Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 29: 105297, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32140513

RESUMEN

In enteric bacteria, DNA supercoiling is highly responsive to environmental conditions. Host specific features of environment serve as cues for the expression of genes required for colonization of host niches via changing supercoiling [1]. It has been shown that substitution at position 87 of GyrA of Salmonella enterica str. SL1344 influences global supercoiling and results in an altered transcriptome with increased expression of stress response pathways [2]. Aminocoumarin antibiotics, such as novobiocin, can be used to relax supercoiling and alter the expression of supercoiling-sensitive genes. Meanwhile, Salmonella enterica demonstrates a significant resistance to this antibiotic and relatively small variability of supercoiling in response to the growth phase, osmotic pressure, and novobiocin treatment. Here we present for the first time transcriptome data of Salmonella enterica subsp. Enterica serovar Typhimurium str. 14028S grown in the presence of novobiocin. These data will help identify genes involved in novobiocin resistance and adaptation processes associated with torsion perturbations in S. enterica. Cleaned FASTQ files for the RNA-seq libraries are deposited in the NCBI Sequence Read Archive (SRA, Identifier: SRP239815) and have been assigned BioProject accession PRJNA599397.

2.
Data Brief ; 28: 105001, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31909107

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) improve plant productivity and stress resistance. The mechanisms involved in plant-microbe interactions include the modulation of plant hormone status. The Novosphingobium sp. strain P6W was previously described as the bacterium capable of abscisic acid (ABA) degradation, and its inoculation decreased ABA concentrations in planta. The metabolic pathway for the ABA degradation in bacteria is still unknown. Here we present transcriptome data of Novosphingobium sp. P6W grown in the medium supplemented with ABA or fructose as the carbon source. Cleaned FASTQ files for the RNA-seq libraries are deposited in the NCBI Sequence Read Archive (SRA, Identifier: SRP189498) and have been assigned BioProject accession PRJNA529223.

3.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975812

RESUMEN

Mechanisms of microbial catabolism of phytohormone abscisic acid (ABA) are still unknown. Here, we report the complete genome sequence of ABA-utilizing Rhodococcus sp. strain P1Y, isolated from the rice (Oryza sativa L.) rhizosphere. The sequence was obtained using an approach combining Oxford Nanopore Technologies MinION and Illumina MiSeq sequence data.

4.
Protein Sci ; 26(6): 1171-1181, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28345263

RESUMEN

DNA transposons can be employed for stable gene transfer in vertebrates. The Sleeping Beauty (SB) DNA transposon has been recently adapted for human application and is being evaluated in clinical trials, however its molecular mechanism is not clear. SB transposition is catalyzed by the transposase enzyme, which is a multi-domain protein containing the catalytic and the DNA-binding domains. The DNA-binding domain of the SB transposase contains two structurally independent subdomains, PAI and RED. Recently, the structures of the catalytic domain and the PAI subdomain have been determined, however no structural information on the RED subdomain and its interactions with DNA has been available. Here, we used NMR spectroscopy to determine the solution structure of the RED subdomain and characterize its interactions with the transposon DNA.


Asunto(s)
Elementos Transponibles de ADN , ADN/química , Transposasas/química , Catálisis , Humanos , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos
5.
PLoS One ; 9(11): e112114, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25375127

RESUMEN

The reaction of DNA transposition begins when the transposase enzyme binds to the transposon DNA. Sleeping Beauty is a member of the mariner family of DNA transposons. Although it is an important tool in genetic applications and has been adapted for human gene therapy, its molecular mechanism remains obscure. Here, we show that only the folded conformation of the specific DNA recognition subdomain of the Sleeping Beauty transposase, the PAI subdomain, binds to the transposon DNA. Furthermore, we show that the PAI subdomain is well folded at low temperatures, but the presence of unfolded conformation gradually increases at temperatures above 15°C, suggesting that the choice of temperature may be important for the optimal transposase activity. Overall, the results provide a molecular-level insight into the DNA recognition by the Sleeping Beauty transposase.


Asunto(s)
Pliegue de Proteína , Transposasas/química , Transposasas/metabolismo , Elementos Transponibles de ADN/fisiología , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Temperatura , Tirosina/química
6.
Phys Chem Chem Phys ; 15(39): 16725-35, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23985972

RESUMEN

Two diterpenoid surfactants with ammonium head groups and bromide (S1) or tosylate (S2) counterions have been synthesized. Exploration of these biomimetic species made it possible to demonstrate that even minor structural changes beyond their chemical nature may dramatically affect their solution behavior. While their aggregation thresholds differ inconsiderably, morphological behavior and affinity to lipid bilayer are strongly dependent on the counterion nature. Compound S2 demonstrates properties of typical surfactants and forms small micelle-like aggregates above critical micelle concentration. For surfactant S1, two critical concentrations and two types of aggregates occur. Structural transitions have been observed between small micelles and aggregates with higher aggregation numbers and hydrodynamic diameter of ca. 150 nm. Unlike S2, surfactant S1 is shown to integrate with liposomes based on dipalmitoylphosphatidylcholine, resulting in a decrease of the temperature of the main phase transition. Both surfactants demonstrate an effective complexation capacity toward oligonucleotide (ONu), which is supported by recharging the surfactant-ONu complexes and the ethidium bromide exclusion at a low N/P ratio. Meanwhile, a very weak complexation of plasmid DNA with the surfactants has been revealed in the gel electrophoresis experiment. The DNA transfer to bacterial cells mediated by the surfactant S1 is shown to depend on the protocol used. In the case of the electroporation, the inhibition of the cell transformation occurs in the presence of the surfactant, while upon the chemical treatment no surfactant effect has been observed. The variability in the morphology, the biocompatibility, the nanoscale dimension and the high binding capacity toward the DNA decamer make it possible to nominate the designed surfactants as promising carriers for biosubstrates or as a helper surfactant for the mixed liposome-surfactant nanocontainers.


Asunto(s)
Materiales Biocompatibles/química , Diterpenos de Tipo Kaurano/química , Tensoactivos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Modelos Moleculares , Estructura Molecular , Nanotecnología , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...