no Traducido/metabolismo , Reproducibilidad de los Resultados , Sulfonamidas/farmacología , Regulación hacia Arriba/genética
20.
Nat Biotechnol ; 32(7): 670-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24752079

RESUMEN

Bacterial type II CRISPR-Cas9 systems have been widely adapted for RNA-guided genome editing and transcription regulation in eukaryotic cells, yet their in vivo target specificity is poorly understood. Here we mapped genome-wide binding sites of a catalytically inactive Cas9 (dCas9) from Streptococcus pyogenes loaded with single guide RNAs (sgRNAs) in mouse embryonic stem cells (mESCs). Each of the four sgRNAs we tested targets dCas9 to between tens and thousands of genomic sites, frequently characterized by a 5-nucleotide seed region in the sgRNA and an NGG protospacer adjacent motif (PAM). Chromatin inaccessibility decreases dCas9 binding to other sites with matching seed sequences; thus 70% of off-target sites are associated with genes. Targeted sequencing of 295 dCas9 binding sites in mESCs transfected with catalytically active Cas9 identified only one site mutated above background levels. We propose a two-state model for Cas9 binding and cleavage, in which a seed match triggers binding but extensive pairing with target DNA is required for cleavage.


Asunto(s)
Sistemas CRISPR-Cas/genética , Proteínas de Unión al ADN/genética , Desoxirribonucleasa I/genética , Células Madre Embrionarias/fisiología , Genoma/genética , Modelos Genéticos , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Ratones , Datos de Secuencia Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...